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Abstract. The Navier-Stokes-Fourier (NSF) equations are conventionally used to model continuum flow near local thermodynamic
equilibrium. In the presence of more rarefied flows, there exists a transitional regime in which the NSF equations no longer hold,
and where particle-based methods become too expensive for practical problems. To close this gap, moment closure techniques
having the potential of being both valid and computationally tractable for these applications are sought. In this study, a number
of five-moment closures for a model one-dimensional kinetic equation are assessed and compared. In particular, four different
moment closures are applied to the solution of stationary shocks. The first of these is a Grad-type moment closure, which is known
to fail for moderate departures from equilibrium. The second is an interpolative closure based on maximization of thermodynamic
entropy which has previously been shown to provide excellent results for 1D gaskinetic theory. Additionally, two quadrature meth-
ods of moments (QMOM) are considered. One method is based on the representation of the distribution function in terms of a
combination of three Dirac delta functions. The second method, an extended QMOM (EQMOM), extends the quadrature-based
approach by assuming a bi-Maxwellian representation of the distribution function. The closing fluxes are analyzed in each case and
the region of physical realizability is examined for the closures. Numerical simulations of stationary shock structures as predicted
by each moment closure are compared to reference kinetic and the corresponding NSF-like equation solutions. It is shown that
the bi-Maxwellian and interpolative maximum-entropy-based moment closures are able to closely reproduce the results of the true
maximum-entropy distribution closure for this case very well, whereas the other methods do not. For moderate departures from
local thermodynamic equilibrium, the Grad-type and QMOM closures produced unphysical subshocks and were unable to provide
converged solutions at high Mach number shocks. Conversely, the bi-Maxwellian and interpolative maximum-entropy-based clo-
sures are able to provide smooth solutions with no subshocks that agree extremely well with the kinetic solutions. Moreover, the
EQMOM bi-Maxwellian closure would seem to readily allow the extension to fully three-dimensional kinetic descriptions, with
the advantage of possessing a closed-form expression for the distribution function, unlike its interpolative counterpart.

INTRODUCTION AND BACKGROUND

In computational fluid dynamics, the Navier-Stokes-Fourier (NSF) equations and direct simulation Monte Carlo
(DSMC) [1] are traditionally used to describe continuum and non-equilibrium flows respectively. However, there
exists a transitional non-equilibrium regime in which the NSF equations fall short due to assumptions associated with
nearness to equilibrium conditions. The transition regime is generally defined by flows where the Knudsen number,
Kn, ranges from 0.1 ≤ Kn ≤ 10 ∼ 100. Examples of transition regime flows include micro-scale flows, such as the
ones found in micro-electromechanical systems (MEMS) and high speed flows of gases and plasmas. Though DSMC
remains valid in the transition regime, it can become computationally expensive due to the requirement for high num-
bers of particles. Moment closure methods provide an alternative approach for predicting this class of flow. With
respect to the NSF equations, moment closures have the potential of offering a region of validity that extends into the
transition regime, while having comparable computational costs. They also yield hyperbolic systems of equations that
are well suited for solution by modern upwind finite-volume [2] and Discontinuous Galerkin (DG) [3, 4] schemes.

Moment closure methods can be derived from kinetic theory, in which a fluid particle can be broadly represented
by a phase-space distribution function, F (xi, vi, t), which is related to the probability of finding a particle at position xi
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and time t having a velocity vi. The evolution of F is described by the Boltzmann equation. Macroscopic quantities or
moments of the distribution function can be defined in terms of the convolution integral of a velocity weight with F
and the transport of the velocity moments is described by Maxwell’s equation of change. Theoretically, transporting an
infinite set of these moments would replicate results from the Boltzmann equation exactly. This is however practically
impossible and certainly not desirable computationally. Instead, a truncated set of moments that can adequately depict
the physical phenomena of interest is sought. This introduces the closure problem: at least one higher order moment
will be present in the solution flux term of the highest moment and thus the system of moment transport equations
becomes unclosed. An expression for the next higher-order moments must be obtained in terms of the known set of
moments. This is typically performed by introducing an assumed form of the phase-space distribution function as first
considered by Grad [5].

More recently, reconstruction of the distribution function based on maximization of thermodynamic entropy prin-
ciples has been proposed [6, 7, 8]. Maximum entropy closures have attractive mathematical and physical properties.
For one, the maximum entropy distribution function remains positive for all physically realizable moments. The as-
sumed form also produces the most likely distribution function given a truncated moment set. However, there exists
no general closed-form expression for the maximum-entropy distribution when moments of interest contain velocity
weights higher than second order. A computationally prohibitive iterative procedure is required to reconstruct the dis-
tribution function and thus alternative methods are sought. Notable alternatives have been proposed by McDonald and
Groth [9] and McDonald and Torrilhon [10]. In the latter, an interpolative maximum-entropy-based (IMEB) procedure
is performed to obtain closed-form expressions of the higher order moments. This procedure has been shown to repro-
duce closely the maximum-entropy results. The interpolative closure however has the disadvantage of still not having
a closed-form expression for the distribution function in terms of the known set of moments. This can be particularly
problematic in the implementation of boundary conditions (BCs) or evaluation of realistic collision operators.

The current work will thus focus on various alternative closure approximations and their comparison with the
interpolative closure of McDonald and Torrilhon [10]. A bi-Maxwellian closure and more standard methods, such as
Grad-type [5] and quadrature-based [11, 12] moment closures, are all compared for a model one-dimensional (1D)
kinetic equation applied to shock structure prediction. These three other categories of closures all rely on an assumed
form of the distribution that can be recovered analytically from the known set of moments, thus presenting modeling
advantages over the original maximum-entropy and IMEB closures. To assess the capabilities of the closures, they will
be compared to the direct numerical solution of the underlying kinetic equation. A near-equilibrium Navier-Stokes-
like model will also be used as a basis for the comparisons.

FIVE-MOMENT CLOSURES FOR ONE-DIMENSIONAL KINETIC THEORY

For this study, the hyperbolic five-moment system examined previously by McDonald and Groth [9] and Mcdonald
and Torrilhon [10] will be reconsidered. A so-called “1D gas” will be examined for which the particle movement is
constrained to a single direction. A further simplification is made by considering the relaxation-time or BGK collision
operator [13], in which the distribution function relaxes to an equilibrium Maxwellian, M, as dictated by a single
characteristic relaxation time, τ. The governing BGK kinetic equation in this case is given by

∂F
∂t
+ v
∂F
∂x
=
F −M
τ
, (1)

where a constant relaxation time is assumed. The five-moment system corresponding to Eq. (1) can be written as

∂ρ

∂t
+
∂

∂x
(ρu) = 0, (2)

∂

∂t
(ρu) +

∂

∂x

(
ρu2 + p

)
= 0, (3)

∂

∂t

(
ρu2 + p

)
+
∂

∂x

(
ρu3 + 3up + q

)
= 0, (4)

∂

∂t

(
ρu3 + 3up + q

)
+
∂

∂x

(
ρu4 + 6u2 p + 4uq + r

)
= −q
τ
, (5)
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∂

∂t

(
ρu4 + 6u2 p + 4uq + r

)
+
∂

∂x

(
ρu5 + 10u3 p + 10u2q + 5ur + s

)
= −1

τ

(
4uq + r − 3

p2

ρ

)
, (6)

where the moments ρ, u, p, q, r and s are defined by

ρ = 〈mF 〉 , u = 〈mvF 〉 , p =
〈
mc2F

〉
, q =

〈
mc3F

〉
, r =

〈
mc4F

〉
, s =

〈
mc5F

〉
, (7)

and c = v − u is the random velocity. The resulting system is unclosed. A closing expression is required for the fifth
random velocity moment, s in terms of the other known moments. The following subsections will distinguish between
three categories of closure methods for s, namely: Grad-type, IMEB, and quadrature-based moment closures.

For the purposes of analysis, it is convenient to define a shift in velocity space such that u = 0 and then work
with a non-dimensional set of moments defined by

ρ� = 1, u� = 0, p� = 1, q� =
1

ρ

(
ρ

p

) 3
2

q, r� =
1

ρ

(
ρ

p

)2

r, s� =
1

ρ

(
ρ

p

) 5
2

s. (8)

These definitions will allow the study of the properties of the moment closures by considering only the dimensionless
values of the heat flux, q�, and kurtosis, r�.

Grad-Type Moment Closure
In the original moment closure of Grad [5], the distribution function is represented as a polynomial expansion about
the equilibrium Maxwellian, which for the univariate kinetic equation above can be expressed as

FGrad =M
[
1 + α0 + α1

( c
a

)
+ α2

( c
a

)2

+ α3

( c
a

)3

+ α4

( c
a

)4
]
, (9)

where the coefficients, αi, are determined by ensuring FGrad satisfies the lower order moments. Unfortunately, the
distribution above has a limited range in the space of realizable moments for which it is strictly positive. In fact, the
usual Grad third-order closures are almost everywhere non-positive. More importantly, it has also been shown that
for modest deviations from equilibrium, the hyperbolicity of the associated moment equations is lost and the closure
breaks down [14]. The consequences of this breakdown will be illustrated in the results to follow.

For the studied five-moment system, the closure resulting from Grad’s polynomial expansion has been derived
previously by McDonald et al. [10] and yields the simple closing relation:

s� = 10q�. (10)

Interpolative Maximum-Entropy-Based (IMEB) Moment Closure
Dreyer [6], Müller and Ruggeri [7] and Levermore [8] provided the initial framework for maximum entropy closures
as pertains to kinetic theory. This approach assumes a phase-space distribution function that maximizes the thermo-
dynamic entropy of the system, thus producing the most likely distribution while remaining consistent with a set of
given moments. For the 1D kinetic equation given above, the form of the maximum-entropy distribution function is

FMaxEnt = exp
(
α0 + α1c + α2c2 + α3c3 + α4c4

)
(11)

and the coefficients, αi, are determined via the maximization of the Boltzmann entropy m〈F lnF 〉. Maximum entropy
closures have many desirable mathematical properties including global hyperbolicity and a definable entropy [8]. A
significant drawback is that, as in the present case, a numerical approach is generally required to determine αi in terms
of the moments ρ, u, p, q and r.

Due to the absence of a closed-form expression for this distribution, IMEB moment closures for have been
proposed by McDonald and Torrilhon and subsequently studied by Tensuda et al. [10, 15]. For the 5-moment model,
the interpolative approximation to the true maximum-entropy closure yields an analytical expression for the random
fifth moment, s�, which closely matches the values of the actual maximum-entropy closure and can be expressed as

s� =
q3
�

σ2
M

+

(
10 − 8σ

1
2

M

)
q�, (12)
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where the parameter σM is the result of a parabolic mapping in the q� − r� plane and is given by

σM =
3 − r� +

√
(3 − r�)2 + 8q2

�

4
. (13)

Although the IMEB closure presents many modeling and implementation advantages, including strict hyperbolicity
of the 5-moment set for virtually all realizable moments [10], it still does not provide a closed-form expression for
the distribution function. Arbitrary higher-order moments can therefore not be integrated analytically and this can be
viewed as a significant drawback.

Quadrature-Based Moment (QMOM) Closure
Quadrature methods of moments (QMOMs) were first described by McGraw in the context of aerosol dynamics [11].
Many variants of the QMOM have since been developed [12], but they have mainly been applied to the prediction of
multiphase flows. A simple variant of the QMOM approach is evaluated here. The representation of the distribution
function is based on the summation of three weighted with velocity weights, wk, and abscissas, ck. In order to produce
a five-moment closure, the first abscissa is set to c1 = 0 here. This choice is made since the second random velocity
moment is always null and results in a five-equation system for the parameters of Fδ given by

3∑
k=1

wkcαk = M�α , (14)

where M�α is a dimensionless moment of order α = {0, 4}. The solution to Eq. (14) yields an analytic expression for
the weights and abscissas. The random fifth moment can then be written as

s� =
3∑

k=1

wkc5
k =

(
1 − a4

) (
1 + a

)2
( q�
1 − a2

)3

, (15)

where the weight ratio, a = w2/w3, is a root of the fourth-order polynomial(
q2
� − r�

)
a4 +

(
q2
�

)
a3 + (2r�) a2 +

(
q2
�

)
a +

(
q2
� − r�

)
= 0. (16)

While this quadrature approach can be shown to have a strictly positive distribution function for all realizable moments
and is expected to be quite flexible in producing solutions for the full range of moment values, it is also expected to
have similar issues with non-hyperbolic behaviour and breakdown as the Grad-type closure, due to the finite extent of
the Dirac basis function and hence finite wave propagation velocities represented by the closure.

EQMOM Bi-Maxwellian Moment Closure
Multi-Gaussian or multi-Maxwellian closures were previously considered by Chalons et al. [16]. The concept essen-
tially extends the idea of the QMOM closure by replacing the basis function at each quadrature point by a Maxwellian
distribution shifted in velocity space, with the influence of the new basis functions now extending over the full range
of velocities. Such an approach is also referred to as an extended quadrature method of moments (EQMOM) [12, 17].
It is noted that Fan and Li [18] have also recently evaluated bi-Gaussian closures for application to gas kinetic theory
and compared features of the closure to that of maximum-entropy closures.

For the 5-moment system, two Maxwellians sharing the same standard deviation, σ, are used as an ansatz for
representing the phase-space distribution function. The bi-Maxwellian form for the distribution function is written as

FbM =
w1

σ
√

2π
exp

(
− (c − c1)2

2σ2

)
+

w2

σ
√

2π
exp

(
− (c − c2)2

2σ2

)
. (17)

An analytical solution to the system of equations for wk, ck and σ was previously derived by Chalons et al. [16]. It
can be shown that the resulting closing expression for the random fifth moment is

s� =
q3
�

σ2
Q

+
(
10 − 8σQ

)
q�, (18)
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FIGURE 1: Domain of physical realizability for the five-moment system: (a) realizability boundaries [19] and contours
of (b) IMEB, (c) QMOM and (d) bi-Maxwellian closing values for s�.

where σQ = 1 − σ2 and the variance, σ2, is the real root of a third order polynomial and can be written as [12]

σ2 = 1 −C2 +
C1

C3

, (19)

where the values of C1, C2 and C3 are given by

C1 =
1

6
(r� − 3), C2 =

q2
�

4
, C3 =

(√
C3

1
+C2

2
+C2

) 1
3

. (20)

A similar result was also found by Fan and Li [18]. The form of FbM is such that it will remain positive valued for
all realizable moments. An interesting comparison can also be made between the closures of Eqs. (12) and (18). Both
expressions lead to singular behaviour within a portion of realizability space and fixed values of the parameters σM

and σQ both define parabolas in the q�−r� plane ranging from the outer physical realizability boundary to the singular
region. The strict hyperbolicity of the bi-Maxwellian closure can also be shown [18].

Closing Moment and Region of Moment Realizability
Following the realizability analysis for the five-moment system of interest by McDonald and Groth [9], the physical
realizability limit can be defined by the parabola r� = 1 + q2

�. Any combination of q� and r� lying above this
parabola is said to correspond to a physically realizable solution. Furthermore, Junk [19, 20] has shown that maximum
entropy solutions do not exist within this region on the line q� = 0, above r� = 3 (i.e., for r� > 3). The maximum-
entropy distribution function does not remain finite along this line and therefore solutions cannot be found. While
strict hyperbolicity and a well-behaved closure is assured everywhere else, the resulting moment equations are also
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singular on the Junk line. These properties are particularly inconvenient, since (q� = 0, r� = 3) corresponds to local
thermodynamic equilibrium (LTE). The realizability region and so-called Junk subspace corresponding to the invalid
region of the maximum entropy closure are depicted in Figure 1a.

For this theoretical 1D gas, the IMEB closure of McDonald and Torrilhon [10] has been shown to exhibit excellent
agreement with the true maximum-entropy closure. It matches the true maximum-entropy distribution exactly at the
parabola of the realizability boundary, where FMaxEnt reduces to two Dirac deltas. Furthermore, its singular behavior
(as evidenced by undefined discontinuous values for s�) at the Junk subspace is also reproduced as can be clearly seen
in Figure 1b. The exact representation of the distribution at the lower realizability boundary is also captured by Fδ and
FbM, where the values of s� obtained using these two closures exactly replicate the FMaxEnt results. Refer to Figures
1c and 1d. Interestingly, the bi-Maxwellian closure has very similar behavior to that of the true maximum entropy
solution over the entire realizability region and exhibits the characteristic singular behaviour along the Junk subspace.
In contrast, the QMOM closure does not replicate the maximum-entropy behavior within the realizability region away
from the boundary. Additionally, while a global solution for s� is obtained, the QMOM closing flux remains finite
and non-singular for all possible moments. Although originally a perceived drawback of maximum-entropy-based
closures, the singular behaviour along the Junk space is a property that can be coped with numerically and is key to
accurate predictions of non-equilibrium shock structures as will be shown in the results that now follow.

NUMERICAL RESULTS FOR STATIONARY SHOCK STRUCTURES

To evaluate the capabilities of each closure for different degrees of departure from equilibrium, stationary shock struc-
tures are studied for upstream Mach numbers of M = {1.25, 2, 4, 8}, with increasing Mach number representing a
larger departure from LTE. The five-moment system of differential equations for each closure was solved using a
second-order Godunov-type upwind finite-volume scheme [2] with piece-wise linear reconstruction. An HLL approx-
imate Riemann solver [21] is used along with Venkatakrishnan slope limiting [22]. As a reference non-equilibrium
solution, Eq. (1) was solved directly using the discrete velocity method of Mieussens [23]. Additionally, the solution
of a three-moment system resulting from a Chapman-Enskog expansion applied to the kinetic equation of Eq. (1) is
also used as a reference solution. The latter is the equivalent Navier-Stokes equations for a 1D gas [9].

Figure 2 shows shock structure results for the IMEB, Grad-type, QMOM and bi-Maxwellian closures as com-
pared to the reference solutions. The M = 1.25 case represents a rather modest departure from equilibrium, and it
can be seen that all closure approximations along with the NSF model are in good agreement with the full solution of
the kinetic equation. However, the shortcomings of the Grad-type and QMOM can immediately be seen in Figures 2c
and 2d for a M = 2 shock, where undesirable and unphysical subshocks are present in both solutions. It is important
to note that the Grad-type closure formally becomes non-hyperbolic at this relatively low Mach number; however the
approximate numerical flux functions and associated numerical viscosity allowed the computation of solutions for
this case. For further departures from LTE, only first-order solutions of the Grad-type and QMOM moment equations
could be obtained and those required an unreasonable number of grid points for grid-independent solutions. Results
are therefore not shown for Mach numbers above M = 2 for these two closures.

The more interesting comparisons can be made between the IMEB and bi-Maxwellian closures, which provide
smooth solutions, with no subshocks, for all Mach numbers. In fact, the singularity in the closing flux, which presents
a slight numerical difficulty, is extremely beneficial in this case since it allows very large wavespeeds which provide
upstream influence that prevents the appearance of subshocks in the predicted solutions. Both closures show excellent
agreement with the discrete velocity methods for the normalized density in all cases. They however show some
increasing discrepancies with the upstream heat transfer profile with the IMEB closure always performing slightly
better than the bi-Maxwellian model.

Comparing the moment closure results to the NSF-like model demonstrates their advantage in modeling non-
equilibrium phenomena. The near-equilibrium model is clearly unable to accurately capture the density profile for
shocks above M = 2, and completely breaks down in terms of density and heat transfer predictions at M = 4 and 8.

It is also of interest to observe the distribution function predicted by the bi-Maxwellian model using the moments
of the BGK solution. As equilibrium is departed upstream of the shock, the moment state nears the singular Junk
subspace. A second Maxwellian with an infinitesimal weight and theoretically infinite velocity then appears in the
representative distribution. This is depicted in Figure 3 for a M = 8 shock, where it is shown that the infinitesimally
weighted Maxwellian’s magnitude increases and approaches c = 0 at more downstream positions. This peak finally
merges with the first Maxwellian to recover downstream equilibrium conditions. This behaviour of the bi-Maxwellian
distribution is analogous to that of the true maximum entropy distribution for moment states found in shock transitions.
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FIGURE 2: Predicted normalized density and dimensionless heat transfer through a stationary shock wave for a one-
dimensional gas as determined by the IMEB, bi-Maxwellian (bM), Grad and Dirac3 closures: (a)–(b) M = 1.25,
(c)–(d) M = 2, (e)–(f) M = 4, and (g)-(h) M = 8.
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FIGURE 3: Variation of computed bi-Maxwellian distribution, FbM, within a M = 8 shock as predicted by the mo-
ments of the solution of the BGK equation.

CONCLUSIONS

It has been demonstrated that the moment closures able to mimic the results of true maximum-entropy closures by
far outperform other QMOM and Grad-type moment closures in terms of their ability to predict non-equilibrium
phenomena associated with stationary shocks. Due to their singular behaviour, they provide smooth shock transitions
where the more standard closures produce subshocks, and are able to capture additional physics, as represented by
higher order moments, with considerably more precision than the NSF equations for a 1D gas. Though the IMEB
closure always performs slightly better than the bi-Maxwellian, the fact that the latter provides an analytic expres-
sion of the distribution function suggests it as an alternative to both IMEB and true maximum-entropy closures.
This could be particularly relevant when considering more realistic collision operators and/or boundary conditions in
three-dimensional kinetic descriptions. An additional advantage of multi-Gaussian-type closures is that they can be
extended to higher moment systems containing additional non-equilibrium physics by adding more quadrature points
(Gaussians) or considering less restrictive ansatzes (e.g., allowing multiple values for σ). Ongoing and future research
will consider multi-Gaussian closures applied to fully three-dimensional kinetic theory.
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