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A parallel anisotropic block-based adaptive mesh refinement (AMR) algorithm is pro-
posed to describe the solution of physically complex flow problems with disparate spatial
and temporal scales exhibiting highly anisotropic features on three-dimensional multi-block
body-fitted hexahedral meshes with non-uniform grid blocks. Instead of using a classical
uniform treatment for the computational cells of each block within the multi-block grids,
the proposed anisotropic AMR scheme adopts a non-uniform representation of the cells
within each block. With the former approach, all of the cells for a given block are forced
to be at the same resolution, including both interior and ghost cells containing solution
information from neighboring blocks. In such a uniform representation, various techniques
are required to evaluate the solution in the ghost cells and ensure flux conservation at
block interfaces with such a uniform representation. The proposed non-uniform approach
directly uses the neighboring cells as the ghost cells, even at a grid resolution change,
and this affords a number of computational advantages. A modified upwind finite-volume
spatial discretization scheme is applied in conjunction with the AMR scheme to the so-
lution of Euler and Navier-Stokes equations for inviscid and viscous compressible gaseous
flow. Steady-state and time-varying flow problems are considered on anisotropic adapted
meshes. The potential flexibility and efficiency of this enhanced anisotropic AMR scheme
are demonstrated for the simulation of flows of varying complexity.

I. Introduction

I.A. Motivation

As computational fluid dynamics (CFD) evolves and its use becomes more widespread in various science
and engineering fields, problems involving increasingly complex flow physics often coupled with complicated
geometries arise. Typically, these flow problems are difficult to solve due to numerical stiffness arising from
the disparate spatial and temporal scales and often require the solution of additional sub-physics equations
and/or mathematical models. Specific classes of flows exhibiting these complex features include: (i) turbulent
flows around complex geometries; (ii) chemically reacting flows, especially combustion; (iii) electrically
conductive flows; and (iv) micro-scale flows.

One way to decrease the computational burden when solving complex flow problems without simplifying
the physics and maintaining solution accuracy is to use adaptive mesh refinement (AMR). By increasing the
number of cells only in those areas of the domain that need to be solved while keeping other areas unchanged,
AMR algorithm adapts the mesh for treating the disparate spatial scales without placing extreme demands
on computing resources. Parallel block-based AMR1,2 methods have been proposed previously by Groth
and co-workers3–7 for solving complex flow problems on multi-block body-fitted meshes and applied to the
solution of complex flow problems such as non-premixed laminar4 and turbulent5 flames as well as turbulent
multi-phase rocket core flows,6 magnetohydrodynamics (MHD) simulations,3,8 and micron-scale flows.7 Ivan
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et al.9,10 have also recently applied the block-based AMR techniques to magnetohydrodynamic flows using
cube-sphere grids.

The block-based approaches mentioned above were all restricted to isotropic refinement of the mesh,
that is, the grid blocks are coarsened or refined equally in all directions. More recently, anisotropic AMR
schemes have been investigated in the two-dimensional (2D)11,12 and three-dimensional (3D)13,14 cases.
What emerged from these studies is that anisotropic AMR can significantly reduce the computational cost in
CFD simulations by creating high aspect ratio cells aligned with the regions of the solution that require higher
resolution in a preferred direction (e.g., thin layers and shocks) while placing larger cells in regions where
the resolution requirements are less stringent. While the previous studies have demonstrated the potential
of an anisotropic block-based AMR scheme, they also indicated some key limitations of the methodology,
which were adopted in previous both isotropic and anisotropic implementations. In particular, a classical
uniform treatment is used to represent the cells, both interior and ghost or halo cells (the latter overlap with
neighboring blocks), within a given block at a multi-block grid, regardless of whether or not adjacent grid
blocks are at the same level of resolution (refinement). The blocks are extended by a layer of ghost cells
while maintaining their refinement level. Standard multigrid type restriction and prolongation operators
are required to evaluate the solution in the ghost cells at block resolution changes.15 Furthermore, a flux
correction strategy is required to maintain the flux conservation properties at the solution scheme.15 While
doable for standard second-order schemes in both 2D and 3D meshes, the uniform representation of the
cells within each grid block introduces some possible computational inefficiencies. Moreover the additional
complications associated with filling the ghost cells and correcting the fluxes would appear to make the
implementation of an anisotropic block-based AMR scheme with a high-order spatial discretization method,
such as those developed by Ivan et al.9,16 particularly problematic.

I.B. Scope

In order to avoid the aforementioned difficulties and limitations with uniform grid blocks, an alternative
parallel anisotropic block-based AMR scheme is proposed for the solution of physically complex flows ex-
hibiting disparate spatial scales and highly anisotropic features on 3D multi-block body-fitted hexahedral
mesh. In the proposed anisotropic AMR scheme, a non-uniform representation is adopted for the cells in each
block. This non-uniform representation directly uses the neighboring cells as the ghost cells, even those at
different levels of refinement as found at grid resolution changes. This eliminates the need for the restriction
and prolongation of solution information and avoids the requirements for conservative flux corrections. The
proposed anisotropic AMR scheme would appear to be more tractable and paves the way for the implementa-
tion with high-order spatial discretization schemes. In the present paper, the anisotropic block-based AMR
scheme with non-uniform grid blocks is applied in conjunction with a second-order finite-volume scheme to
the solution of the Euler and Navier-Stokes equations for inviscid and viscous compressible gaseous flows.
The remainder of the paper will be organized as follows. The finite-volume scheme and the application
of the solution methodology to both steady-state and time-varying problems are described in section II.
The extension of the anisotropic AMR to cope with non-uniform cell blocks are discussed in section III.
We provide qualitative and quantitative comparisons in sections IV and V to demonstrate the potential of
this enhanced anisotropic AMR scheme. The extensions of the anisotropic AMR scheme for use with the
high-order finite-volume schemes will be the subject of future follow-on studies.

II. Finite-Volume Scheme

The proposed anisotropic AMR scheme is applied to the solution of Euler and Navier-Stokes equations
governing inviscid and viscous compressible three-dimensional flows of a polytropic gas.

II.A. Conservation Forms of the Three-Dimensional Governing Equations

The conservation form of the governing equations for a compressible polytropic gas, either inviscid or viscous,
can be written as

∂U

∂t
+ ~∇ · ~F = 0, (1)
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where U is the vector of conserved solution variables. For a three dimensional Cartesian coordinate system,
the Euler equations governing inviscid gaseous flows can be written as

∂U

∂t
+
∂F

∂x
+
∂G

∂y
+
∂H

∂z
= 0, (2)

with

U =


ρ

ρu

ρv

ρw

ρe

 , F =


ρu

ρu2 + p

ρuv

ρuw

ρuh

 , G =


ρv

ρuv

ρv2 + p

ρvw

ρvh

 , H =


ρw

ρuw

ρvw

ρw2 + p

ρwh

 , (3)

where ρ is the gas density, u, v, w are the components of the velocity vector in the x, y, z directions,
e = p/(ρ(γ − 1)) + u2/2 is the specific total energy, p is the gas pressure and γ is the ratio of specific heats.

The vectors F, G, H, are the inviscid flux in the x, y, z directions, respectively such that ~F = [F,G,H] is
the solution flux. The ideal gas equation of state p = ρRT is used to close the system, where T is the gas
temperature and R is the ideal gas constant.

In the case of the Navier-Stokes equations governing viscous gaseous flows, the conservation equations can
be expressed as

∂U

∂t
+
∂ (F− Fv)

∂x
+
∂ (G−Gv)

∂y
+
∂ (H−Hv)

∂z
= 0, (4)

where the viscous flux vectors Fv,Gv,Hv in the x, y, and z directions respectively, are given by:

Fv =



0

τxx

τxy

τxz

−qx + uτxx+

vτxy + wτxz


, Gv =



0

τxy

τyy

τzy

−qy + uτxy+

vτyy + wτyz


, Hv =



0

τxz

τyz

τzz

−qx + uτxz+

vτyz + wτzz


. (5)

In the preceding equation, qx, qy and qz are the heat flux components and τxx, τxy, τxz, τyy, τyz, τzz are the ele-

ments of the fluid stress tensor. As such, the solution flux in (1) is defined by ~F = [F− Fv,G−Gv,H−Hv].

II.B. Upwind Finite-Volume Scheme for the Governing Equations

The application of a high-resolution upwind finite-volume scheme to the integral form of the conservation
equations described in section II.A applied to a hexahedral computational cell (see Figure 1) results in the
following semi-discrete form

dUi

dt
= − 1

Vi

Nf∑
m=1

~Fi,m · ~ni,mAi,m = −Ri, (6)

where Ui is the average of the conserved solution for the cell i, Vi is the volume of cell i, ~Fi,m, ~ni,m and
Ai,m denote the flux, the outward pointing unit normal and the area of the mth face of cell i, respectively.
The integer Nf is the number of faces of the cell and m ∈ {W,E, S,N,B, T} corresponding to the six faces
(west, east, south, north, bottom and top) of the cell. The index i corresponds to a cell computational
coordinates within a structured mesh. Each structured mesh is contained inside a single block with that
block being a part of a multi-block body-fitted mesh with general unstructured connectivity between blocks
as shown in Figure 1. Limited linear least-squares solution reconstruction and Riemann-solver based flux
functions are used for the evaluation of the numerical flux integrals of (6)17 . The HLLE or Roe linearized
approximate Riemann solver18 are used in the flux evaluation. The viscous flux evaluation is performed
using a Green-Gauss integration over the diamond path to evaluate the gradient at each cell interface.19
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X

Y

Z

Hexahedral cell i showing face normal vec-
tor.

Body-fitted adapted mesh after several re-
finements. Grid blocks are shown with bold
lines

Figure 1. Three-dimensional hexahedral cell (left) and example of mesh (right).

II.C. Explicit Time-Stepping Scheme For Euler Equations

The solution of the semi-discrete form of the Euler equations given in (6) with ~F = [F,G,H] , represented
by the area-averaged solution quantities within each computational cell, Ui, is obtained herein by applying a
standard second-order accurate, Runge-Kutta, explicit time-marching scheme to the resulting coupled non-
linear ordinary differential equations (ODEs). Steady-state solutions of the Euler equations are obtained by
advancing the solution in time until a converged time-invariant solution is achieved.

II.D. Implicit Time-Stepping Scheme for Navier-Stokes Equations

Newton’s method is applied for both steady state relaxation and transient continuation of the Navier-Stokes
solution.

R?(U) =
dU

dt
+ R(U) = 0. (7)

This particular implementation follows the algorithm developed by Groth et al20,21 which is well adapted
for computations on large multi-processor parallel clusters. This implementation is based on a Jacobian-free
inexact Newton method coupled with an iterative Krylov subspace linear solver.

II.D.1. Inexact Newton Method For Steady-State Problems

For steady-state problems, we have

dU

dt
= R(U) = 0. (8)

The solution of (8) is sought by iteratively solving a sequence of linear systems given an initial estimate U0.
Improved estimates are sucessively obtained by solving(

∂R

∂U

)k
∆U

k
= J(U

k
)∆U

k
= −R(U

k
), (9)

where J = ∂R/∂U is the residual Jacobian. Hence, the improved solution at the kth Newton step iteration
is updated with

U
k+1

= U
k

+ ∆U
k
.

Newton iterations are performed until a desired reduction of the residual norm is achieved, that is, ||R(U
k
)|| <

ε ||R(U
0
)||. The tolerance ε used in this work for steady flows is taken in the range of [10−10, 10−7].

For a system of non-linear equations, each step of Newton’s method requires the solution of the linear problem

Jx = b (10)
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where x = ∆U and b = −R(U). This large sparse non-symmetric linear system is solved using the
generalized minimal residual (GMRES) algorithm of Saad and co-workers.22 A combination of an additive
Schwarz global preconditioner and a block incomplete lower-upper (BILU(2)) local preconditioner is used
to speed-up the convergence. As discussed by Dembo et al.23 providing an exact solution of (10) is not
necessary for getting a quick convergence in Newton’s method. The convergence tolerance for the iterative
solution of the linear problem used in this work is equal to 0.1.

II.D.2. Inexact Newton Method for Unsteady Problems

For unsteady flows, an implicit second-order backward temporal discretization (BDF2) scheme is applied to
equation (7) yielding

R∗(U
n+1

) =
3U

n+1 − 4U
n

+ U
n−1

2∆t
+ R(U

n+1
) = 0, (11)

where ∆t is the physical time-step. Application of Newton’s method to the solution of (11) leads to the
following linear system of equations for the solution update[(

3

2∆t

)
I +

∂R

∂U

]
∆U

n+1,k
= J∗∆U

n+1,k
= −R∗(U

n+1,k
). (12)

In this procedure, at each iteration n, a steady problem is solved using the inexact Newton procedure
described in Section II.D.1. The convergence tolerance for the inner iteration loop used here is ε = 10−4.
The improved approximation for the solution is given by

U
n+1,k+1

= U
n+1,k

+ ∆U
n+1,k

.

A good initial guess U
n+1,k=0

consists in using the solution at the previous time step, that is, U
n+1,k=0

= Un.

II.D.3. Implicit-Euler Startup For Steady-State Problems

Newton’s method can fail if the initial solution estimates fall outside the radius of convergence. For the solu-
tion of steady-state problems, an implicit Euler startup procedure of Mulder and Van Leer24 with successive
evolution/relaxation (SER) is used to ensure the global convergence of the method. The application of this
startup procedure introducing a low Mach number preconditioning leads to[

Γ

∆τk
+

(
∂R

∂U

)k]
∆U

k
= −Rk, (13)

where Γ is the Weiss-Smith25 preconditioning matrix for the conserved variables and ∆τk represents an
articifial time-step. As ∆τk → ∞, Newton’s method of Equation (9) is recovered. In the SER approach,
the time-step ∆τ is varying, starting from a finite-value and gradually increased to become very large as
the desired steady solution is approached. As the time step becomes large, Newton convergence is achieved.
The time-step size is determined by considering the inviscid Courant-Friedrichs-Lewy (CFL) condition and
viscous Von Neumann stability criteria based on the pseudo-compressible system. The maximum permissible
time-step for each local cell is determined by

∆τk ≤ CFLk ·min

(
∆x

max(|u|+ a)
,
ρ∆x2

µ

)
,

where ∆x = V 1/3 is a measure of the grid size and a is the sound speed. The CFL number for the kth

iteration is then computed using the following relation

CFLk = CFL0 ||R(U
0
)||

||R(U
k
)||
.

In this work, we shall consider CFL0 = 100.
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III. Anisotropic Adaptive Mesh Refinement

III.A. Block-Based Adaptive Mesh Refinement

In the block-based AMR scheme, mesh adaptation is accomplished by refining and coarsening pre-defined
grid blocks. Each refinement produces new blocks called “children” from a “parent” block and the children
can be refined further. A hierarchical tree data structure is used for tracking block connectivity and mesh
refinement history.15 A commonly used strategy to adapt the mesh to key physical features of the flow is to
employ indicators based on heuristic measures such the flow gradient. The present work is based on the 3D
anisotropic AMR scheme developed by Williamschen and Groth.13,14 We refer the interested reader to Zhang
and Groth11,12 and Williamschen and Groth13,14 for a detailed description of the previous implementation
in 2D and its extension in 3D, respectively.

III.B. Uniform Block-Based Approach

In the previous implementations of the block-based AMR methods3–7 as well as in the original isotropic AMR
techniques from Gao and Groth,15 each block contains a structured mesh with Ni×Nj×Nk even number of
cells and a number of ghost cell layers, Ng, that allow solution information transfer from neighboring blocks.
Each block then contains a uniform and structured mesh with (Ni + 2Ng)× (Nj + 2Ng)× (Nk + 2Ng) cells.
For adjacent grid blocks with resolution changes, this requires prolongation or restriction procedures in one
or more directions to fill the neighboring ghost cells. A combination of prolongation and restriction steps
may also be required.
Figure 2 shows several of the many possible message passing scenarios. Scenario 1 shows message passing
for a resolution change of coarse-to-fine in one direction and the required prolongation in that direction.
In scenario 2, restriction in two directions is performed before transferring the solution to the neighbor’s
ghost cells. Conversely, in scenario 3, prolongation in two directions is performed before transferring the
solution to the neighbor’s ghost cells. Scenario 4 shows a more complicated message passing for a resolution
change of coarse-to-fine in one direction, as well as fine-to-coarse in the another direction. When low-order
prolongation (direct injection) is carried out, we automatically have the conservation property

UcA = Uf1Af1 + Uf2Af2 ,

where the subscripts c and f refer to coarse and fine resolution. This condition is generally sufficient for
most second-order methods as considered by Williamschen and Groth.13,14 Unfortunately, this is not the
case for high-order schemes where solution reconstruction is required in the coarse cell. This means that the
relevant ghost cell solutions should be up-to-date, which is not the case. After only one operation of message
passing, ghost cell values are inevitably incorrect. This issue was first identified by Zhang and Groth12 and
was found to have little effect on the solution of steady-state flow problems using explicit iterations, but was
found to be detrimental to convergence for implicit iterations and time-accurate simulations. Not allowing
cases similar to scenario 4 results in the significantly reduced effectiveness of the anisotropic AMR algorithm.
It was found14 to have the effect of not only increasing local levels of mesh refinement, but also the levels
of mesh refinement in neighboring areas in order to maintain refinement level constraints between adjacent
blocks. One possible fix for scenario 4 is to iteratively send and receive messages until the error between the
values of the interior cells of the neighbor block and the overlapping ghost cells, reduces to an acceptable
value as proposed by Zhang and Groth.12 It was found that 5 iterations of message passing were generally
sufficient for fourth-order accuracy. While this was shown to be a acceptable solution12 for the solution of
2D flows, it adds a layer of unacceptable computational expense for 3D problems and it greatly increases
the ratio of inter-block communication to computation. A far more optimal solution is to change the way
the block and its ghost cells are defined, so that high-order spatial discretizations can be treated in the same
simple and consistent manner as in second-order schemes.

III.C. Non-Uniform Block-Based Approach

In the proposed implementation of anisotropic AMR, the ghost cells are directly provided by the adjacent
blocks. All the information (solution and geometry) is used to determine the ghost cells and their solution
values. This approach is illustrated in Figure 3, where a 2D representation is used for the sake of clarity. The
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1 2

4
3

Restriction

Restriction

Prolongation

Prolongation

Prolongation

interior cell

ghost cell

Figure 2. Example of message passing scenarios in anisotropic AMR scheme.

2D grid blocks in Figure 3 are depicted in logical or computational space. In general, the actual grid blocks
in physical space can be curvilinear or body-fitted and conform to the geometry of the flow field. Stretching
and/or clustering of the gridlines are also permitted. The domain Ω in Figure 3 is decomposed into 11 blocks
of (4× 8) cells with an anisotropic mesh. On the left-bottom side we represent the uniform structured block
geometry provided by the original implementation. It corresponds to the block itself (ID) extended by 2
layers of ghost cells which gives a uniform block mesh of (4 + 4) × (8 + 4) cells. As can be seen, (solution)
information belonging to neighboring cells are interpolated to fit the ID’s ghost cells. The new non-uniform
block is composed of an interior block (ID) enlarged by 2 layers of ghost cells keeping the neighbor’s mesh
resolution. As shown in Figure 3 (right-bottom), a non-uniform (heterogeneous) block is consisting of 10
sub-elements: the block itself (ID) and 9 block boundary elements (5 edges and 4 corners) arising from the
surrounding blocks. In a 3D configuration, the resultant heterogeneous block will contain the interior domain
(ID) and at least 26 block boundary elements (6 faces, 12 edges and 8 corners). While a uniform block can
be simply represented by one array of values, a non-uniform block is most logically represented by at least 27
arrays of information (solution and geometry). This of course represents an additional layer of complexity;
however, it also brings two great advantages. First of all, prolongation and restriction procedures are no
longer required to determine the solution content with the ghost cells at grid block resolution changes (we
already mentioned that these procedures represent a blocking point in the uniform block representation). In
the proposed implementation, ghost cells are directly evaluated by injection from the neighboring block cells.
Secondly, it also simplifies the implementation of message passing between adjacent blocks as conservative
flux corrections are entirely eliminated by naturally handling the non-conforming cells in the finite-volume
method. As a matter of fact, when using uniform blocks, a natural consequence of refining and coarsening is
to have non-conforming cells where the faces of both blocks meet. To maintain the conservation properties of
the finite-volume scheme, the flux through these non-conforming faces must be corrected. Typical procedures
for flux correction involve correcting the solution flux through the coarse cell faces to be equal to that of the
total flux through the faces of the cells in the adjacent finer block.13

On the other hand, flux evaluation and solution reconstruction procedures for non-uniform blocks become
more complicated for cells located at an interior boundary block. In particular, the spatial discretization
must allow for the non-uniform nature of the grid and the presence of so-called hanging nodes. These are
the tasks of the next section.

III.D. Numerical Flux Evaluation

For a uniform block, the number of faces Nf of each cell in a block is equal to 6, Nf = {W,E, S,N,B, T}.
For a non-uniform block, Nf varies and depends both on the cell position inside the block and the ghost cell
mesh refinement. For a cell that is not at a boundary block, Nf = 6 since the cells are conforming. For a
cell located at a boundary block, Nf ≥ 6 depending on the geometry of the neighboring blocks. It can take
values from Nf = 6 (i.e., there is no resolution change) to Nf = 15 for a cell located at a block corner with
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Uniform (homogeneous)
 block configuration

Non uniform (heterogeneous)
block configuration

ID ID
ghost cells

ID

cell at the 
boundary block

Figure 3. Configuration of a uniform structured mesh block (left-bottom) and non-uniform structured mesh block
(right-bottom) from a common block-based anisotropic AMR grid mesh (top).

isotropic changes (Nf = 3 × 1 + 3 × 4 = 15). These different resolution changes are detailed in Figure 4.
For anisotropic AMR, block resolutions in the ξ and η directions are independent, hence this results in 16
different types of resolution changes across block interfaces, which are summarized in the table of Figure 4.
Case (a) involves a cell which has an equal or finer mesh than its neighbor ghost cell. In that case all terms
of right-hand side in equation (6) are known and can be computed without any additional calculation. Case
(b) shows an example of a neighbor ghost cell with a finer mesh. In that case, we do not directly calculate
the flux Fi,m through the mth face of cell i in equation (6); we consider instead all ghost faces Ng such that⋃
g∈Ng

Ag = Ai,m. We have

~Fi,m · ~ni,mAi,m = −
Ng∑
g=1

~Fi,m,g · ~ng Ag, (14)

where ~Fi,m,g is the flux through the face Ag. Finally, case (c) involves two cells with two opposite resolution
changes in two different directions. For this case, Ng = 2 and we consider two new faces such that

Ai,m,g =
⋃

g∈{1,Ng}

(Ag ∩Ai,m) . (15)

We compute the normal vectors ~ni,g of these new faces and finally obtain

~Fi,m · ~ni,mAi,m =

2∑
g=1

~Fi,m,g · ~ni,g Ai,m,g. (16)

III.E. Solution Reconstruction

A piecewise polynomial approach is used to perform the solution reconstruction within each computational
cell of the non-uniform grid blocks, meaning that a solution variable U in cell i can be represented by

Ui( ~X) = Ui + Φi
~∇Ui( ~X − ~Xi), (17)
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ghost cell face

interior cell face numerical flux to be evaluated

subcell face during flux evaluation

b

a

c

Figure 4. Three scenarios to evaluate the numerical flux through a face of an interior cell depending on its mesh
resolution and its neighbor cell mesh resolution.

where Ui is the cell average of the solution at cell i, ~Xi is the centroid of cell i, and Φi is a slope-limiting
function that takes a value between 0 and 1 for each variable to ensure that no new maxima or minima are
introduced. The solution gradients ~∇Ui for cell i in (17) can be reconstructed using the N nearest neighbors
by a least squares reconstruction that minimizes the third-order accurate error fit

ε2i =

N∑
k=1

ε2ik =

N∑
k=1

[
Uk −Ui − ~∇Ui( ~Xk − ~Xi)−

1

2
( ~Xk − ~Xi)

T ~∇2Ui( ~Xk − ~Xi)

]2
, (18)

where ~∇2Ui is the Hessian matrix. The minimization of (18) results in a 9 × 9 system of linear equations
which can be solved by a LU decomposition method. This procedure ensures that second-order accuracy is
obtained even for non-uniform mesh spacing.
When considering a uniform structured block, we use the neighbors within the first layer around cell i, this
corresponds to 26 neighbors in 3D. When dealing with a non-uniform block, the number of neighbors taken
into account in (18) is not fixed since it depends on the geometry and mesh topology.
Table 1 finally summarizes the advantages and drawbacks of the two different block structures. When con-
sidering non-uniform blocks, routines for restriction/prolongation of the solution as well as flux correction
are not required. Since it is directly taken into account in the finite-volume scheme, this implies a sim-
plification of the message passing procedure. On the other hand, the numerical scheme (flux evaluation
and solution reconstruction) and the block representation becomes more complicated. This enhanced block-
based anisotropic AMR method can handl second-order finite volume scheme as well as high-order numerical
scheme at a reasonable cost and efficiency. By contrast, the uniform block-based approach is strictly limited
to second-order numerical schemes.

IV. Numerical Results For The Euler Equations

Numerical results for several inviscid flow problems governed by the Euler equations will now be discussed.
Results are described for an unsteady three-dimensional shock-cube problem and steady-state supersonic
channel flow with a bump. Results using a cubed-sphere mesh9,10 are also presented for a steady-state
supersonic radial outflow and a steady-state supersonic flow past a sphere. Additionally, an accuracy assess-
ment is performed for this supersonic radial flow problem. The flow problems have been chosen to show the
potential of the proposed 3D anisotropic AMR algorithm for significantly reducing computational complexity
and to demonstrate the validity of the algorithm for solving both steady-state and time-varying problems.
Comparing the results with 3D isotropic AMR illustrates the potential of the AMR scheme in terms of
computational cost savings.
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Table 1. Pro ans cons of the two different block configurations

Uniform block Non-uniform block

restriction / prolongation yes no

flux correction yes no

message passing procedure tricky easy

flux evaluation easy tricky

solution reconstruction easy tricky

block representation easy tricky

second-order method yes yes

high-order method no yes

IV.A. Unsteady Shock Cube

The shock cube flow problem provides an excellent evaluation of AMR algorithms, requiring high mesh
resolution to capture the wave interactions and fast adaptation to the unsteady solution. Due to the highly
anisotropic nature of the shock cube solution, it is a good evaluation of 3D anisotropic AMR. The initial
conditions for the shock-cube problem are given as standard atmospheric conditions (ρ = 1.225 kg/m3, p =

101325 Pa, ~V = 0 m/s, γ = 1.4) for x < 0, y < 0, and z < 0 and eight times standard atmospheric density
and ten times standard atmospheric pressure elsewhere. Reflection boundary conditions are imposed on all
boundaries.
Before the simulation begins, the initial mesh with a single block containing 8 × 8 × 8 cells is refined
based on the initial conditions six times in order to resolve the discontinuity between the two states and
assigned a maximum refinement level of seven. Following the initial refinements, the anisotropic AMR
refinement and coarsening procedures are repeated every 15 time-steps until the maximum time t = 0.75
ms is reached. The anisotropic adapted grid blocks and solution density contours are plotted at times
t = [0.05, 0.5, 0.75] ms in Figure 5. The anisotropic and isotropic density profiles along the diagonal of the
domain [(−0.5,−0.5,−0.5), (0.5, 0.5, 0.5)] are also compared.
Throughout the simulation it can be seen that anisotropic AMR tracks the solution well. At t = 0.05 ms, there
are large anisotropic features in the solution which are exploited by anisotropic AMR using blocks with high
aspect ratio cells, resulting in a reduction of 95% in the number of cells compared to that of isotropic AMR.
Next the solution begins to move out of alignment with the grid line orientation of the computational blocks,
causing anisotropic AMR to produce a more isotropically refined mesh in some regions. Even though the
regions for anisotropic refinement are reduced, the anisotropic procedure still offers a mesh size reduction
of 58% for t = 0.5 ms. At t = 0.75 ms, the solution has moved further from alignment with the mesh.
Nevertheless, anisotropic refinement still manages to achieve a reduction in the overall size of the mesh of
45%. Moreover, the density profile comparison between isotropic and anisotropic AMR shows a very good
agreement between the two approaches.

IV.B. Steady Supersonic Channel Flow Over a Bump

In order to demonstrate the applicability of 3D anisotropic AMR to the solution of steady-state flow problems,
supersonic flow over a smooth bump in a channel is studied. This problem consists of a rectangular cross
section channel [5.5m×2m×1m] with a smoothed circular bump at the bottom of the channel. Air with a
flow Mach number M = 1.4, standard atmospheric density ρ = 1.225 kg/m3 and pressure p = 101.325 kPa
enters the channel through the left boundary and exits through the right side of the domain. A ratio of
specific heats γ = 1.4 is assumed.
The initial mesh consists of 4 blocks along the length of the channel, 2 blocks along the height of the channel
and 1 block along the out of plane direction, each block containing 8 × 8 × 2 cells. Reflection boundary
conditions are imposed on the smooth bump boundary and on top of the channel. The flow Mach number M
= 1.4 is fixed at the inlet and linear extrapolation is imposed at the outlet. The AMR procedure is limited
to a maximum of six refinement levels for each of the computational directions. Steady-state solutions are
obtained by advancing the solution in time until a converged time-invariant solution is achieved. The multi-
stage optimally smoothing scheme with local time-stepping and CFL equal to 0.5 are used for the temporal
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(a) Density field obtained by
anisotropic AMR at t = 0.05 s

(b) Anisotropic AMR
1080 blocks

(c) Density profile along a diagonal
at t = 0.05 s

(a) Density field obtained by
anisotropic AMR at t = 0.5 s

(b) Anisotropic AMR
2941 blocks

(c) Density profile along a diagonal
at t = 0.5 s

(a) Density field obtained by
anisotropic AMR at t = 0.75 s

(b) Anisotropic AMR
3347 blocks

(c) Density profile along a diagonal
at t = 0.75 s

Figure 5. Evolution of the gas density field (in kg/m3 - left) and the blocks (outlined in solid lines - middle) at three dif-
ferent times t = [0.05, 0.5, 0.75]. Comparison of the density profile along the cube diagonal [(−0.5,−0.5,−0.5), (0.5, 0.5, 0.5)]
between isotropic and anisotropic AMR (right).

integration.
Figure 6 shows the anisotropic block refinement (top) as well as the density field contours (middle). The
density profile along y = 0.25m is plotted at the bottom of Figure 6 for the isotropic AMR as well as for the
anisotropic AMR. We observe an excellent agreement between the two approaches. It is worth mentioning
that the number of blocks in the out of plane direction remains equal to one for the anisotropic AMR, which
is an expected result considering the two-dimensional feature of the flow. The 3D isotropic AMR requires a
huge additional number of cells to achieve a similar spatial resolution, since refinement is necessary in the
out of plane direction. A number of 47006 blocks were used for the isotropic AMR simulation while only
1615 blocks were needed for the anisotropic AMR.
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Figure 6. 2D view of a 3D anisotropic mesh (top) used for the solution density contours in kg/m3 (middle). Density
profile obtained by anisotropic AMR and isotropic AMR along the line y = 0.25m (bottom).

IV.C. Steady Supersonic Spherical Outflow

A spherical computational domain is created using the cubed-sphere multi-block mesh from Ivan et al.9,10

The domain consists of six sectors (or blocks) connected with edges degeneracies, forming an inner hollow
sphere and an outer spherical shell. Originally proposed by Ronchi et al.26 for the solution of partial
differential equations in spherical geometries, it has been more recently implemented within the isotropic
block-based AMR framework by Ivan et al.9,10

As a first investigation into the enhanced non-uniform block-based anisotropic AMR on a cubed-sphere
mesh, a simple steady-state flow problem with an analytical solution is examined. In this test-case, we
consider a spherical inflow with radius Ri = 1 m and a spherical outflow radius of Ro = 4 m. Supersonic
air enters through the inner sphere with a velocity only in the radial direction (Vr) subsequently expands
and exits supersonically through the outflow sphere. The inflow is fixed with flow density ρi = 10 kg/m3,
radial velocity Vr,i = 4.5 m/s, and pressure pi = 26 Pa. A ratio of specific heats γ = 1.4 is assumed. Linear
extrapolation is used at the outflow boundary, since the gas is assumed to exit at supersonic speed. The
analytical solution to this flow problem which is described by Ivan et al.9 is taken as the numerical solution
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at any radial location (r) to the equation

C3 −
1

r2Vr

[
(C2 − V 2

r )
1

γ−1

] = 0, (19)

where

C3 =
1(

2γ
γ−1

pi
ρi

1
γ−1

)
R2
iVr,i

, C2 =
2γ

γ − 1

pi
ρi

+ V 2
r,i, (20)

are constants depending on the inflow conditions. The initial mesh consists in a refined cubed-sphere with
24 blocks, each containing 32 × 32 × 16 cells. The integration of the governing equations to machine-zero
precision is realized using by the multi-stage optimally smoothing scheme by van Leer et al. with local time-
stepping. Six levels of adaptive refinements are completed and the solution is converged at each refinement
level.
The predicted flow density obtained using both anisotropic and isotropic AMR at the final level of refinement
are depicted on a quarter-slice of the cubed-sphere in Figure 7(a) and 7(b), respectively. It can be observed
that the solution varies only along the radial direction and that anisotropic AMR exploits this feature by
refining only in the radial direction, while isotropic AMR refines more uniformly. Therefore, a large reduction
of 95% in the total cell count compared to isotropic AMR is obtained.

To assess whether this large reduction in the total cell count also corresponds to a significant reduction

(a) Anisotropic AMR with 54 blocks. (b) Isotropic AMR with 1056 blocks.

Figure 7. Quarter slices of the predicted solution showing density in kg/m3 and block outlines for anisotropic and
isotropic AMR.

in solution error compared to the isotropic AMR solution, an accuracy estimation has been performed for
the supersonic radial outflow problem. After obtaining the converged solution for each refinement level, the
solutions are compared to the exact solution given above, and the L1 and L2 error norms are computed. The
result of this accuracy assessment is shown for anisotropic AMR and isotropic AMR in Figure 8. From the
third anisotropic refinement level, the error norms have reached the same level as in the fifth isotropic refined
mesh, with just a total block number corresponding to the first isotropic refined mesh, this corresponds to
a mesh size saving of 97%.

IV.D. Steady Supersonic Flow Past a Sphere

In this section we consider the solution of a supersonic flow past a sphere. The geometry consists of a half
sphere of radius 1 m with a far-field boundary at 10 m as shown in Figure 9. The cubed-sphere mesh for
this test-case has only 5 sectors to reduce the problem size and 3 blocks stacked in the radial direction for
each sector leading to 15 initial blocks in total with 10× 10× 10 cells per block.
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Figure 8. Accuracy assessment based on the exact solution density of the supersonic radial outflow problem comparing
anisotropic AMR and isotropic AMR.

Free-stream air with p = 101.325 kPa, ρ = 1.225 kg/m3, M = 2.0 and γ = 1.4 enters through the far-field
in the positive x direction and exits through the outflow boundary. The far-field boundary condition is fixed
at the inflow conditions and the outflow boundary condition is imposed by linear extrapolation since the
air exits supersonically. A reflection boundary condition is imposed on the surface of the inner sphere. A
multi-stage optimal smoothing scheme with local time-stepping is used for integrating the Euler equations
and the HLLE approximate Riemann solver is used for the flux evaluation at cell boundaries.
Figures 10(a) and 10(b) show the solution density and Mach number contours after 5 refinements for
anisotropic AMR and isotropic AMR, respectively. In both cases, the adapted mesh is well aligned with the
bow shock near the stagnation point and then rapidly loses alignment moving towards the outer regions of
the bow shock. Nevertheless, anisotropic AMR still reduces the total number of blocks compared to isotropic
AMR by 86% due to the far less refined blocks in the angular directions for anisotropic AMR.

Finally, a comparison of the center line density and Mach number from the stagnation point to the free-
stream is given in Figure 11-right. Both methods predict very similar flow field including the shock location
and post-shock stagnation conditions.

V. Numerical Results for the Navier-Stokes equations

Next, we present numerical results obtained for the simulation of the Navier-Stokes equations using
the implicit time-marching scheme detailed in Section II.D. Three different cases are considered: Steady-
state laminar boundary flow past a flat plate (see section V.A), steady-state lid-driven cavity flow (see
section V.B) and unsteady Taylor-Green vortex flow (see section V.C). For each case we provide assessments
of the computational solutions by comparing the results with analytical solutions or by solving the same
problem with isotropic AMR.

V.A. Subsonic Laminar Boundary-Layer Flow Past a Flat Plate

Numerical results for the steady laminar flow over a flat plate are computed and compared with the classical
solution of Blasius.27 The computational domain and boundary conditions are illustrated in Figure 12. A
rectangular domain [−2L, 2L]× [0, 2L]× [0, L] is used. The far-field and upstream of the plate are modeled
by a reflection/slip condition while the presence of the plate, on x = [0, 2L], y = 0 is simulated using a no-slip
condition. A uniform velocity profile is specified at the inlet (x = −2L) and a zero-gradient condition on
the fluid velocity is applied at the outlet (x = 2L). Pressure is held fixed and equal to 0 at the outlet. The
free-stream Mach number and Reynolds number based on the plate length (L = 0.002 m) are M∞=0.2 and
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Figure 9. Initial mesh for the steady-state supersonic sphere problem

ReL=9318.92, respectively. The initial condition is a uniform flow of air. The initial mesh consists of 2 blocks
of 32× 64× 2 cells. Two refinements are performed during the simulation and the solution is converged at
each level of refinement.

In Figure 12, the mesh geometry is depicted at the final level of refinement, where 17 blocks are clustered
near the leading edge of the plate and near the plate surface. No refinement is performed in the z-direction.
The isotropic AMR simulation with the same features would involve 44 blocks. The results are obtained
using the inexact Newton’s method described in Section II.D.1 for steady flows. Newton iteration are stopped
when the non-linear residual is reduced by 10 orders of magnitude (ε = 10−10).

In Figure 13-left, the skin friction distribution (Cf ) along the flat plate is compared with that of the
Blasius analytical solution. Excellent agreement is observed along the entire length of the flat plate. At
the exit plane of the flat plate at x = 0.004 m, velocity data are extracted across the boundary layer and
compared with the Blasius analytical solution. This is shown in Figure 13-right where the velocity profile
is plotted using similar variables from the Blasius solution. The predicted non-dimensional boundary layer
profiles, u/U∞ and θ = v

√
Rex/U∞, are represented at Rex = 8,900 where U∞ is the free-stream velocity.

Here, the non-dimensional distance from the plate (η) is defined as y
√
Rex/x. Similarly to skin friction, the

velocity profile exhibits excellent agreement with the Blasius solution.

V.B. Lid-Driven Cavity Flow

The proposed solution algorithm is now applied to the well known lid-driven cavity flow problem28 which
demonstrates complex flow physics in a simple geometry with well-defined boundary conditions. Figure 14-
left shows a schematic of the cavity-flow geometry. All walls are stationary except for the lid, which is driven
at a prescribed velocity, that is,

~V =

{
~Vlid = (1, 0, 0) if y = 1,
~0 if x = 0 or 1, y = 0, z = 0 or 1.

(21)

The steady laminar flow was computed for a Reynolds number Re = ρ ||~Vlid|| L / µ = 1000. The
moving wall velocity is equal to 1 m/s and the characteristic length is L = 1 m, ρ = 1 kg/m3, µ = 10−3 Pa·s.
The Mach number M is small enough such that the solutions obtained for the velocity and pressure fields are
very close to those obtained assuming an incompressible flow, M = 0.1. Before the simulation begins, the
initial mesh with a single block containing 8× 8× 8 cells is uniformly refined twice. Two further adaptive
refinements are completed and the solution is converged at each refinement level. The mesh adapting criteria
are based on both the gradient of density and the gradient of velocity.
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(a) Anisotropic AMR half slice of solution showing density (left) and Mach number (right) for the supersonic
sphere problem with 1625 blocks.

(b) Isotropic AMR half slice of solution showing density (left) and Mach number (right) for the supersonic
sphere problem with 12062 blocks

Figure 10. Steady-state M = 2.0 sphere problem comparison between anisotropic and isotropic AMR. Blocks are shown
outline in black.

The complex recirculating flow pattern arising for this case is depicted at the final level of refinement in
Figure 14-right. All the solutions are obtained using the inexact Newton’s method described in Section II.D.1
for steady flows. Newton iteration are stopped when the non-linear residual is reduced by 7 orders of
magnitude (ε = 10−7).

After two adaptive mesh refinements, 764 blocks are used for the anisotropic non-uniform block-based
AMR method. The results corresponding to the proposed method are compared with the numerical solution
obtained using the isotropic AMR method involving 1639 blocks and the numerical results of Jiang et al.29

for incompressible flows. The u-velocity profile along a line x = z = 0.5 and the v-velocity profile along a
line y = z = 0.5 are shown in Figure 15. These profiles are in good agreement with the original numerical
results.
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Figure 11. Comparison between 3D anisotropic (lines) and 3D isotropic AMR (symbols) of center line density (black)
and Mach number (grey) from the stagnation point to the free-stream.

Figure 12. Computational mesh used to study steady laminar flow over a flat plate. The initial mesh consists of 17
blocks of 32× 64× 2 cells clustered near the plate surface.

V.C. Taylor-Green Vortex Decay

The Taylor-Green vortex solution30 is used for testing and validate the spatio-temporal accuracy of the
proposed anisotropic AMR for the Navier- Stokes equations. The Taylor-Green vortex solution is given by

u = U0 sin(x) cos(y)e−2νt, (22)

v = −U0 cos(x) sin(y)e−2νt, (23)

w = 0, (24)

p = p0 +
ρ0U

2
0

4
[cos(2x) + cos(2y)]e−4νt, (25)

(26)

over the domain −π ≤ x, y, z ≤ π, where ν is the kinematic viscosity of the fluid and ~V = (u, v, w) is the
velocity vector. Solutions are obtained on a periodic cube domain with length 2π. The initial mesh consists
of one block containing 10 × 10 × 10 cells refined four times based on the initial conditions. A sample of
computational anisotropic mesh is illustrated in Figure 16-left. The kinematic viscosity, ν = µ0/ρ0, is set
to 1.0 m/s2 with ρ0 = 1 kg/m3, and the velocity reference is U0 = 1 m/s such that the Reynolds number is
Re = LU0/ν = 1. The initial density field is taken as ρ = p/(RT0) where T0 is the initial temperature field.
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Figure 13. Numerical prediction of subsonic laminar flow, M = 0.2 and Re = 9318.92 over a 0.0004 flate plate (left)
computed plate skin friction (Cf ) compared with Blasius solution, (right) non-dimensional velocity profile compared
with Blasius solution.

Figure 14. (left) Computational mesh used to study the lid-driven cavity flow with 764 blocks of 8× 8× 8 cells, (right)

Contours of velocity magnitude, |~V | along z = 0.5 for the lid-driven cavity (Re = 1000).

The initial conditions for u in the plane z = 0 at time t = 0 s is illustrated in Figure 16-left. After 4 successive
initial refinements based on the velocity gradient, 160 blocks are used in the anisotropic AMR leading to
an efficiency greater than 96%. For the isotropic AMR with the same refinement criteria, 2304 blocks are
used with a refinement efficiency of 0.43. As time increases, the magnitude of the velocity exponentially
decays through the viscous damping effects. This decay can be seen in Figure16-right which shows the exact
solution along y = z = 0 at t = 0.6 s. Excellent agreement is obtained between the predicted solutions and
the exact solution.

VI. Conclusions

A block-based 3D anisotropic AMR using non-uniform grid blocks has been proposed. A description of the
new enhanced heterogeneous block and its related numerical resolution have been described in detail. Three-
dimensional anisotropic AMR results have been obtained for the Euler equations and for the Navier-Stokes
equations. They have been compared to 3D isotropic AMR and analytical solutions to assess the efficiency
and accuracy of the proposed approach. Prolongation and restriction of solution and conservative flux
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Figure 15. Velocity profiles along centerlines (y = z = 0.5 and x = z = 0.5) for the lid-driven cavity (Re = 1000) for the
proposed anisotropic AMR (line), the reference isotropic AMR (circle) and the reference results of Jiang et al.(square).

Figure 16. Taylor-Green vortex decay: (left) Initial computational geometry and exact solution for u at t = 0s and
(right) Solution for u along y = z = 0m at t = 0.6s.
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corrections are avoided as are complexities for high-order solution methods. The potential of the proposed
anisotropic AMR method has been demonstrated for a range of 3D test problems governed by Euler and
Navier-Stokes equations while offering a significant lower computational complexity and significant reductions
in mesh size compared to isotropic AMR techniques.
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