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A novel, parallel, high-order, central essentially non-oscillatory (CENO), cell-centered,
finite-volume scheme is developed and applied to large-eddy simulation (LES) of turbulent
premixed flames. The high-order CENO finite-volume scheme is applied to the solution of
the Favre-filtered Navier-Stokes equations governing turbulent flows of a fully-compressible
reactive mixture on three-dimensional, multi-block, body-fitted, computational mesh con-
sisting of hexahedral volume elements. Unlike standard ENO schemes, which require solu-
tion reconstruction on multiple stencils, the CENO method uses a hybrid reconstruction
approach based on a fixed central stencil, thereby avoiding the complexities of other ENO
schemes while providing high-order accuracy at relatively lower computational cost. The
CENO discretization of the inviscid fluxes combines an unlimited high-order k-exact least-
squares reconstruction technique based on the optimal central stencil with a monotonicity-
preserving, limited, linear, reconstruction algorithm. Switching in the hybrid procedure is
determined by a smoothness indicator such that the unlimited high-order reconstruction
is retained for smooth solution content that is fully resolved and reverts to the limited
lower-order scheme, enforcing solution monotonicity, for regions with abrupt variations
(i.e., discontinuities and under-resolved regions). The high-order viscous fluxes are com-
puted to the same order of accuracy as the hyperbolic fluxes based on a k-order accurate
cell interface gradient derived from the unlimited, cell-centered, reconstruction. The pro-
posed cell-centered finite-volume scheme is formulated for three-dimensional multi-block
mesh consisting of generic hexahedral cells and applied to LES of premixed flames.For
the reactive cases flows of interest, a flamelet-based subfilter-scale (SFS) model is used to
describe the unresolved influences of interaction between the turbulence and combustion.
This SFS combustion model is based on a presumed conditional moment (PCM) approach
in conjunction with flame prolongation of intrinsic low-dimensional manifold (FPI) tab-
ulated chemistry. Numerical results are discussed for a freely propagating flame in an
isotropic turbulence field and for a laboratory-scale lean premixed methane-air Bunsen-
type flame. The performance of the proposed high-order scheme for turbulent reactive
flows is discussed.

I. Introduction and Motivation

As indicated by Bilger,1 numerical combustion modeling of practical combustion systems with fully
turbulent flows and complex geometries is still at an initial stage and is really only used peripherally in
the industrial development of new and/or advanced combustor technology. The simulation of practical,
real-geometry combustors, with complete or multiple-step treatment of chemical reaction mechanisms, is
still a very computationally demanding task. High-order spatial and temporal discretization methods offer
the potential to reduce the computational costs required to obtain accurate predictions of such simulations
as compared to standard lower-order (second-order) methods. Nevertheless, efficient, universally-applicable,
high-order discretizations remain somewhat illusive, especially for more arbitrary three-dimensional and/or
unstructured computational meshes and for the prediction of physically complex flows as encountered in
many turbulent combustion flows.
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In terms of spatial discretization methods for reactive flows, recent efforts have concentrated on high-order
finite-difference approaches and on intermediate third-order finite-volume approaches with simplified (one-
or two-step) chemistry. For example, high-order methods are conventionally reserved for Direct Numerical
Simulation (DNS) on simpler structured grids and practical Large Eddy Simulation (LES) applied to com-
bustion is generally second-order accurate.2,3, 4 Another example of high-order LES using finite-difference
methods to simulate methane combustion is the work of Yaldizli et al,5 where the filtered mass density
function methodology is employed as a Subgrid Scale (SGS) closure for the LES model. Franzelli et al6

uses a third-order finite-element solver to study combustion instabilities on a swirled combustor at different
equivalence ratios. In another effort, Wang et al7 developed a three-dimensional (3D) parallel solver using
fifth-order weighted essentially non-oscillatory (WENO) finite-difference scheme to perform simulation of
gaseous detonations. One example of second-order LES using a finite-volume scheme applied to combustion
is given in Fureby.8 Despite these efforts, certainly further research is required if the potential of high-order
methods for reactive flow simulations is to be fully realized.

II. Scope of the Present Study

In the present study, a novel, parallel, high-order, central essentially non-oscillatory (CENO), cell-
centered, finite-volume scheme is developed and applied to LES of turbulent premixed flames. The high-order
CENO finite-volume scheme of Ivan and Groth9,10 is applied to the solution of the Favre-filtered Navier-
Stokes equations governing turbulent flows of a fully-compressible reactive mixture on three-dimensional,
multi-block, body-fitted, computational mesh consisting of hexahedral volume elements. Unlike standard
ENO schemes, which require solution reconstruction on multiple stencils, the CENO method uses a hybrid
reconstruction approach based on a fixed central stencil, thereby avoiding the complexities of other ENO
schemes while providing high-order accuracy at relatively lower computational cost. The CENO discretiza-
tion of the inviscid fluxes combines an unlimited high-order k-exact least-squares reconstruction technique
based on the optimal central stencil with a monotonicity-preserving, limited, linear, reconstruction algo-
rithm. Switching in the hybrid procedure is determined by a smoothness indicator such that the unlimited
high-order reconstruction is retained for smooth solution content that is fully resolved and reverts to the
limited lower-order scheme, enforcing solution monotonicity, for regions with abrupt variations (i.e., dis-
continuities and under-resolved regions). The high-order viscous fluxes are computed to the same order
of accuracy as the hyperbolic fluxes based on a k-order accurate cell interface gradient derived from the
unlimited, cell-centered, reconstruction. One major advantage of the proposed finite-volume based approach
is that its extension to unstructured mesh is very straightforward and preserves most of the implementation
used for hexahedral cells. The application of the CENO scheme to three-dimensional unstructured mesh was
previously considered by Charest et al.11 The high-order scheme is formulated here for three-dimensional
multi-block mesh consisting of generic hexahedral cells (faces not necessarily planar) and, in order to demon-
strate the capabilities of the high-order method, LES of freely propagating premixed flames in an isotropic
turbulent field and a laboratory-scale lean premixed Bunsen-type flame will be considered. For the latter,
a gaseous fuel, methane, is considered and a flamelet-based subfilter-scale (SFS) LES model is used to de-
scribe the unresolved influences of interaction between the turbulence and combustion. The SFS combustion
model is based on a presumed conditional moment (PCM) approach in conjunction with flame prolongation
of intrinsic low-dimensional manifold (FPI) tabulated chemistry.

In what follows, details of the proposed high-order CENO scheme are discussed and described, including a
description the PCM-FPI turbulence-chemistry interaction combustion model for premixed flames. Numeri-
cal results are presented and discussed for several non-reactive flow problems as well as the freely-propagating
and Bunsen-type premixed flames.

III. Filtered Navier-Stokes Equations for Compressible Reactive Mixtures

The Navier-Stokes conservation equations for a compressible reactive mixture of thermally perfect gases
can be Favre-filtered, providing the equations for variables, ϕ̄ or ϕ̃. The resulting Favre-filtered form of
the conservation equations for mass, momentum, total energy, and species mass fractions, along with the
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equation of state used here in the LES of turbulent reactive flows are given by

∂ρ̄

∂t
+
∂(ρ̄ũj)

∂xj
= 0 , (1)

∂(ρ̄ũi)

∂t
+
∂(ρ̄ũiũj + δij p̄)

∂xj
− ∂τ̌ij
∂xj

= ρ̄gi +
∂σij
∂xj︸ ︷︷ ︸
I

+
∂(τ̄ij − τ̌ij)

∂xj︸ ︷︷ ︸
II

, (2)

∂(ρ̄Ẽ)

∂t
+
∂[(ρ̄Ẽ + p̄)ũj ]

∂xj
− ∂(τ̌ij ũi)

∂xj
+
∂q̌j
∂xj

= ρ̄ũigi −
∂[ρ̄(h̃suj − ȟsũj)]

∂xj︸ ︷︷ ︸
III

+
∂(τijui − τ̌ij ũi)

∂xj︸ ︷︷ ︸
IV

− ∂(q̄j − q̌j)
∂xj︸ ︷︷ ︸
V

− 1

2

∂[ρ̄( ˜ujuiui − ũj ũiui)]
∂xj︸ ︷︷ ︸
VI

−
∂[
∑N
α=1 ∆h0

fα
ρ̄(Ỹαuj − Ỹαũj)]
∂xj

,︸ ︷︷ ︸
VII

(3)

∂(ρ̄Ỹα)

∂t
+
∂(ρ̄Ỹαũj)

∂xj
+
∂J̌j,α
∂xj

= − ∂[ρ̄(Ỹαuj − Ỹαũj)]
∂xj︸ ︷︷ ︸
VIII

− ∂(J̄j,α − J̌j,α)

∂xj︸ ︷︷ ︸
IX

+ ¯̇ωα︸︷︷︸
X

, (4)

p̄ = ρ̄ŘT̃ +

N∑
α=1

Rαρ̄(ỸαT − ỸαT̃ )︸ ︷︷ ︸
XI

, (5)

where
σij = −ρ̄ (ũiuj − ũiũj) , (6)

is the SFS stress tensor. The Favre-filtered total energy takes the form

Ẽ = ȟs −
p̄

ρ̄
+

N∑
α=1

∆h0
fα Ỹα +

1

2
ũiũi + k∆ , (7)

where

k∆ =
1

2
(ũiui − ũiũi) , (8)

is the SFS turbulent kinetic energy.
The effects of the subfilter scales appear in the filtered total energy, Ẽ, the filtered equation of state

and the right-hand-sides of the governing continuity, momentum, energy and species mass fraction equations
(i.e., terms I,. . . ,XI). The symbol (̌ ) is used to indicate the evaluation of expressions in terms of filtered
variables, i.e., Ř=R(Ỹα), ȟs =hs(Ỹα, T̃ ), and so on. The fluxes τ̌ij , q̌j , and J̌j,α are expressed as

τ̌ij = 2µ̌

(
Šij −

1

3
δijŠll

)
, (9)

q̌j = −λ̌ ∂T̃
∂xj
− ρ̄

N∑
α=1

ȟαĎα
∂Ỹα
∂xj

, (10)

J̌j,α = −ρ̄Ďα
∂Ỹα
∂xj

, (11)
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where Šij= 1
2 (∂ũi/∂xj + ∂ũj/∂xi), is the strain rate tensor calculated with the Favre-filtered velocity. The

temperature used for the molecular transport coefficients µ̌, λ̌, and Ďα calculations is T̃ .
For the non-reactive flows considered, the standard Smagorinsky SFS model12 is used to represent the

unresolved turbulence. For the reactive flow simulations a one-equation eddy-viscosity model based on a
transport equation for the SFS turbulent kinetic energy, k∆

13,14 is used. The SFS stresses are modelled as:

σij = 2ρ̄νt

(
Šij −

1

3
δijŠll

)
− ρ̄2

3
δijk∆ , (12)

where
νt = Cνk

1/2
∆ ∆ , (13)

and the value of k∆ is obtained from the modelled transport equation

∂(ρ̄k∆)

∂t
+
∂(ρ̄k∆ũi)

∂xi
= σijŠij −

Cερ̄k
3/2
∆

∆
+

∂

∂xi

[
ρ̄

(
ν̌ +

νt

ζ∗

)
∂k∆

∂xi

]
, (14)

where ν̌ is the mixture kinematic viscosity evaluated in terms of filtered variables (ν̌= µ̌/ρ̄).

IV. PCM-FPI Model

The PCM-FPI combustion model is used here to describe the interaction of the unresolved turbulence
and chemistry when performing LES of turbulent reactive flows and provide predictions of the chemical
reaction rates. The LES implementation of the PCM-FPI model used in the present work was developed
and successfully demonstrated by Hernàndez-Pérez et al15 and by Shahbazian et al16 for freely propagating
turbulent premixed flames as well as Bunsen-type turbulent premixed flames. This SFS model is selected
because it represents a reasonable trade-off between accuracy and cost in the representation of complex
chemistry.

A. Tabulated Chemistry - FPI

Since the cost of performing full chemistry simulation, including detailed kinetics, in realistic computations
is very high, reduction techniques have been an important field of research in combustion simulation. The
Flame Prolongation of ILDM (FPI) tabulation method was proposed by Gicquel et al17 as an extension
to the Intrinsic Low Dimensional Manifold (ILDM) approach.18 The goal is to retain the benefits of using
complex chemistry results, by building databases based on detailed simulations of simple flames. Premixed
steady-state one-dimensional laminar flames provide the basis for the FPI tabulations.15 In the present
work, premixed steady-state one-dimensional laminar flames are solved by the software Cantera19 using the
GRI-3.0 mechanism.20

For problems having a low Mach number, with Lewis number around unity and adiabatic boundaries, a
single progress variable suffices to describe the complete thermochemical state of the system.21 Premixed
flame solution quantities are then related to this single progress variable, Yc. The choice of this variable
should be carefully done so that a one-to-one correspondence between Yc and every flame property exists.22

For example, Fiorina et al23 indicate that for methane-air combustion (our particular case of study here),
Yc = YCO +YCO2

is an appropriate choice and is used here. These findings have also been confirmed in other
previous studies.15,24,16

In the FPI approach applied to premixed flames, numerical solutions for a set of one-dimensional freely
propagating laminar premixed flames are computed and the flame quantities are stored on a look-up table
in terms of the reaction progress variable Yc, and a mixture fraction characterizing the equivalence ratio
Yz. A property ϕP (species mass fractions, reaction rates, etc.) of unstrained premixed flames at a given
equivalence ratio may be tabulated either in (x, Yz) or in (Yc, Yz). The FPI table can then be expressed as25

ϕFPI
j (Yz, Yc) = ϕP

j (Yz, x) . (15)

Another important characteristic of the FPI approach is that the number of species retained in the
tabulations may be reduced when building the tables so as to optimize the table size. In the present
study, 10 species were selected for tabulation which were deemed more relevant to the combustion process
based on their individual contributions to the total mass, energy and heat release for the complete mixture
representation.
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B. Presumed Conditional Moment

Probability density functions (PDF) methods have shown to be successful even in some very complex appli-
cations. Examples include their ability to capture strong turbulence-chemistry interactions even in flames
with strong local extinction/reignition, and their ability to capture strong turbulence-radiation interactions
in luminous flames.26

The presumed conditional moment (PCM)27,28 combined with the flame prolongation of intrinsic low-
dimensional manifold (FPI)17 chemistry tabulation technique, is a closure approach that uses a presumed
PDF for fluctuating subfilter-scale quantities and incorporates tabulated complex chemistry from simple
prototype combustion problems. When turbulent premixed combustion is considered, look-up tables of
filtered terms associated with chemistry are built from laminar premixed flamelets. Also, the PCM-FPI
model is rather general and can be applied to all three combustion regimes: premixed, non-premixed, and
partially premixed flames.

Employing a statistical approach, the Favre-filtered reaction rate for a species α can be calculated by
integrating the laminar reaction rate, ω̇α, with a joint subfilter PDF, P̃ , as follows:

˜̇ωα =

∫
T∗

∫
Y ∗
1

. . .

∫
Y ∗
N

ω̇α(T ∗, Y ∗1 , . . . , Y
∗
N )P̃ (T ∗, Y ∗1 , . . . , Y

∗
N ) dY ∗N . . . dY

∗
1 dT ∗ . (16)

The above description can be simplified if the laminar reaction rate is assumed to be characterized by two
parameters: the mixture fraction, Z, and the progress variable, c, as provided by the FPI tabulated chemistry.
The mixture fraction characterizes mixing between fuel and oxidizer (Z is related to the equivalence ratio,
φ), whereas the progress variable tracks the evolution of the reactions. Both variables take on values between
zero and unity. The filtered reaction rate can then be re-expressed as

˜̇ωα =

∫ 1

0

∫ 1

0

ω̇α(c∗, Z∗)P̃ (c∗, Z∗) dc∗dZ∗ . (17)

On the other hand, the joint subfilter PDF can be also written as P̃ (c∗, Z∗)= P̃ (c∗|Z∗)P̃ (Z∗). By analyzing
DNS data, Vervisch29 have shown that the conditional PDF does not hage a strong dependence on the
mixture fraction, suggesting that P̃ (c∗|Z∗) ≈ P̃ (c∗). Assuming, P̃ (c∗|Z∗)= P̃ (c∗), the filtered reaction rate
can then be evaluated using

˜̇ωα =

∫ 1

0

∫ 1

0

ω̇α(c∗, Z∗)P̃ (c∗)P̃ (Z∗) dc∗dZ∗ . (18)

It follows that the filtered conditional moment (ω̇|Z∗) is given by

(ω̇|Z∗) =

∫ 1

0

ω̇α(c∗, Z∗)P̃ (c∗)dc∗ . (19)

In this sense, the PCM approach can be viewed as a simplified version of the Conditional Moments
Closure (CMC) method, in that conditional moments are also employed, but instead of solving transport
equations for the moments, they are presumed. The coupling of the laminar flamelet modeled reactions
(tabulated) and the filtered equations is made by solving two additional transport equations to characterize
the shape of the PDF: one equation for the progress of reaction variable Yc and another for the variance of
the progress variable Ycv .28,30,22

A β-PDF is generally used as the presumed probability density function for the progress variable in
both premixed and non-premixed flames.31,22,30,32 This was the choice for the present work mainly due to
the comparative nature of the results presented and to be consistent with some legacy results. Besides the
β-PDF, the Bray et al33’s laminar flame-based PDF and the modified laminar flame-based PDF of Jin et
al34 are available in the present computational framework. Particularly the latter has been considered to be
a more appropriate choice for turbulent flames lying within the thin reaction zone regime and will be the
choice for future studies.

In this work, the integration of the PDF’s with the laminar solution is pre-computed and stored. So,
given the local values of the progress of reaction variable Yc scalar and the variance of the progress variable
Ycv scalar, the pre-computed tables are accessed and the corresponding mass-fractions of each species is
then retrieved. Alternatively one could also use the tables to retrieve the reaction rates and solve extra
conservation equations for each species.
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V. High-Order Finite-Volume Spatial Discretization Scheme

A. Weak Conservation Form of Governing Equations

The Favre-filtered form of the conservation equations for mass, momentum, total energy, and species mass
fractions, along with the equation of state are used here in the LES of turbulent reactive flows given by
Eqs. (1)–(4) above can be re-expressed in the following general weak conservation form using matrix-vector
notation:

∂U

∂t
+ ~∇ · ~F =

∂U

∂t
+ ~∇ · ~F I

(
U
)
− ~∇ · ~FV

(
U, ~∇U

)
= S (20)

where U is the vector of conserved solution variables and ~F is the solution flux dyad. The flux dyad can be
decomposed into two components and written as ~F = ~F I − ~FV where ~F I = ~F I(U) contains the hyperbolic

or inviscid components of the solution fluxes ~FV = ~FV(U, ~∇U) contains the elliptic or viscous components
of the fluxes. The latter depend on both the solution and its gradient.

B. Semi-Discrete Form

Numerical solutions of Eq. (20) are sought here by applying a cell-centered, finite-volume, spatial discretiza-
tion procedure. A semi-discrete form of the governing equations can be derived from the application of the
finite-volume method to the integral form of Eq. (20) for cell (i, j, k) of a three-dimensional multi-block mesh
composed of hexahedral volume elements. Using a NG-point Gaussian quadrature numerical integration
procedure to evaluate the solution flux along each of the Nf faces of the cell, the following semi-discrete
form is obtained:

dUijk

dt
= − 1

Vijk

Nf∑
l=1

NGF∑
m=1

(
ωm

(
~F I − ~FV

)
· n̂A

)
ijk,l,m

+

NGV∑
n=1

(ωnS)i,j,k,n = Rijk

(
U
)
, (21)

where ωm are the face quadrature weighting coefficients, ωn are the volumetric quadrature weighting co-
efficients, Al denotes the surface area of face l, and Rijk is the residual operator. After the evaluation of
R, one can advance the solution in time, and therefore iteratively solve the time dependent problem that
is described by the equations. It will be shown in section D that the same integration rule can be applied
for a generic hexahedral element with a proper derivation of the quadrature points coordinates and weights.
Referring to figure 1, the flux evaluation points on a given face in the hexahedral are illustrated for NGF=4.
Similar quadrature rules are used to determine the NGV volumetric points.

The high-order finite-volume scheme implemented in this work employs four further steps based on the
semi-discrete form presented above. They are:

1. Solution Reconstruction: Given the cell average values a functional is defined (Taylor series expan-
sion polynomial) to represent the variation of the solution within one cell based on the cell itself and
on its neighbours average solution;

2. Flux Evaluation: Fluxes are evaluated by reconstructing the cell solution at each quadrature point
at the cell faces. Inviscid and Viscous Fluxes at one face are calculated by using the proper weights
and coordinates given by the selected quadrature procedure (in this work Gauss-Legendre points and
weights are used);

3. Source Vector Evaluation: The components of this vector are the terms that incorporate effects
of turbulence and chemistry in the reacting flows. In the high-order spatial scheme the source terms
integration is performed using a Gauss-Legendre quadrature approach, as defined in equation 26;

4. Time marching: Appropriate time marching scheme is used to update the cell-averaged values to
the next time step, after the evaluation of R. A fourth-order Runge-Kutta (RK4) method is used for
the high-order results presented here.
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C. k-Exact Least-Squares Reconstruction

The high-order CENO reconstruction scheme of Ivan and Groth9,10 uses a k-exact least-squares reconstruc-
tion technique developed by Barth and Fredrickson35 and Barth.36 The reconstructed solution is thus given
by the kth-order Taylor series expansion of the solution variable U , about the cell center. For the Favre-
filtered Navier-Stokes equations used in this work, spatial accuracy of the scheme corresponds to the order
of the reconstruction polynomial, k.

The kth-order Taylor series of the spatial distribution of a solution quantity, Uijk, inside the cell with
index ijk, about the cell-centroid (xijk, yijk, zijk) can be expressed as:

Ukijk(x, y, z) =

k∑
p1=0

k∑
p2=0

k∑
p3=0

(p1+p2+p3≤k)

(x− xijk)
p1 (y − yijk)

p2 (z − zijk)
p3 Dp1p2p3 , (22)

The constant coefficients, Dp1p2p3 , are referred in this work as as the unknown derivatives and their number
varies according to the order of the reconstruction. It can be easily shown that there are 10 unknown
derivatives for a second-order (piecewise quadratic) reconstruction, 20 unknowns for a third-order (piecewise
cubic) reconstruction and 35 for a fourth-order (piecewise quartic) reconstruction.

A least-squares problem is solved based on information of the neighbouring cells (stencil) in order to
calculate the unknown derivatives. Barth and Fredrickson35 impose the following constraints to this problem
which are also used in this work: (i) the reconstruction should conserve the mean value in the cell to which
its applied; (ii) the reconstruction should represent polynomials of degree δ ≤ k exactly, and (iii) the
reconstruction should have a compact support from the stencils.

In order to obtain a determined or overdetermined set of equations to solve for the unknown derivatives,
the number of neighbours considered in the stencil must be at least equal to the number of unknown deriva-
tives. The more information we take from the surrounding neighbours, the more robust the reconstruction,
but at the same time it is not desirable to make the overdetermined system larger than necessary.37 For
most of the high-order (4th order) reconstruction results to be presented here a 56 neighbours stencil was
used.

The smoothness indicator, S, used to determine whether a flow variable in cell (i, j, k) is deemed under-
resolved or non-smooth, is computed as following:37,38

S =
α

max(1− α, ε)
NSOS −ND
ND − 1

, α = 1−

∑
γ

∑
δ

∑
ζ

(uKγδζ( ~Xγδζ)− uKijk( ~Xγδζ))
2

∑
γ

∑
δ

∑
ζ

(uKγδζ( ~Xγδζ)− ūijk)2
, (23)

where the ranges of the indices (γ, δ, ζ) are taken to include either the whole or a subset of the supporting
reconstruction stencil for cell (i, j, k). The smoothness indicator can be interpreted as a comparison between
1) the reconstructed value in a neighbour cell given by this cell’s own reconstruction and 2) the reconstructed
value in a neighbour cell given by the central cell reconstruction.

D. Hexahedral Elements and Trilinear Transformation

In order to obtain high-order accuracy on generic hexahedral volumes the non-planar faces must be carefully
treated with regard to all geometric operations affecting the numerical procedure such as flux integration
and calculation of geometric properties (e.g., area, volume, centroid, moments etc.). The solution adopted in
the present work is to define general hexahedral cells with a trilinear description of the faces, which allows us
to perform all geometric computations with high-order accuracy by transforming the element to a reference
cubic cell. According to Ivan et al,38 the use of a standard trilinear face representation39,40 has significant
advantages when the required number of flux integration points is taken into account, in comparison to a
triangulation alternative.

1. Trilinear Transformation

In order to extend the CENO scheme for Cartesian structured meshes to hexahedral cells a trilinear transfor-
mation40 is adopted to map a hexahedron from physical space into a reference unitary cube in the canonical
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Figure 1. A general hexahedral cell in physical space mapped into a reference cube by applying a trilinear
transformation ~r(p, q, r), as illustrated by Ivan et al38

space. Figure 1 illustrates a generic hexahedron (with non-planar faces) being mapped by a trilinear trans-
formation applied to a cube.

~r(p, q, r) = ~A+ ~Bp+ ~Cq + ~Dr + ~Epq + ~Fpr + ~Gqr + ~Hpqr , (24)

where p, q and r are Cartesian coordinates in the canonical space of the reference cube and ~A, ~B, ~C,
~D, ~E, ~F , ~G and ~H are the transformation vector coefficients that are computed by imposing the one-
to-one correspondence between the vertices of the hexahedron and those of the reference cube. Once the
transformation coefficients are determined, any local or integrated quantities involving the geometry of the
hexahedron (e.g., centroid, volume, face normals, volumetric or face integrals of arbitrary functions, etc.)
can be computed by carrying out the required evaluations within the reference cube.39,41 For example,
to evaluate a volumetric integral of a continuous smooth function, g( ~X), over a control volume Vijk, I =∫∫∫
Vijk g( ~X)dv, the variables and integration domain are changed to those of the reference unit cube by

the trilinear transformation, ~X = ~r(p, q, r), and the determinant of the Jacobian of the transformation,

detJ≡
∣∣∣∂(x,y,z)
∂(p,q,r)

∣∣∣. Thus, the volumetric integral, I, in the physical space (x, y, z), is calculated as function

of the coordinates in the canonical space (p, q, r) as:

I =

1∫
0

1∫
0

1∫
0

g(~r(p, q, r)) detJdp dq dr (25)

where the Jacobian, detJ, is clearly a function of the location (p, q, r).
The triple integral of Equation (25) is evaluated numerically by applying Gauss-Legendre quadrature

integration rules for the specified level of accuracy. For a quadrature rule with Nv volumetric Gauss points,
I in Equation (25) is approximated as

I '
Nv∑
m=1

g (~r(p, q, r)) (detJ)m ωm =

Nv∑
m=1

g( ~Xm) ω̃m (26)

where ~Xm =~r(pm, qm, rm) and ω̃m = (detJ)m ωm represent the Gauss-Legendre abscissa and weight in the

physical space. Note that the abscissa ~Xm is the trilinear transformation image of the abscissa (pm, qm, rm)
in the reference unit cube and the weight ω̃m is determined as the product between the local Jacobian and
the corresponding Gaussian weight coefficient ωm. The volumetric weights ωm at a given point (p, q, r) in
Cartesian coordinates are given by the tensor product of the one-dimensional Gauss-Legendre weights in
each direction.

Note also that
(
~Xm, ω̃m

)
depend only on the hexahedral cell geometry. In this work we opt to store

and reuse them for volumetric integrations involving different g( ~X) functions (e.g., calculation of volume,
centroid, geometric moments etc.). An analogous approach is followed for the integration of variables over a
hexahedron face.
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E. Flux Evaluation

1. Inviscid Flux

Once the solution is reconstructed to the desired order of accuracy at the cell boundary, the inviscid flux
calculation can be performed by the solution of a Riemann problem42 between the states given by the
reconstruction of the solution on each cell adjacent to the boundary. The accuracy of the integration
method used to integrate the flux numerically should, therefore, not degrade the spatial accuracy given by
the reconstruction method. In this work The AUSM+-up approximate Riemann solver of Liou43 is used.

2. Viscous Flux

The viscous fluxes depend on both the solution states and the solution gradients at the cell interfaces:

~FV · −→n = ~FV(Uleft, ∇Uleft, Uright, ∇Uright,
−→n , η = 0 ) . (27)

The discretization procedure used in this work, follows directly from the work of Ivan and Groth in two
dimensions.44 The unlimited reconstructed solution state and gradients are calculated at the quadrature
points at the boundary for both cells adjacent to the boundary. The cell boundary solution value and
gradient are calculated as the arithmetic means of the left and right state and gradient values.44 Gauss
quadrature is performed following the rationale presented on section D to obtain the total flux for each face.

The reconstruction polynomial defined in Equation (22) can be directly differentiated in each direction,
so that, for example, in the x-direction we arrive at the following expression for the gradient

∂Ukijk(x, y, z)

∂x
=

k∑
p1=0

k∑
p2=0

k∑
p3=0

(p1+p2+p3≤k)

p1(x− xi)p1−1(y − yi)p2(z − zi)p3Dp1p2p3 , (28)

Analogous expressions are derived for
∂Ukijk(x,y,z)

∂y and
∂Ukijk(x,y,z)

∂z . Considering again the cell interface in the
x-direction the arithmetic means of both the solution and its gradients are obtained as follows:

Ui+ 1
2 ,j,k

=
(Uleft + Uright)

2
, (29)

∇Ui+ 1
2 ,j,k

=
(∇Uleft +∇Uright)

2
. (30)

Equation (28) for the solution gradient has a leading truncation error term which is one order less than the
kth-order reconstruction polynomial, given by Equation (22). As such, in order to obtain a kth-order accurate
spatial discretization (for elliptic operators and the Navier-Stokes equations), a kth-order reconstruction
polynomial is used. To achieve a fourth-order scheme, piecewise quartic reconstruction, with k = 4, is
therefore required.

VI. Numerical Results

A. High-Order Reconstruction of Prescribed Functions

1. Smooth Trigonometric Function

Prior to preceding with the LES reactive flow computations, verification of the high-order CENO solution
reconstruction for three-dimensional Cartesian as well as general hexahedral meshes was first considered by
studying the reconstruction of prescribed functions. Remembering that a hexahedral cell may in general
have non-planar faces, the general hexahedral meshes were obtained here by randomly perturbing originally
uniform Cartesian meshes. As a first case, reconstruction of a radial cosine function was examined on a
solution domain of size (20m × 20m × 20m). For this smooth and continuous function, the goal was to
establish that the expected order of accuracy on hexahedral elements. Furthermore, as the reconstruction
process relies on the evaluation of volumetric integrals for the cell volume itself and centroid locations, as well
as to integrate the geometric moments required to construct the least-squares problem for the reconstruction,
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(a) Cut planes showing radial cosine function reconstructed
on Cartesian mesh (CENO 5th) order

(b) Cut planes showing radial cosine function reconstructed
on hexahedral mesh (CENO 5th) order

Figure 2. Cut planes comparing the 5th order reconstruction function working on hexahedral (disturbed) mesh
as expected in comparison to the Cartesian mesh

(a) Error Analysis for Radial Cosine function using 2nd

and 5th order accuracy on Cartesian and hexahedral (dis-
turbed) mesh

(b) Analysis of time required to achieve a desired error
level with a given reconstruction. Comparison between
2nd and 5th order.

Figure 3. Error Analysis demonstrating proper order of accuracy for the CENO scheme in a disturbed mesh
and time required for desired error level based on order of the reconstruction.

this test case also provided a confirmation of the effectiveness of the trilinear transformation and volumetric
quadrature for the hexahedral elements.

The distributions of the reconstructed radial cosine function on both three-dimensional Cartesian and
hexahedral meshes are illustrated in Figure 2. Furthermore, it is shown in Figure 3(a) that the expected
order of accuracy of the k = 2 and k = 4 schemes is achieved on both regular and perturbed meshes. An
interesting result is also found by comparing the time required to perform the solution reconstruction with
different orders of accuracy for the meshes considered as depicted in Figure 3(b). One can see that for a
given error the time required by the second-order scheme may be orders of magnitude higher than the time
required by the fifth-order scheme.
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(a) Fifth-Order CENO reconstruction on a hexahedral
(disturbed) mesh - contour of ρ for Abgrall function

(b) Fifth-Order CENO reconstruction on a hexahedral
(disturbed) mesh - contour of the smoothness indicator
for variable ρ for the Abgrall function

Figure 4. Demonstration of the smoothness indicator use with disturbed hexahedral cells flagging the discon-
tinuos regions in the field of variable ρ for the Abgrall function.

2. Non-Smooth Abgrall Function

In order to investigate the CENO solution reconstruction procedure for non-smooth function, the Abgrall
function45 was considered. By construction, this function contains several solution discontinuities in order to
present challenges to any reconstruction scheme hoping to enforce solution monotonicity. For this case, the
functionality and reliability of the smoothness indicator used in the hybrid CENO reconstruction procedure
is also demonstrated. While this ability has been extensively tested in other previous work, and the main
goal here was to show that consistent results can also be obtained using general hexahedral elements.

Considering the number of discontinuous regions within the domain, as shown in Figure 4(b), it is expected
that our high-order hybrid scheme switches to a low-order mode in a high number of cells bringing down
the overall order of accuracy. Although that is true, one can see from Figure 5 that, while the high-order
scheme exhibits a grid-convergence rate or order of accuracy (slope) that similar to the first-order scheme, it
is also evident that the absolute value of the error for the high-order reconstructed solution is considerably
smaller than that of the usual first-order scheme. For a the target solution error given in the figure, a much
fewer number of cells (100 × 100 = 10,000) is required by the high-order to scheme to achieve the same
accuracy as the first-order scheme on a fine mesh (180 × 180 = 32,400). Extrapolating this result to the
three-dimensional case, the ratio (1803)/(1003) indicates that about 5.8 times more cells would be required
by the low-order scheme to return the same level of error as the high-order approach. ,

B. Non-Reactive Inviscid Flow — Wave Propagation

The implementation of the high-order inviscid flux function was also verified here by solving a simple wave
propagation problem in a periodic domain. A periodic sinusoidal field was initialized for the density, ρ, and
a uniform x-direction velocity of u=100 m/s was applied. The magnitude of the velocity components in the
y and z directions was taken to be zero and a uniform pressure of p=101,325 Pa was assumed. The expected
exact solution for density, ρ, after a full period (20ms) is the same initial wave convected without the lags
in phase or amplitude decays associated with the numerical discretization scheme.

The numerical results presented in Figures 6(a) and 6(b) demonstrate that valid solutions were obtained
for both Cartesian and hexahedral meshes. In both cases, the initial wave shape is recovered. Ivan et al38

have also shown that the desired orders of accuracy (up to 4th) can be obtained for this case.
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Figure 5. Comparison of L1-error obtained with first and fifth-order reconstruction. Dashed lines exemplify
the smaller number of cells required by high-order scheme for a given error, despite slopes being similar due
to large number of cells flagged as discontinuous.
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(a) Fifth-Order CENO on a Cartesian mesh - solution after
one full cycle (20ms) - 100 elements in x-direction
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(b) Fifth-Order CENO on a hexahedral (disturbed) mesh - so-
lution after one full cycle (20ms) - 100 elements in x-direction

Figure 6. Contour plot of a sinusoidal density wave travelling in x-direction at constant speed u =100 m/s.
Comparative demonstration of solution using hexahedral and Cartesian cells.

C. Non-Reactive Inviscid Flow — Shock-Cube Problem

The high-order CENO scheme is further verified through application to an inviscid three-dimensional shock-
box problem in which both both uniform Cartesian and distorted hexahedral computational mesh were
considered. This problem is a generalization of the one-dimensional shock-tube problem for a 1 m×1 m×1 m
three-dimensional domain.

Figures 7(a) and 7(b) show the matching density variation on two cut planes of constant z coordinates
for the Cartesian and hexahedral mesh. Figures 8(a) and 8(b) demonstrate the same regions are flagged (in
red) by the smoothness indicator as regions of the solution having under-resolved or discontinuous features
for both meshes.
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(a) Fifth-Order CENO on a Cartesian mesh (b) Fifth-Order CENO on distorted hexahedral mesh

Figure 7. Density variation for the shock-box problem shown on selected cut planes in the domain: t =
0.5ms, 403 grid.

(a) Cartesian mesh (b) Hexahedral mesh

Figure 8. Contours of smoothness indicator for variable ρ flagging the discontinuities in the solution which
shall be solved by the reduced order scheme to enforce monotonicity

D. Non-Reactive Viscous Flow — Decay of Isotropic Turbulence

Finally, to verify the high-order implementation of the viscous fluxes using LES before preceding to the
reactive flow cases, the decay of a three-dimensional homogeneous isotropic turbulence field was considered.
It should be noted that the rate of decay of the isotropic turbulence is expected to be proportional to t−1.25,
according to both experiments and DNS results.46 A (2π m×2π m×2π m) solution domain was considered
and an isotropic turbulence field was introduced, following the methodology presented by Rogallo.47 The
boundaries of this solution domain are assumed to be periodic in all directions. Following other previous grid
convergence studies,48,49 the turbulence decay was evaluated using two grid sizes comprising of (32×32×32)
cells and (64× 64× 64) cells. The Smagorinsky SFS model12 was used as in all cases.
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(a) Decay of Turbulent Kinetic Energy on (32× 32× 32) mesh
for several spatial discretization schemes
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(b) Decay of Turbulent Kinetic Energy on (64× 64× 64) mesh
for several spatial discretization schemes

Figure 9. Comparison of the Decay of Isotropic Turbulence using the high-order implementation of the viscous
fluxes

The simulation results presented in Figures 9(a) and 9(b) show the LES predictions of decay of the
isotropic turbulent field within the domain as obtained by proposed the proposed finite-volume scheme
on the two meshes. Results are presented for various orders, without monotonicity enforcement, so as to
highlight the effect of the increasing accuracy order of the scheme on the preservation of turbulent content in
the domain. As expected the results for the (64× 64× 64) mesh are slightly improved and provide a better
representation of the decay process than the (32× 32× 32) mesh. Also, it can be seen that by refining the
mesh, the different schemes (2nd, 3rd and 4th-orders) converge to a similar decay rate and absolute value of
total turbulent kinetic energy profile.

E. Freely Propagating Premixed Methane-Air Flame in an Isotropic Turbulent Field

The first assessment of the high-order CENO scheme applied to LES with PCM-FPI implementation for
reactive flows was made by studying the numerical solution of freely propagating methane-air flames in
a cubic domain. The LES reactive flow simulations are performed by superimposing a decaying isotropic
and homogeneous turbulent field to a planar laminar premixed flame inside a three dimensional box. The
homogeneous isotropic turbulent flow field was initialized by again making use of Rogallo’s turbulence initial-
ization procedure47 and the model spectrum proposed by Haworth and Poinsot.50 LES results were obtained
using both second-order spatial discretization scheme (CENO 2) and the fourth-order method (CENO 4).
Additionally, results for two different meshes were obtained: a (32× 32× 32) and (64× 64× 64) mesh were
both used. The computaional domain was a cube of size (0.01m× 0.01m× 0.01m) and subsonic inflow and
outflow boundary conditions were applied on the constant x faces and periodic boundary conditions were
enforced on the other four faces. The particular conditions for the premixed flame of interest are summarized
in Table 1. The turbulence intensity was such that the flame lies in the thin reaction zone regime of turbulent
premixed combustion diagram,51 just above the flamelet regime limit.

Figure 10 provides the predicted evolution of the turbulent burning rate, ST , non-dimensionalized by the

φ Λ λ η u′ sL δL u′/sL Λ/δL

mm mm mm m/s m/s mm

0.7 1.790 0.460 0.02935 2.92 0.201 0.11 14.38 16.64

Table 1. Summary of turbulence scales and flow conditions for case N
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(a) Burning rate adimensionalized by
laminar speed for the (32× 32× 32) mesh

:
(b) Burning rate adimensionalized by
laminar speed for the (64× 64× 64) mesh

Figure 10. Comparison of 4th and 2nd order results for the burning rate evolution in time, showing the higher
levels achieved with the high-order scheme on both meshes

Figure 11. Time evolution of temperature contours for CENO4 (mesh 64, t=0ms, 0.25ms, 1ms and 4ms)
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(a) Temperature distribution in x direction at
y=z=0, for t=0.25ms

(b) Temperature distribution in x direction at
y=z=0, for t=0.5ms

Figure 12. Comparison of 4th and 2nd order temperature distribution

laminar flame speed, SL, obtained in the LES simulations as a function of time. Results for the second-
and fourth-order spatial schemes are compared. In both cases, an explicit, fourth-order, Runge-Kutta, time-
marching scheme was used. It can be seen that the high-order spatial scheme predicts a higher turbulent
burning rate when compared to the second-order scheme for both meshes.

Figure 11 shows the evolution of predicted temperature contours in time, demonstrating the flame wrin-
kling increasing as the reaction progress. Contours are shown for t =0ms (top left), t =0.25ms (top right),
t =0.5ms (bottom left) and t =0.75ms (bottom right). A closer look at the temperature distribution for the

Figure 13. Contours of progress variable production and mass fractions of CH4,CO2 and H2, @ t=0.5ms
(CENO4, mesh 64)
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Figure 14. Burning rate comparison for the second-order and fourth-order schemes

(32 × 32 × 32) mesh along x direction at constants y=z=0 is shown in Figures 12(a) and 12(b), for times
t=0.25ms and t=0.50ms respectively. In these plots a detail of the sharper gradient representation provided
by the high-order reconstruction is given.

Figure 13 shows the contours of the production of the progress variable (top left) and the contours of
species mass fractions for CH4,CO2 and H2, at t=0.5ms for the (64 × 64 × 64) mesh. The production
of progress variable contours allowd one to identify the reaction front, or the region where CO and CO2

are being produced. The presence of CH4 predominantly in the reactants and CO2 predominantly in the
products region is also observed. Moreover it is possible to detect the concentration of H2 mostly confined
to the reacting front and decaying to zero as one moves toward either the reactants or products.

F. Laboratory-Scale Premixed Methane-Air Bunsen Flame

The axisymmetric Bunsen flame and burner geometry studied previously by Shahbazian et al16 was also
studied here. In the previous work, different subfilter scale models for turbulence-chemistry interaction were
compared to the available experimental data of Yuen and Gülder.52 The same turbulent flow conditions
described in Table 1 were used in one of the Bunsen flame cases of this previous work. It is this case that is
also consdered here.

Figure 14 depicts the predictions of the global burning rate for the lean premixed flame obtained using
LES with both the second- and fourth-order finite-volume schemes. It is possible to notice that the high-order
scheme applied to the lean premixed Bunsen flame yields a higher burning rate than the second-order scheme.
This result is consistent with what was seen for the freely propagating flame in the previous examples. The
progress variable contours obtained from time averaging of the LES solution once the burning rate achieves
a quasi-steady value are shown in Figure 15. The fine mesh (about 1.7 million elements) and second-order
results are reproduced here from the study of Shahbazian et al16 and are shown in Figure 15(a). In order
to make a first assessment of the performance of the fourth-order scheme, a coarse mesh (about 170,000
elements) was also used and LES results were obtained using both the second- and fourth-order CENO
schemes. In Figure 15(b), the results obtained for the coarse mesh using the second-order scheme are shown,
which are clearly over-predicting the flame height when compared to the fine mesh second-order result. The
results for the high-order scheme with this same coarse mesh are depicted in Figure 15(c). It can be seen
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(a) Progress variable contours -
fine mesh (1.7e6 elements), sec-
ond order scheme

(b) Progress variable contours
- coarse mesh (1.7e5 elements),
second-order scheme

(c) Progress variable contours -
coarse mesh (1.7e5 elements),
fourth-order scheme

Figure 15. Contours of normalized progress variable c for different meshes and spatial schemes

that the flame obtained with the high-order scheme is lower than that obtained for the second-order scheme
on the coarser mesh and in better agreement with the fine-mesh second-order results.

The predicted average flame heights for the three numerical results described above are compared to
the estimated experimental flame height obtained by Yuen and Gülder52 in Figure 15. Contours for the
normalized progress variable at c = 0.4 are shown. Again, it can be seen that the finer spatial scheme performs
better than the second-order for the same coarse mesh, moving the solution closer to the experiments and
to that obtained with the second-order scheme with a mesh about 10 times finer.

VII. Concluding Remarks

A high-order CENO finite-volume scheme, based on the previous work of Ivan and Groth9,10 for non-
reactive flows in two space dimensions, has been developed and applied to LES of turbulent premixed flames.
Details of the proposed high-order CENO scheme applied to the Favre-filtered form of the Navier-Stokes
equations for a compressible gaseous reactive mixture with a PCM-FPI turbulence-chemistry interaction
combustion model were discussed and described. Numerical results that examine the underlying features of
the proposed high-order scheme were presented and some preliminary results for LES of turbulent premixed
flames were assessed. In general, the proposed high-order CENO finite-volume scheme proved promising for
LES of reactive flows, outperforming the standard second-order scheme in several respects. Nevertheless,
further study of the high-order approach for a broader range of reactive flows is certainly warranted and will
be the subject of future follow-on research.
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Figure 16. Flame height comparison for lean Bunsen burner case with different schemes (contours of progress
variable c=0.4)
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