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A parallel, implicit, adaptive mesh refinement (AMR), finite-volume scheme is described
for the solution of the regularized Gaussian moment closure. The latter incorporates the
influences of heat transfer by means of a first-order correction to the standard Gaussian
closure. The combined moment closure treatment / numerical method is applied to the
prediction of three-dimensional, non-equilibrium, micro-scale, gaseous flows. Unlike other
regularized moment closures, the underlying maximum-entropy Gaussian closure provides
a fully-realizable and strictly hyperbolic description of non-equilibrium gaseous flows that
is valid from the continuum limit, through the transition regime, and up to the near-
collisionless, free-molecular flow limit. The regularized closure provides a similarly robust
description than now includes a fully anisotropic description of heat transfer. The pro-
posed finite-volume scheme makes use of Riemann-solver-based flux functions and limited
linear reconstruction to provide accurate and monotonic solutions, even in the presence
of large solution gradients and/or under-resolved solution content on three-dimensional,
multi-block, body-fitted, hexahedral mesh. A rather effective and highly scalable parallel
implicit time-marching scheme based on a Jacobian-free inexact Newton-Krylov-Schwarz
(NKS) approach with additive Schwarz preconditioning and domain partitioning following
from the multi-block AMR mesh is used to obtain solutions to the non-linear ordinary-
differential equations that result from finite-volume spatial discretization procedure. De-
tails are given of the regularized Gaussian closure, with suitable extensions for diatomic
gases, and slip-flow boundary treatment. Numerical results for several canonical flow prob-
lems demonstrate the potential of the regularized closures, that when combined with an
efficient parallel solution method, provide and effective means for accurately predicting a
range of fully three-dimensional non-equilibrium gaseous flow behavior.

I. Introduction

A. Transition-Regime Micro-Scale Flows

Generalized fluid dynamic behavior is commonly described through the Navier-Stokes equations. This near-
equilibrium transport model has proven itself to be accurate when modeling many problems typically encoun-
tered in the aerospace industry. However, the underlying assumption that the fluid behaves as a continuum
breaks down when the mean free path for collisions between the fluid molecules is comparable in size to the
characteristic length of the problem. At the other end of the spectrum, the modeling of rarefied flows is
governed by the Boltzmann equation, and, in this regime, is more readily solved using a variety of particle
simulation techniques.1 The advent of micro-scale technologies2 and upper atmospheric aerospace research3

has prompted a need to model fluid flow behavior lying between these two regimes, where non-equilibrium
effects are significant but particle simulation techniques become prohibitively costly. Proper modeling of
this transition regime is critical for understanding the behavior of various macroscopic properties used in
the overall design and function of these technologies.
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B. Moment Closures

Evaluation of non-continuum fluid flow behavior is commonly based on a statistical description of fluid parti-
cle movement, either through numerical approaches, such as a direct discretization of the Boltzmann equation
and particle simulation methods,1 or through approximate techniques for the Boltzmann equation.4,5 Ap-
proximate techniques based on kinetic theory eventually lead to sets of coupled non-linear partial differential
equations that describe the transport of macroscopic quantities. The classical mechanics concerning particle
collisions are fully incorporated into these descriptions and the evolution of the particle distribution functions
can be obtained. The resulting formulations can be used to derive the governing equations used in continuum
flow, and can also provide the key to describing fluid flow behavior in the non-equilibrium transition regime.

The use of moment methods for non-equilibrium gases was first hypothesized by Maxwell.6 Later, Boltz-
mann provided a means with which to study the evolution of these distribution functions, which in turn gave
transport equations for various macroscopic properties.7 However, the construction of the resulting moment
equations is such that each transport equation relies on the flux of a higher-order velocity moment ad infini-
tum. One approach to closing off this set of equations for practical purposes is to assume a particular form
for the non-equilibrium distribution function having a fixed number of free parameters in such a way that
the higher-order closing velocity moment can be expressed solely in terms of lower ones. Grad4 considered
moment closures based on a truncated polynomial power series expansion for the approximate distribution
function and this technique generated first-order systems of hyperbolic partial differential equations (PDEs)
describing the time evolution of the macroscopic moments. However, hyperbolicity of the Grad moment
equations is not guaranteed for all flow conditions leading to closure breakdown and the assumed form for
the distribution function is not always physically plausible.

An alternative hierarchy of maximum-entropy moment closures has been developed by Levermore.5 The
Levermore hierarchy has a number of desirable mathematical properties including strict hyperbolicity, thus
the possibility of closure breakdown in this sense is avoided. The lowest order of this hierarchy of closures
is the 5-moment closure that corresponds to the Euler equations, while the next member results in the 10-
moment closure, also known as the Gaussian closure. While a full guarantee of both moment realizability and
hyperbolicity applies only to these two lowest-order closures in the hierarchy,8 the usefulness of such closures
is evident from a computational standpoint. Being purely hyperbolic with only first-order derivatives, the
solution is guaranteed to have finite speeds of propagation. Moreover, numerical solutions can be readily
obtained using the highly successful class of Godunov-type finite volume schemes developed for hyperbolic
conservation laws without excessive modification.9 These schemes are robust, accurate, and can preserve
the conservation properties of the solution at the discrete level. They can also be applied using a large
variety of boundary conditions and meshing techniques and, for first-order systems, provide solutions that
are generally rather insensitive to irregularities in the mesh.

While the Gaussian closure is a somewhat simplified mathematical model, as it does not incorporate the
effects of heat transfer, it has been shown to accurately describe non-equilibrium momentum transport for
a range of micro-scale flows and is very representative of other higher-order closures that would potentially
include the effects of non-equilibrium thermal transport.10–12 The numerical solution and application of
the Gaussian closure for two-dimensional micro-scale flows has been studied extensively by McDonald and
Groth,10–12 with considerations for diatomic gases following the approach devised by Hittinger13 as well as
with a regularization correction for heat transfer effects.11 A discontinuous Galerkin finite-element solution
scheme for the Gaussian closure has also been proposed by Barth14 and additional research by Levermore
et al.15 has been performed on one-dimensional shock structures taken from the Gaussian closure. These
studies have shown the computational robustness of the Gaussian closure over a wide range of Knudsen
numbers and has encouraged the development of the fully three-dimensional solution procedure outlined
here for both academic and industrial purposes.

The lack of heat transfer in the Gaussian closure becomes an issue that cannot be ignored given its
otherwise attractive computational properties. Work by Struchtrup and Torrilhon16–19 has explored the
regularization of the Grad moment closure for describing higher order effects through a Chapman-Enskog-
type perturbative expansion about the moment equations to allow for small deviations from the assumed form
of the distribution function. The regularized forms of the Grad 13-moment and 26-moment closures have been
shown to be accurate in the prediction of non-equilibrium phenomena such as velocity and temperature slip
at solid boundaries, and the accurate modeling of one-dimensional shock structures that deviate significantly
from thermodynamical equilibrium. While promising, the underlying hyperbolic moment system can still
suffer from the those of the original Grad moment closure mentioned above, namely the loss of hyperbolicity
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even for small deviations from equilibrium.
McDonald and Groth11,20 have recently applied a similar regularization procedure on the Gaussian

closure for two-dimensional, heat-conducting flow directly based on the anisotropic pressure tensor. While
the regularization process adds an additional elliptic term to the otherwise hyperbolic set of equations, the
underlying first-order moment system remains hyperbolic for the full range of physically realizable moments.
The computational advantages and modeling potential for this approach to non-equilibrium flows has now
prompted its advancement for the modeling of fully three-dimensional flows.

C. Scope of Study

The main objective of this work is to consider the efficient numerical solution and subsequent application
of the regularized Gaussian moment closures that incorporates the effects of heat transfer, functionality
that is inherently missing in the Gaussian closure. The regularized closure is applied to the modeling of
three-dimensional non-equilibrium micro-scale flows with the aid of a new parallel implicit adaptive mesh
refinement (AMR) finite volume scheme for solving the moment equations on multiblock, body-fitted hex-
ahedral mesh. The proposed AMR allows for a local refinement of the computational mesh based on a
procedure by Gao and Groth.21–23 The solution procedure developed for solving the generalized transport
equations of the regularized Gaussian-based closures is accelerated with a parallel Newton-Krylov method
with additive Schwarz preconditioning. Verification and assessment of the capabilities of the approach has
been conducted by considering its application to a number of canonical three-dimensional steady state flow
problems.

II. Regularized Gaussian Closures

A. Gaskinetic Theory

The kinetic theory of gases begins by treating the gas as a collection of discrete microscopic particles that
interact with each other and the walls of its container through collisional processes to create perceived
macroscopic properties such as density and pressure. Energy transfer between particles and its container are
solely described by classical mechanics subject to Newton’s laws of motion. However, constructing a set of
equations describing the motion of individual particles becomes computationally prohibitive for all but the
most rarefied of flow conditions.

Treatment of the particles in kinetic theory is done instead through a statistical description, and the
evolution of this probability density function is correlated directly to the macroscopic properties of the fluid
medium. As particle position and velocity are independent of each other, a complete statistical description
can be given by a six-dimensional phase space distribution spanning three-dimensional physical space, xi, and
velocity space, vi, at a particular moment in time, t. The resulting probability density function, F(t, xi, vi),
describes the number of particles occupying an elemental volume in the six-dimensional physical-velocity
space at a particular moment in time.

The time evolution of F is governed by the Boltzmann equation,24–26 an integro-differential equation
having the form

∂F
∂t

+ vi
∂F
∂xi

+ ai
∂F
∂vi

=
δF
δt

, (1)

where ai is the acceleration due to external forces and is taken to be zero in the present work. The term
on the right-hand side of the equation, δF/δt, is the Boltzmann collision operator representing the time
rate of change of the distribution function produced by binary inter-particle collisions. This term involves a
multi-dimensional integral over both velocity space and solid angle.

Macroscopic properties of the gas can be obtained by taking appropriate velocity moments of F . This is
done by multiplying the distribution function by a velocity-dependent weight, M(vi), and integrating over
all velocity space as follows:

〈M(vi)F〉 =

∫ ∞
−∞

M(vi)F(t, xi, vi) d3v . (2)

If the gas particle mass, m, is chosen as the weight (i.e., M(vi) =m), the corresponding velocity moment
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yields the fluid density given by

ρ(t, xi) =

∫ ∞
−∞

mF(t, xi, vi) d3v = 〈mF〉 . (3)

Other moments of interest include the bulk velocity (M(vi)=mvi),

ui(t, xα) =
< mviF >

ρ
, (4)

and second-order anisotropic pressure tensor (M(vα)=mcicj),

Pij(t, xα) =< mcicjF > , (5)

where here ci = vi − ui is the random component of particle velocity. The deviatoric or fluid stress tensor,
τij , is related to the pressure tensor as τij = δijp − Pij , where p is the thermodynamic pressure. Using the
ideal gas equation of state, the pressure, p, is given by

p = ρRT , (6)

where T is the gas temperature and R is the gas constant. For a monatomic gas, τij is traceless (i.e., τkk=0)
such that Pkk = 3p and T is a measure of the energy of the random translational motion of the gaseous
particles. However, for non-equilibrium diatomic and polyatomic gases, this relationship does not generally
hold and τkk 6= 0 and Pkk 6= 3p. For the latter, Pkk = 3p − τkk and T will be taken to be the temperature of
the translational modes, which are not necessarily in equilibrium with the other internal energy modes of
the particle (i.e., rotational and vibrational modes).

Under conditions of thermodynamic equilibrium, the solution to the Boltzmann equation for a monatomic
gas is F =M whereM is the well-known Maxwell-Boltzmann or Maxwellian distribution function given by

F(t, xi, ci) =M(t, xi, ci) =
(ρ/m)

(2π)
3/2

(p/ρ)
3/2

exp

(
−1

2

ρ

p
c2
)
, (7)

which is fully defined in terms of the conserved macroscopic moments or collisional invariants ρ, ρui, and
p. The Maxwellian distribution function, M, fully defines the equilibrium behavior of the gas. It can be
shown that the collision operator, δF/δt, will force all non-equilibrium solutions of the distribution function
towards this equilibrium solution, and, once in this state, the collision operator will produce no further net
changes to the distribution function. This entropy property of the collision operator is well established by
Boltzmann’s H theorem.26

B. Moment Equations

Transport equations governing the time evolution of general sets of macroscopic quantities can be derived
by evaluating velocity moments of the Boltzmann equation given above, Eq. (1). This yields the so-called
Maxwell’s equation of change26 describing the transport of the moment 〈M(vα)F〉, which can be expressed
in weak conservation form as

∂

∂t
〈M(vα)F〉+

∂

∂xi
〈viM(vα)F〉 = ∆ (〈M(vα)F〉) , (8)

where here the acceleration is now taken to be zero, ∆(〈M(vα)F〉) = 〈M(vα)(δF/δt)〉 represents the effect
of collisions on the moment quantity, and M(vα) is the appropriate velocity dependent weight.

It is at this point that the problem of closure becomes apparent for moment method techniques. The
time evolution of a moment 〈M(vα)F〉 is clearly dependent on the spatial divergence of 〈viM(vα)F〉, a
moment of one order higher in terms of the velocity, vi. This pattern is repeated for each moment with the
time evolution of every moment being dependent on a moment of one higher order in vi. In general, the
application of the method of moments to a general non-equilibrium gas in this straightforward manner would
therefore require the solution of an infinite number of coupled moment equations, the solution of which is
equivalent to solving Eq. (1), which is obviously not practical.
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C. BGK Collision Operator

As mentioned previously, the evaluation of the Boltzmann collision operator involves a multi-dimensional
integral which, in many cases, can be challenging or even impossible to evaluate. Fortunately, for many engi-
neering applications, the detailed evaluation of the collision operator can be avoided by utilizing simplifying
approximations such as the relaxation-time or BGK model, as first proposed by Bhatnagar et al.27 In the
relaxation-time model, the collision operator is represented by a source term of the form

δF
δt

= −1

τ
(F −M) , (9)

whereM is the Maxwell-Boltzmann distribution, the equilibrium solution to the Boltzmann equation towards
which the non-equilibrium solution is relaxing, and τ is a characteristic relaxation time for the collision
processes. The relaxation time can be related to the Knudsen number, Kn, and a reference length scale, `,
using Kn=λ/` and vth =λ/τ where vth is the mean or thermal speed of the particles and λ is the mean free
path travelled by the particles between collisions. Thus,

τ =
λ

vth
=

Kn `

vth
, (10)

showing that the relaxation time scales directly with Knudsen number.
The BGK operator of Eq. (9) is phenomenological in nature and provides only an approximation to the

Boltzmann collision integral that ignores many of the details of inter-particle interactions. Nevertheless, it
retains a number of the key qualitative and quantitative features of the true collision integral. In particular,
the relaxation-time approximation preserves the usual collisional invariants and can be shown to satisfy
Boltzmann’s H theorem. Under equilibrium conditions (Kn→ 0 and τ → 0), it dictates that δF/δt = 0
and F =M as required. For collisionless flows (Kn→∞ and τ→∞), the time scales of interest are much
smaller than τ and δF/δt ≈ 0, also as expected. The parameter τ can also be chosen such that the correct
continuum viscosity of the gas is predicted. In this case,

τ =
µ

p
, (11)

where µ is the fluid viscosity.

D. Ellipsoidal Statisticasl Collision Operator

A well-known limitation of the BGK model, however, is that the collision operator always yields a Prandtl
number, Pr, of one or greater. This result is in contradiction with physical expectations for Prandtl numbers
for most gases, which tend to be less than unity.

Physically correct values of the Prandtl number are particularly important for accurate representation of
heat transfer, which is the focus here. Fortunately, there are several other approximate collision operators
available which can provide more realistic values of the Prandtl number. In the present work, an approximate
collision term first proposed by Holway28 will be used to describe collisional processes for monatomic gases.
This collision operator, often referred to the ellipsoidal statistical model, preserves much of the simplicity of
the BGK or relaxation-time model, while allowing for a realistic and selectable Prandtl number.

For a monatomic gas, the ellipsoidal statistical collision operator can be written as

δF
δt

= − 1

τES
(F − GES) , (12)

where

GES(t, xi, ci) =
(ρ/m)

(2π)
3/2

(det T)
1/2

exp

(
−1

2
T−1ij cicj

)
. (13)

It will be shown in the next sub-section that this distribution is a Gaussian distribution function that
possesses a modified pressure tensor. The second-order tensor, Tij , is defined to have the form

Tij = (1− ν)
p

ρ
δij + νΘij = (1− ν)

p

ρ
δij + ν

Pij
ρ
, (14)
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where Θij is a symmetric ‘temperature’ tensor given by Θij = Pij/ρ and Pij is again the generalized pressure
tensor. For monatomic gases, the ellipsoidal statistical collision model’s adherence to Boltzmann’s H theorem
was first demonstrated by Andries and Perthame.29 Andies et al.30 have also considered extensions of the
ellipsoidal statistical collision model to both diatomic and polyatomic gases and demonstrated that these
extensions also satisfy the H theorem.

If the parameters τES and ν associated with the ellipsoidal collision operator are chosen such that

τES = (1− ν)
µ

p
= (1− ν)τ , 1− ν =

1

Pr
, (15)

then the model will predict the correct values for fluid viscosity and thermal conductivity in the continuum
limit. It is important to note that the relaxation times for the relaxation-time BGK and ellipsoidal statistical
models, τ and τES, differ by just a factor of the Prandtl number (i.e., τES = τ/Pr). The moment equations
and analyses to follow will be written in terms of the relaxation time for the standard BGK model, τ , and
Prandtl number, Pr, for consistency with traditional forms of these equations and other previous analyses.

E. Maximum-Entropy Gaussian Closure for a Monatomic Gas

As discussed in the introduction, the lowest-order member of the maximum-entropy closure hierarchy of
Levermore, other than the local-equilibrium Maxwellian closure leading to the Euler equations of compressible
gas dynamics, is the 10-moment or Gaussian closure.5 For a monatomic gas, the closure is constructed by
considering the following set of velocity weights:

M(vα) = [m, mvi, mvivj ]
T
, (16)

corresponding to the macroscopic moments:

〈M(vα)F〉 = [ρ, ρui, ρuiuj + Pij ]
T
. (17)

Solution of the entropy-maximization problem for this set of moments is possible by analytical means and
results in the following closed-form expression for the assumed form of the distribution function, the Gaussian
distribution, G, given by

F(t, xi, ci) = G(t, xi, ci) =
(ρ/m)

(2π)
3/2

(det Θ)
1/2

exp

(
−1

2
Θ−1ij cicj

)
, (18)

where Θij =Pij/ρ is an anisotropic “temperature” tensor. The Gaussian distribution appears to have been
first derived in early work by Maxwell6 and then re-discovered in subsequent but independent research by
both Schlüter31,32 and Holway.28,33–35 It may be regarded as a generalization of the bi- and tri-Maxwellian
velocity distribution functions with a form that does not require the identification of the planes of principal
stress.31,32,36,37 This approximate non-equilibrium distribution possesses a Gaussian-like distribution in
each of the principal strain axes. Physically, it corresponds to a non-equilibrium condition with a different
temperature in each direction.

The moment equations arising from the Gaussian closure for a monatomic gas can be obtained by taking
F=G, using the ellipsoidal statistical approximation for the collision operator as proposed by Holway,28 and
substituting the velocity weights of Eq. (16) into Maxwell’s equation of change given by Eq. (8). This results
in a strictly hyperbolic set of macroscopic transport equations which, in addition to balance equations for
the gas density, ρ, and momentum, ρui, contain transport equations for the symmetric non-equilibrium total
flow energy tensor, ρuiuj + Pij . These hyperbolic moment equations can be summarized as follows:

∂

∂t
(ρ) +

∂

∂xi
(ρui) = 0 , (19)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj + Pij) = 0 , (20)

∂

∂t
(ρuiuj + Pij) +

∂

∂xk
(ρuiujuk + uiPjk + ujPik + ukPij) = −1

τ
(Pij − pδij) . (21)
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Brown et al.,38,39 have examined the eigenstructure and dispersive wave structure of the Gaussian closure,
demonstrated the strict hyperbolocity of the moment equations, and developed an approximate Riemann
solver for the closure for use in numerical solution methods based on a Roe linearization.40

It is noted that the closing fluxes in the Gaussian model involve third-order velocity moments. The
construction of this second-order maximum-entropy closure is such that all third-order velocity moments are
zero or

Qijk = 〈mcicjckG〉 = 0 , qi =
1

2
〈mcicjcjG〉 = 0 , (22)

where Qijk is the third-order generalized heat flux tensor and qi is the usual fluid-dynamic heat flux vector.
These results point to the main limitation of the Gaussian closure: its inability to account for the effects of
thermal diffusion. The primary objective of the regularization procedure considered herein is to remedy this
situation.

F. Maximum-Entropy Gaussian Closure for a Diatomic Gas

The preceding description is valid for a monatomic gas having no internal degrees of freedom or energy modes.
An extension to the standard Gaussian closure for monatomic gases, that allows for the treatment of diatomic
gases, was proposed previously by Hittinger13 and has been studied by McDonald and Groth.10,20,41–44 A
similar extension that allows for the treatment of polyatomic gases has also been proposed by Le Tallec.45

The diatomic extension of Hittinger is further modified here to allow for realistic values for the Prandtl
number by making use of the ellipsoidal statistical collision operator introduced above. The proposed three-
scale, relaxation-time, approximation for the collision operator is similar in many respects to the diatomic
and polyatomic extensions of the ellipsoidal statistical model proposed by Andries et al.30 and is described
below.

The Gaussian closure for a diatomic gas is formulated by considering a generalization of the Boltzmann
kinetic equation based on a classical treatment of the rotational degrees of freedom in which the molecules of
the gas are treated as rigid bodies rotating about a translating center of mass whose net or total contributions
to the average angular momentum of the gas by the internal modes is taken to be zero (i.e., the angular
momentum of the rotational modes is a collisional invariant with a value of zero). It is also assumed that
external forces and/or torques do not affect directly the internal rotational modes and that the microscopic
molecular state of the particles is independent of their rotational orientation. The proposed treatment
is then very similar to the fully classical treatments proposed by Bryan,46,47 Pidduck,48 Curtiss,49 and
Taxman50 and is quite analogous to the semi-classical treatments proposed independently by Wang Chang
and Uhlenbeck and de Boer.47,51 The basic form of the kinetic equation as given in Eq. (1) is assumed to
remain essentially unchanged for the diatomic case, except that the general non-equilibrium solution, F , now
depends on an enhanced set of independent variables, (t, xi, ci, ωα), which additionally includes the angular
velocity vector of the molecule, ωα, and the collision integral or operator must be appropriately modified.
In the case of the Gaussian closure, the maximum-entropy velocity probability-density function is taken to
have the form

GD(t, xi, ci, ωα) =
(ρ/m) (I/m)

(2π)
5/2

(det Θ)
1/2

(p/ρ) (Tr/T )
exp

[
−1

2

(
Θ−1ij cicj +R−1αβωαωβ

)]
, (23)

where I is the moment of inertia of a diatomic molecule, p is again the usual thermodynamic pressure, T is
now the temperature associated with the translational energy, Tr is the rotational temperature, and

Rαβ =

(
mp

Iρ

)(
Tr
T

)
δαβ =

(mer
I

)
δαβ . (24)

The specific rotational energy of the gas, er, is then given by er = (p/ρ)(Tr/T ). In the case of diatomic
molecule, ωα has just two non-vanishing components.

As for a monatomic gas, macroscopic properties of a general non-equilibrium distribution function,
F(t, xi, ci, ωα), representing a diatomic gas can be obtained by taking appropriate moments. In this case, the
weight, M(vi, ωα), is most generally a function of both the translational velocity, vi and rotational velocity,
ωα, and moments can be defined as

〈M(vi, ωα)F〉 =

∫ ∞
−∞

M(vi, ωα)F(t, xi, vi, ωα) d3v d2ω , (25)
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and require an integration over five dimensional space. In particular, for F = GD as given by Eq. (23) above
and for M(vi, ωα)=m, Iωαωβ , and Iω2/2, one can obtain∫ ∞

−∞
mGD(t, xi, vi, ωα) d3v d2ω = 〈mGD〉 = ρ(t, xi) , (26)∫ ∞

−∞
IωαωβGD(t, xi, vi, ωδ) d3v d2ω = 〈IωαωβGD〉 = p

(
Tr
T

)
δαβ = ρ(t, xi)er(t, xi)δαβ , (27)∫ ∞

−∞

I

2
ω2GD(t, xi, vi, ωα) d3v d2ω =

〈
I

2
ω2GD

〉
= ρ(t, xi) = p

(
Tr
T

)
= ρ(t, xi)er(t, xi) , (28)

respectively.
For the purposes of deriving the moment equations of the diatomic Gaussian closure, a modified relaxation-

time approximation for the collision operator is used herein similar to those proposed by Hittinger13 and
Andries et al.30 The proposed collision model representing inter-particle collisions allows for three distinct
time scales to be incorporated into the approximate collision operator: (i) the time scale for the relaxation
of the energy of the translational motion of the particles to its equilibrium value; (ii) the time scale for
the relaxation of translational energy; and (iii) a third time scale associated with relaxation processes for
heat transfer, with the latter providing physically realistic values of the Prandtl number. This three-scale
relaxation-time model takes the form

δF
δt

= − 1

τt
(F − GID)− 1

τr
(GID − GESD) , (29)

where it is assumed that the general non-equilibrium distribution relaxes first toward an intermediate ellip-
soidal Gaussian distribution, GID, for which the translational degrees of freedom are not at all in equilibrium
with the rotational degrees of freedom, and then subsequently toward the modified ellipsoidal distribution
function for the case of a diatomic gas, GESD, for which the translational modes are now in partial equilibrium
with the rotational modes.

The proposed three-scale collision model allows for the diatomic gas to have different relaxation times
for the translational and rotational modes where, in Eq. (29), τt and τr are relaxation times associated with
the translational and rotational degrees of freedom, respectively. As for the ellipsoidal statistical collision
operator for a monatomic gas, simple approximate expressions can again used to relate the relaxation times
here to the appropriate gas viscosities and Prandtl number, Pr, as follows:

τt = (1− ν)
µ

p
= (1− ν)τ , τr = (1− ν)

15µv

4p
= (1− ν)τv , 1− ν =

1

Pr
, (30)

where µ is the fluid viscosity, µv is the bulk or volume viscosity, and τv = 15µv/4p. Standard empirical
relations can then be used to evaluate the viscosities. Generally, τr and hence τv are larger than, but of
the same order of magnitude as, τt and τ . The three-scale, relaxation-time, collision model also satisfies the
Boltzmann H theorem as is shown below.

Using the kinetic equation of Eq. (1) and the three-scale relaxation-time approximation defined above,
the moment equations of the maximum-entropy Gaussian closure for a diatomic gas can thus be obtained
by substituting appropriate weights into Maxwell’s equation of change yielding

∂

∂t
(ρ) +

∂

∂xi
(ρui) = 0 , (31)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj + Pij) = 0 , (32)

∂

∂t
(ρuiuj + Pij) +

∂

∂xk
(ρuiujuk + uiPjk + ujPik + ukPij) (33)

= −1

τ

(
Pij −

Pkk
3
δij

)
− 2

15τv
(Pkk − 3ρer) δij ,

∂

∂t
(ρer) +

∂

∂xi
(ρuier) = − 1

5τv
(3ρer − Pkk) , (34)

As with the monatomic closure, the moment equations of the diatomic closure are also strictly hyperbolic
and do not incorporate a description of heat transfer and predicts zero heat flux.
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G. Regularized Gaussian Closure

The regularized Gaussian closures were first introduced by McDonald and Groth11,12 as an alternative to
including heat transfer effects into the standard Gaussian closure. A more rigorous presentation of the
material with full derivations is found in a subsequent publication by the authors,44 complete with their
application for two-dimensional flows. The regularization procedure for both monatomic and diatomic gases
described here is based on that description and is included here for the purposes of completeness.

As stated earlier, one of the major shortfalls of these two Gaussian closures is their inability to account for
thermal diffusion and heat transfer. This is due to the second-order nature of the closures and their assumed
forms of the distribution function. Nevertheless, by allowing small deviations from Gaussian distributions,
the effects of non-equilibrium heat transfer can be re-introduced into the closures. This can be done by
applying Chapman-Enskog-like perturbative expansion techniques to either the moment equations directly
or to the original underlying kinetic equations with model collision operators. In either case, the original
Gaussian closure solution is used as the base solution for the expansion techniques. Both of these techniques
are detailed here for the monatomic and diatomic gas cases. They are shown to give rise to a non-equilibrium
treatment for heat transfer that is directly dependent on the anisotropic pressure or temperature tensor and
the elliptic nature of the added terms leads to smooth regularized solutions. Additionally, unlike other
regularized closure techniques, the underlying first-order moment systems are strictly hyperbolic for all
realizable moments.

1. Monatomic Gas Regularized Gaussian Closure: Moment Equations

The monatomic Gaussian moment equations given by Eqs. (19)–(21) above provide a description of ρ, ui, and
Pij assuming that Qijk = 0. However, for more general non-equilibrium solutions with F 6=G and Qijk 6= 0,
the total and random velocity moments, ρuiuj +Pij=〈mvivjF〉 and Pij=〈mcicjF〉, can be shown to satisfy
the transport equations26

∂

∂t
(ρuiuj + Pij) +

∂

∂xk
(ρuiujuk + uiPjk + ujPik + ukPij +Qijk) = −1

τ
(Pij − pδij) . (35)

and
∂Pij
∂t

+
∂

∂xk
(ukPij) + Pjk

∂ui
∂xk

+ Pik
∂uj
∂xk

+
∂Qijk
∂xk

= −1

τ
(Pij − pδij) , (36)

respectively, where here the ellipsoidal statistical collision operator of Eq. (12) has been used in the evaluation
of the collision terms. Equation (35) is the so-called weak conservation form of the generalized energy
equation and Eq. (36) is the so-called non-conservation or primitive form. The influence of the generalized
heat flux (a third-order moment) on the time evolution of Pij (a second-order moment) is readily apparent
and setting this third-order tensor to be identically zero results in a transport equation for Pij that is identical
to that of the Gaussian model.

The general primitive form of the moment equation describing the transport of the generalized heat flux
tensor, Qijk=〈mcicjckF〉, can be similarly derived and written as26

∂Qijk
∂t

+
∂

∂xl
(ulQijk) +Qjkl

∂ui
∂xl

+Qikl
∂uj
∂xl

+Qijl
∂uk
∂xl

+ Pkl
∂

∂xl

(
Pij
ρ

)
+ Pjl

∂

∂xl

(
Pik
ρ

)
+ Pil

∂

∂xl

(
Pjk
ρ

)
+
∂Kijkl
∂xl

= − 1

(1− ν)τ
Qijk = −Pr

τ
Qijk , (37)

where again the collision term of Holway28 has been used. In the transport equation above, the fourth-order
tensor,Kijkl, defined by

Kijkl = 〈mcicjckclF〉 − 〈mcicjckclG〉 = 〈mcicjckclF〉 −
1

ρ
[PijPkl + PikPjl + PilPjk] , (38)

has been introduced. This term represents the deviation of the general non-equilibrium fourth random-
velocity moment from that predicted by the Gaussian closure.

The preceding transport equation for the generalized heat flux tensor, Qijk, of Eq. (37) and the expression
of Eq. (38) for the fourth-order deviatoric tensor, Kijkl, can be used in combination with a Chapman-Enskog-
like perturbative expansion technique to arrive at a perturbed solution to the Gaussian for correcting the
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transport equations of Eqs. (35) and Eq. (36) and that provides a non-zero first-order deviation for the heat
flux tensor in terms of the lower-order moments. As with the perturbative expansion technique applied to the
kinetic equation, the working assumption for the development of the perturbed solution is that (1−ν)�1 or
Pr�1. In this approach, the solutions for the generalized heat flux tensor, Qijk, and fourth-order deviatoric
tensor, Kijkl, satisfying Eqs. (37) and (38) are represented by the perturbative expansions

Qijk = Q
(0)
ijk +Q

(1)
ijk +Q

(2)
ijk +Q

(3)
ijk + · · · = Q

(1)
ijk +Q

(2)
ijk +Q

(3)
ijk + · · · , (39)

and
Kijkl = K

(0)
ijkl +K

(1)
ijkl +K

(2)
ijkl +K

(3)
ijkl + · · · = K

(1)
ijkl +K

(2)
ijkl +K

(3)
ijkl + · · · . (40)

where again the superscript (n) denotes the n-th order correction and by definition of the solution construc-
tion it is known that

Q
(0)
ijk = 0 , K

(0)
ijk = 0 . (41)

As with the perturbative expansion technique applied to the kinetic equation, a formal smallness param-
eter, ε, is again introduced to scale the solution and moment equations with the assumption that ε�1. The
scaled solutions Qijk and Kijkl are then taken to have the form

Qijk = εQ
(1)
ijk + ε2Q

(2)
ijk + ε3Q

(3)
ijk + · · · , (42)

and
Kijkl = εK

(1)
ijkl + ε2K

(2)
ijkl + ε3K

(3)
ijkl + · · · . (43)

and satisfy the scaled third-order moment equation

∂Qijk
∂t

+
∂

∂xl
(ulQijk) +Qjkl

∂ui
∂xl

+Qikl
∂uj
∂xl

+Qijl
∂uk
∂xl

+ Pkl
∂

∂xl

(
Pij
ρ

)
+ Pjl

∂

∂xl

(
Pik
ρ

)
+ Pil

∂

∂xl

(
Pjk
ρ

)
+
∂Kijkl
∂xl

= − 1

(1− ν)ετ
Qijk , (44)

The small parameter, ε, has been introduced here in accordance with the assumption that deviations of
the moment quantities from those predicted by the Gaussian closure (i.e., Qijk = 0 and Kijkl = 0) will be
attenuated rapidly by collisional processes.

Substituting the expansion of Eqs. (42) and (43) into the scaled moment equation for Qijk of Eq. (44)
and collecting terms of equal order in ε, it is easy to see that, to zeroth-order in ε, the moment equation is
automatically satisfied as should be expected. To first-order in ε, it can be seen that the first-order correction

for the heat flux tensor, Q
(1)
ijk, must satisfy

Q
(1)
ijk = −(1− ν)τ

[
Pkl

∂

∂xl

(
Pij
ρ

)
+ Pjl

∂

∂xl

(
Pik
ρ

)
+ Pil

∂

∂xl

(
Pjk
ρ

)]
= − τ

Pr

[
Pkl

∂

∂xl

(
Pij
ρ

)
+ Pjl

∂

∂xl

(
Pik
ρ

)
+ Pil

∂

∂xl

(
Pjk
ρ

)]
. (45)

Assuming that Qijk ≈Q(1)
ijk where Q

(1)
ijk is given by Eq. (45) and introducing this first-order perturbed

solution for the generalized heat flux tensor into the moment equations for the gas density, ρ, momentum,
ρui, and non-equilibrium energy tensor, ρuiuj + Pij , gives rise to the moment equations for the regularized
Gaussian closure that can be summarized as

∂

∂t
(ρ) +

∂

∂xi
(ρui) = 0 , (46)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj + Pij) = 0 , (47)

∂

∂t
(ρuiuj + Pij) +

∂

∂xk
(ρuiujuk + uiPjk + ujPik + ukPij)

=
∂

∂xk

{
τ

Pr

[
Pkl

∂

∂xl

(
Pij
ρ

)
+ Pjl

∂

∂xl

(
Pik
ρ

)
+ Pil

∂

∂xl

(
Pjk
ρ

)]}
−1

τ
(Pij − pδij) , (48)
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where it is evident that the correction for Qijk brings an elliptic nature to the moment equations and
introduces a dissipation term that regularizes the solutions.

2. Diatomic Gas Regularized Gaussian Closure: Moment Equations

In the diatomic case however, Qijk does not represent the full effect of heat transfer. It can also be shown
that the moment equation describing non-equilibrium transport of the moment ρer =

〈
Iω2F

〉
has the general

form
∂

∂t
(ρer) +

∂

∂xi
(ρuier + hi) = − 1

5τv
(3ρer − Pkk) , (49)

where hi is the heat flux vector associated with the rotational as defined by

hi =
〈
Iciω

2F
〉
, (50)

and represents the transport of rotational energy of the particles by their random translational motion. A
general weak-conservation form of the moment equation describing the transport of the moment, uier +hi=〈
Iviω

2F
〉
, may also be derived and written as

∂

∂t
(ρuier + hi) +

∂

∂xj
(ρuiujer + uihj + ujhi + Pijer + rij)

= − 1

(1− ν)τ
hi −

1

5τv
ui (3ρer − Pkk) , (51)

where the deviatoric second-order tensor, rij , can be defined and expressed as

rij =
〈
Icicjω

2F
〉
−
〈
Icicjω

2GD
〉

=
〈
Icicjω

2F
〉
− Pijer , (52)

and this tensor represents the flux of hi produced by the random translation motion of the particles. A
non-conservation form of the moment equation equation describing the non-equilibrium transport of hi can
also be found and written as

∂hi
∂t

+
∂

∂xj
(ujhi) + hj

∂ui
∂xj

+ Pij
∂er
∂xj

+
∂rij
∂xj

= − 1

(1− ν)τ
hi = −Pr

τ
hi . (53)

The Gaussian solution for the diatomic gas as represented by F =GD does not allow for heat transfer and
predicts that both Qijk and hi are zero. This will clearly not be the case for more general non-equilibrium
transport with F 6=GD.

A Chapman-Enskog-like perturbative expansion technique can again be applied to derive a perturbed
solution correction for the Gaussian closure that provides non-zero first-order deviations for the heat flux
tensor, Qijk, and heat flux vector, hi, in terms of the appropriate lower-order moments. Once again, the
working assumption for the development of the perturbed corrections is that (1− ν)�1 or Pr�1. In this
approach, the quantities Qijk, Kijkl, hi, and rij are all represented by the scaled perturbative expansions,
with Qijk and Kijkl defined as they were in the monatomic case and

hi = εh
(1)
i + ε2h

(2)
i + ε3h

(3)
i + · · · , (54)

rij = εr
(1)
ij + ε2r

(2)
ij + ε3r

(3)
ij + · · · , (55)

where, similarly, by definition

h
(0)
i = 0 , r

(0)
ij = 0 , (56)

and where the smallness parameter, ε, is a measure of the closeness of 1− ν to zero. The scaled expansions
for Qijk, Kijkl, hi, and rij must satisfy the scaled moment equations for Qijk, which takes the same form
as the monatomic description given in Eq. (45), and an additional moment equation for hi given by

∂hi
∂t

+
∂

∂xj
(ujhi) + hj

∂ui
∂xj

+ Pij
∂er
∂xj

+
∂rij
∂xj

= − 1

(1− ν)ετ
hi . (57)
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Obviously, to zeroth-order in ε, the scaled moment equations for Qijk and hi are are automatically satisfied

by the expansions for Qijk, Kijkl, hi, and rij . However, to first-order in ε, Q
(1)
ijk and h

(1)
i are required to

have the forms

Q
(1)
ijk = − τ

Pr

[
Pkl

∂

∂xl

(
Pij
ρ

)
+ Pjl

∂

∂xl

(
Pik
ρ

)
+ Pil

∂

∂xl

(
Pjk
ρ

)]
, (58)

and

h
(1)
i = − τ

Pr
Pij

∂er
∂xj

. (59)

The first-order perturbed solution for generalized heat flux tensor, Qijk, associated with the flux of the
translational energy by the translational motion, given by Eq. (58) is identical to the result obtained above
for the monatomic gas. The additional first-order solution for hi of Eq. (59) prescribes the heat flux of the
particle rotational energy quite naturally in terms of its gradient.

A regularized closure is then obtained by assuming that Qijk ≈Q(1)
ijk and hi≈ h(1)i where Q

(1)
ijk and h

(1)
i

are given by Eqs. (58) and (59) above. With the addition of these corrections for heat transfer arising from
the first-order perturbed solution, the moment equations of the proposed regularized Gaussian closure for a
diatomic gas can be summarized as follows:

∂

∂t
(ρ) +

∂

∂xi
(ρui) = 0 , (60)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj + Pij) = 0 , (61)

∂

∂t
(ρuiuj + Pij) +

∂

∂xk
(ρuiujuk + uiPjk + ujPik + ukPij)

=
∂

∂xk

{
τ

Pr

[
Pkl

∂

∂xl

(
Pij
ρ

)
+ Pjl

∂

∂xl

(
Pik
ρ

)
+ Pil

∂

∂xl

(
Pjk
ρ

)]}
−1

τ

(
Pij −

Pkk
3
δij

)
− 2

15τv
(Pkk − 3ρer) δij , (62)

∂

∂t
(ρer) +

∂

∂xi
(ρuier) =

∂

∂xi

(
τ

Pr
Pij

∂er
∂xj

)
− 1

5τv
(3ρer − Pkk) . (63)

These equations provide an extended fluid-dynamic description for non-equilibrium transport of diatomic
gases.

H. Velocity and Temperature Slip Boundary Conditions

1. Solid-Wall Boundary Conditions

A simple solid-wall boundary condition is employed for all of the micro-scale flow problems considered in
this study. While low-order velocity moment conditions such as mass and momentum conservation are
obvious for this case, boundary conditions are needed for the second-order velocity moments related to the
anisotropic pressure tensor governing shear stress at the wall. Macroscopic properties as described in Section
B have been found from the Boltzmann equation by integrating the distribution through velocity space, and
a similar method can be used here to find boundary conditions at the wall, except that the distribution
function used is affected by the reflection and accommodation of particles coming from the wall.

By assuming the existence of a Knudsen layer at the wall next to the solid surface, the particles at the
surface can be described as a combination of the distribution functions of incoming and reflected particles.
A fully diffuse reflection is assumed for the reflected particles. The moments of the resulting combination of
distribution functions then provides the solid-wall boundary conditions needed for the Gaussian closure. A
similar approach for solid wall boundary conditions was used by McDonald and Groth in earlier studies of
the Gaussian closure applied to two-dimensional micro-scale flows.10–12,20,44

A thin layer of particles at the surface of a solid wall will be affected by particles approaching the wall
and by particles entering it from a reflection against the wall. In the computational scheme used here,
wall boundaries are rotated into a common frame of reference for calculations, then rotated back into their
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original configuration. This frame of reference positions the wall on the xz-plane with flow approaching the
wall normally in the −x direction. The following work on the Knudsen layer distribution function will adopt
this frame as an example. The distribution function of the Knudsen layer FKn becomes a summation of the
distribution functions of the incoming particles F− and the reflected particles F+. Particles interacting with
the wall will be reflected as a combination of their incoming Gaussian distribution function and a Maxwellian
function as a result of accommodating effects at the wall. Defining an accommodation coefficient α, the
distribution function of the Knudsen layer can be defined as

FKn = F+ + F− , (64)

where F+ and F− are defined as

F− =

{
Ge(vx, vy, vz) for vy < 0 ,

0 for vy > 0 ,
(65)

F+ =

{
αMw(vx, vy, vz) + (1− α)Ge(vx,−vy, vz) for vy > 0 ,

0 for vy < 0 ,
(66)

where Mw is the Maxwellian distribution describing particles accommodated by the wall, and G is the
non-equilibrium distribution of the incoming particles. By taking the velocity moments of this combined
distribution, the macroscopic properties of the Knudsen layer can be found and used for the solid-wall
boundary conditions.

The number of boundary conditions needed at the wall can be determined by how the eigenvalues behave.
The normal component, ux, of the bulk velocity at the wall can be assumed to be zero as the wall does not emit
or accumulate particles and constitutes one set of boundary conditions. By setting ux = 0 and substituting
into the computed eigenvalues of the system, a total of three waves enter the fluid regime (λ > 0) and are
associated with the acoustic and shear waves described by the right eigenvectors. This result suggests that
additional boundary conditions for the shear pressures at the wall are required. Instituting these boundary
conditions also guarantees that if there is no accommodation at the wall (α = 0), the Gaussian closure will
correctly recover the zero wall shear stress predicted by the Euler equations. The integration of the velocity
moments for the shear stress in the Knudsen layer using the combined distribution function (64) along with
the normal bulk velocity conditions yields a set of boundary conditions which can be summarized as

ūy =
1

m
(
n+ α

2 (nw − n)
) (ρ(2− α)

(
uy
2
−

√
Pxy

2πρPxx

)
+
ρwαuyw

2

)
(67a)

ūz =
1

m
(
n+ α

2 (nw − n)
) (ρ(2− α)

(
uz
2
−

√
Pxz

2πρPxx

)
+
ρwαuzw

2

)
(67b)

ux Kn
= 0 , Pxy Kn

= α

[
Pxy
2

+

√
ρPxx
2π

(uy − ūy) +

√
ρwnwkTw

2π
(uyw − ūy)

]
(67c)

Pxz Kn = α

[
Pxz
2

+

√
ρPxx
2π

(uz − ūz) +

√
ρwnwkTw

2π
(uzw − ūz)

]
. (67d)

where ux Kn , Pxy Kn and Pxz Kn represent the values of the velocity components and shear stress in the Knudsen
layer and where all other macroscopic quantities are those of the incoming Gaussian distribution with the
exception of nw, uyw , uzw and Tw, which define the Maxwellian,Mw, for accommodated particles. It can be
seen that Eqs. (67c) and (67d) allow for “velocity slip” and finite shear at the wall and recover the correct
“no-shear”, “full-velocity-slip” limit for specular reflection (α=0).

2. Additional Boundary Conditions for Heat Flux

Temperature slip at wall boundaries is one of the most significant physical characteristics present in high
Knudsen number flows. Boundary conditions used up till this point involves rotating the Knudsen layer
boundary state and the first interior cell into the x−direction and performing a series of half-Maxwellian
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integrations to find the appropriate velocity moments. However, temperature slip cannot be modeled with
these boundary conditions alone even with the regularization procedure described in the previous section, as
the heat flux becomes dependent only on the pressure gradients through the wall, creating a corresponding
smooth transition in temperature at the wall.

A method of introducing temperature slip into the boundary conditions has been proposed by Smolu-
chowski52 and implemented for the two-dimensional Gaussian closure by McDonald and Groth.11,20 The
Knudsen layer temperature T is adjusted such that

T = Tw + ∆Ts = Tw + fsλ
∂T

∂ni
, (68)

where T is the temperature of the fluid at the boundary or edge of the Knudsen layer, Tw is the temperature
of the wall introduced earlier, ∆Ts is the temperature slip across the Knudsen layer, ni is the unit vector
normal to the wall, and fs is the slip distance factor given by the expression

fs =
10π

16Pr

(
2− α
α

)
γ

γ + 1
, (69)

and where α is a again thermal accommodation coefficient. This adjusted temperature is then inserted into
the boundary conditions to calculate the corresponding pressure tensor and rotational energy in the Knudsen
layer, which in turn is used to calculated the pressure gradients used in (45) and (58).

III. Finite Volume Scheme with NKS Scheme

In this study, a parallel, implicit, AMR, finite-volume scheme is proposed and developed for the solution
of the moment equations of the regularized Gaussian moment closure as described above for both monatomic
and diatomic gases. For the three-dimensional flows of interest here, the finite-volume discretization is applied
to multi-block body-fitted meshes with hexahedral volume elements. The multi-block mesh and spatial
discretization procedure readily allow for the application of solution-directed block-based AMR as developed
previously by Gao et al.21–23,53–55 for three space dimensions. In this block-based AMR scheme, a flexible
block-based hierarchical octree data structure is used to facilitate automatic, solution-directed, and local
adaptation of the mesh according to physics-based refinement criteria. The local refinement and coarsening
of the mesh is carried out by division and merging of solution blocks, respectively. In the proposed finite-
volume procedure, the hyperbolic fluxes at cell boundaries will be evaluated using a Riemann-solver based flux
function by Roe, though an HLLE solver is also implemented. A Newton-Krylov-Schwarz (NKS) algorithm
implemented for two and three-dimensional Navier-Stokes equations by Charest, Groth and Gülder56 and
Northrup and Groth57 is employed for steady-state solutions and unsteady solutions as well using a dual-
time stepping method. The elliptic heat transfer terms are incorporated using the technique implemented
by Gao22 with a centrally-weighted method for cell face gradients described by Mathur and Murphy.58 The
multi-block, body-fitted, AMR and Newton schemes are well suited to the parallel implementation of the
parallel implicit finite-volume AMR scheme on distributed-memory multi-processor architectures via domain
decomposition. Because of the self-similar nature of the grid blocks, domain decomposition is a achieved
by simply distributing the blocks making up the computational mesh equally among available processors
and/or processor cores, with more than one block permitted per core.

The NKS solution algorithm for the set of non-linear algebraic equations that result from the spatial
and temporal discretization procedures uses Newton’s method with a Krylov subspace approach for the
solution of the linear system at each Newton step. An additive Schwarz preconditioner is used in the parallel
implementation of the Krylov subspace method, and is fully compatible with the block-based AMR and
domain decomposition procedure that is described above and used in the parallel implementation of the
solution method.

The semi-discrete form of the governing equations used in the finite volume method form a coupled set
of non-linear ordinary differential equations. However, steady-state solutions (the primary focus here), can
be computed directly by solving the nonlinear algebraic equations such that the residual vector R(U) = 0
using Newton’s method. Given an estimate to the solution to R(U) = 0 at iteration level n, the following
system of linear equations can be solved in Newton’s method to obtain an improved estimate for the solution
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(a) (b) (c) (d)

Figure 1. Manufactured solution grids generated from consecutive uniform mesh refinements.

Figure 2. L1 and L2 error norms for the manufactured solution problem with increasing mesh densities.

at the n+ 1 iteration level, U(n+1), satisfying ∆U(n+1) = U(n+1) −U(n):(
∂R

∂U

)n+1

∆Un+1 = J∆Un+1 ≈ −R
(
Un+1

)
(70)

Given an initial estimate for the steady-state solution, U0, successively improved estimates for the solution
Un+1 are obtained by solving Equation (70) at each step, n, of the Newton method, where J = ∂R/∂U
is the residual Jacobian. The iterative procedure is repeated until an appropriate norm of the solution
residual is sufficiently small, i.e., ||R(U(n+1))||2 < ε||R(U(n))||2 where ε is some small parameter (typically,
ε ≈ 10−7–10−11).

Each step of Newton’s method requires the solution of a system of linear equations of the form Jx = b.
This system is large, sparse, and non-symmetric and a preconditioned GMRES method59,60 is used for its
solution. In particular, a restarted version of the GMRES algorithm, GMRES(m), is used, where m is the
number of steps after which the GMRES algorithm is restarted. Application of this iterative technique leads
to an overall solution algorithm with iterations within iterations: the “inner loop” iterations involving the
solution of the linear system and the “outer loop” iterations associated with the solution of the nonlinear
problem. An inexact Newton method is adopted here in which the inner iterations are not fully converged
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(a) (b)

Figure 3. (a) A cutaway view of the two mesh blocks used for temperature profile calculations between two
heated plates in the x−direction. (b) Temperature distribution between two isothermal walls over the non-
dimensionalized wall separation distance Lx for a range of Knudsen numbers, with Lx = 0 designating the
centerline between the plates.

at each Newton step. The inner iterations are carried out only until ||R + J∆U||2 ≤ ζ||R||2, where ζ is
typically in the range 0.01–0.5.

Preconditioning is required for the linear solver to be effective. Right preconditioning of the form
(JM−1)(Mx) = b is used here where M is the preconditioning matrix. An additive Schwarz global precon-
ditioner with variable overlap60,61 is used in conjunction with local preconditioners based on a block ILU(f)
or BILU(f) factorization of an approximate Jacobian for each subdomain. Here, f is the level of fill. This
combination of preconditioning fits well with the block-based AMR described by Northrup and Groth62 and
is compatible with domain decomposition methods, readily enabling parallel implementation of the overall
Newton method. Rather efficient parallel implementations of implicit algorithms via Schwarz precondition-
ing have been developed by Keyes and co-researchers and successfully applied to the prediction of transonic
full potential, low-Mach-number compressible combusting, and three-dimensional inviscid flows.61,63,64

As the GMRES algorithm does not explicitly require the evaluation of the global Jacobian matrix, J, a so-
called “matrix-free” or “Jacobian-free” approach can be adopted and is used here. Numerical differentiation
based on Fréchet derivatives is used to approximate the matrix-vector product JM−1x as follows:

JM−1x ≈ R(U + εM−1x)−R(U)

ε
, (71)

where R(U + εM−1x) is the residual vector evaluated at some perturbed solution state and ε is a small
scalar quantity. Although the performance of the Jacobian-free method is sensitive to the choice of ε, Neilsen

et al.65 have found that ε = ε◦/||x||1/22 seems to work well, with ε◦≈10−8–10−7.

IV. Numerical Results and Validation

The regularized Gaussian closure with an extended treatment for heat transfer has been applied to a
number of three-dimensional problems outlined below. An analysis of the spatial accuracy of the scheme
and the effectiveness of the NKS and AMR algorithms as applied to the the three dimensional regularized
Gaussian closure is also demonstrated.

A. Manufactured Solution

The finite-volume scheme employed for these flow problems is similar to those used in previous studies of
the two-dimensional Gaussian closure by McDonald and Groth.10–12 A spatial accuracy assessment for the
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(a) (b)

Figure 4. (a) Change in normalized temperature at the heated wall with increasing Knudsen number, (b)
Heat flux between the plates normalized to the free-molecular solution.

same finite-volume scheme with the Euler equations has been performed by Sachdev and Groth,66,67 and
more recently for the two-dimensional Gaussian closure with embedded boundaries by Mcdonald et al.44 As
the second-order spatial accuracy of the scheme has been demonstrated for the moment equations of interest
here, the task that remains is to demonstrate that the spatial accuracy is maintained for three-dimensional
flows. As practical situations with exact analytical solutions for the three-dimensional Gaussian closure are
not known at the present time, the accuracy of the proposed scheme is instead verified with the method of
manufactured solutions.68 This accuracy assessment mirrors closely the analysis carried out previously by
Mcdonald et al.44

The method of manufactured solutions constructs a chosen analytical solution over the domain of interest
and drives the PDEs of interest towards this solution through the addition of source terms. This chosen
analytical solution for the Gaussian closure, Û, can be used to determine its associated solution residual
vector, R̂, based on a re-expression of Eqs. (60)–(63) in weak conservation form such that

R̂ =
∂Û

∂t
+
∂F(Û)

∂x
+
∂G(Û)

∂y
+
∂H(Û)

∂z
− S(Û) (72)

where F, G, and H are the flux vectors of the analytical solution in the x−, y−, and z− directions respec-
tively, and S is the associated source term. This residual vector is then added as a source term onto the
original set of equations in the form

∂U

∂t
+
∂F(U)

∂x
+
∂G(U)

∂y
+
∂H(U)

∂z
= S(U) + R̂ (73)

such that the computed solution vector, U, is driven towards the prescribed solution, Û, at the convergence
limit. Spatial accuracy can then be evaluated by comparing this computed solution vector to the prescribed
analytical solution.

Time-invariant solutions are found using the three-dimensional Gaussian closure for a monatomic gas
between two concentric cylinders. The interior and exterior cylinder radii are 0.5 m and 1.0 m respectively,
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Figure 5. Drag coefficient over a cylinder vs. Knudsen number for a speed ratio S = 0.107.

with a cylinder height of 1.0 m. The prescribed solution for this analysis is given by

ρ = 2 + sin(x+ y),

ux = cos(x+ y),

uy = sin(x− y),

uz = 0,

Pxx = 3− sin(x+ y), (74)

Pxy = sin(y − x),

Pxz = 0,

Pyy = 3 + cos(x+ y),

Pyz = 0,

Pzz = 3 + cos(−x− y),

where the x− and y− axes lie within the plane of the circular base and the z−axis extends along the length
of the cylinder as seen in Figure 1. Three consecutive uniform mesh refinements can also be seen in Figure
1 resulting in grids with 8,192, 65,536, 524,288 and 4,194,304 computational cells. Boundary conditions
are fixed according to the prescribed analytical solution with reference to its position in three-dimensional
space. The NKS algorithm developed for the solution of the three-dimensional Gaussian closure is used
herein to find the time-invariant solution. The forcing nature of the manufactured residual source term
towards the analytical solution and the simplified boundary conditions and flow conditions allows the NKS
solution algorithm to reach ideal convergence rates, with L2-norm residual reductions of up to 12 orders of
magnitude.

The error norms between the computed solution and the analytical solution with increasing mesh reso-
lution can be seen in Figure 2. The L1 and L2 norms are calculated using the difference between computed
and analytical solution at each cell center and weighted according to the volume of the cell. The three-
dimensional nature of the problem prompts a comparison to the nominal mesh density given by the cube
root of total number of cells, n1/3. A reference line with a slope of -2 is included for comparison, and clearly
illustrates the second-order spatial accuracy of the scheme.
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(a) (b) (c)

Figure 6. Mach number profile of flow over a cylinder at Kn=0.1 as calculated by (a) Navier-Stokes, (b)
standard Gaussian closure with no heat transfer, and (c) regularized Gaussian closure with heat transfer.

(a) (b) (c)

Figure 7. Mach number profile of flow over a cylinder at Kn=1.0 as calculated by (a) Navier-Stokes, (b)
standard Gaussian closure with no heat transfer, and (c) regularized Gaussian closure with heat transfer.

B. Heated Plates

The regularized moment closures in combination with the slip flow boundary conditions described above have
been used to model the temperature profile between two heated infinite plates over a wide range of Knudsen
numbers. Argon initially at 300 K and standard pressure is placed between two isothermal plates oriented in
the x−direction with TL = 290 K and TR = 310 K, separated by a distance ranging from 7.05973× 10−4 to
7.05973×10−9 m corresponding to 10−4≤Kn≤10. The computational mesh can be seen in Figure 3(a), and
consists of 200 cells in the x−direction and 6 cells each in the transverse directions. The temperature profile
between the plates is shown in Figure 3(b). The temperature slip phenomenon is clearly visible entering
the transition regime at Kn = 10−1 and continues well into the free molecular regime. Figure 4 shows the
calculated normalized wall temperature at the high temperature wall and the normalized heat flux calculated
between the plates. In Figure 4(a), the temperature is normalized with the expression

T ∗ =
T − Tm
Tw − Tm

(75)

where T ∗ is the normalized temperature, Tm is the temperature of the gas midway between the plates, Tw
is the temperature of the wall, and T is the measured temperature of the gas at the wall. The figure clearly
shows the temperature slip effect with increasing Knudsen number which is not captured by the Navier-
Stokes. These results can be captured using the boundary conditions by Smoluchowski.52 Figure 4(b) shows
the variation of the normalized heat flux with increasing Knudsen number. The heat flux is normalized to
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Figure 8. Mesh blocks created with the AMR algorithm for flow over a cylinder at Kn = 0.01. The uncolored
block shows the individual cells residing within that particular mesh block to illustrate the resolution acquired.

the free molecular heat flux, qfm, given by Bird1 as

qfm = −ρ (2R)
3
2

(
TUTL
π

) 1
2 (
T

1
2

U − T
1
2

L

)
(76)

where TU and TL are the temperatures of the upper and lower plate at 310 K and 290 K , respectively, and
R is the specific gas constant. The Gaussian closure with temperature slip boundary conditions predicts a
heat flux in line with those of the Navier-Stokes in the continuum limit, and smoothly transitions to the
perfect temperature slip characterized by the free molecular limit with increasing Knudsen number.

C. Flow Past an Immersed Cylinder with Heat Transfer

Immersed flow over a cylinder was studied here to observe the effects of heat transfer on drag coefficients over
a range of Knudsen numbers, and can be compared to previous three-dimensional results for the Gaussian
closure obtained by Lam and Groth69 that did not include heat transfer. The proposed NKS solution
solution method is employed to with the temperature slip boundary conditions of Smoluchowski.52 Isothermal
boundary conditions were used and set at a free stream temperature of 288 K. As a result, the heat flux
from the wall into the fluid is not large and the temperature slip phenomena should manifest itself only in
higher Knudsen number regimes.

The effects of laminar flow past a cylinder in both the continuum and transitional regimes has been
studied experimentally by Coudeville et al.,70 with focus on the drag coefficient with varying Reynolds and
Knudsen numbers. For this study, the cylinder radii varies from 3.36×10−5 to 6.72×10−9 m, corresponding
to 10−3≤Kn≤5. A speed ratio of S = 0.107 is used here and corresponds to a Mach number of Ma = 0.128,
where the speed ratio is defined as the ratio between the bulk speed of the fluid and the most probable
random speed of a particle. The Reynolds numbers for these flows ranges from 0.005 ≤ Re ≤ 188, well
within the laminar regime. The far field boundary was set at 32 times the cylinder radius, however, for
Kn = 1 × 10−1, the boundary layer formed around the cylinder expands considerably, and the far field
boundaries were extended up to 300 times the cylinder radius to avoid any interaction with the boundary
layer. Final three-dimensional mesh resolution ranges from 83,200 to 166,400 cells.
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(a) (b)

Figure 9. (a) Cylinder drag for Kn = 0.01 with increasing number of cells, showing mesh-convergent behav-
ior approaching the experimental data of Coudeville et al.,70 (b) Error norm evolution over multiple mesh
refinements.

A comparison can be made between the predictions of the Gaussian closure with and without heat
transfer and the Navier-Stokes equations pertaining to the immersed flow over a cylinder with varying
Knudsen number. Figure 5 shows the performance of these three descriptions compared to the experimental
measurements by Coudeville et al.70 and an analytical solution valid for the free molecular regime of
Patterson.71 The addition of heat transfer maintains physical accuracy up till about Kn = 1.0 but drops off
for higher Knudsen numbers. Interestingly, the Gaussian closure without heat transfer and the Navier-Stokes
equations predict similar overestimated drag coefficients even though the Navier-Stokes model includes heat
transfer, but not slip. To get a sense of the structure of the boundary layer predicted by these methods, the
Mach number profiles for a transition regime problem (Kn = 0.1) and free molecular regime problem (Kn = 1)
are shown in Figures 6 and 7, respectively. In the transition regime, all three methods produce similar drag
coefficients and boundary layer thicknesses, but the lack of velocity slip at the cylinder boundaries in the
Navier-Stokes is already evident. Adding heat transfer in the regularized Gaussian closure does not produce
any noticible effects at this point. At Kn = 1.0, the overestimation of the cylinder drag by the Navier-Stokes
and the Gaussian closure without heat transfer can be related to an overestimation of the boundary layer
thickness as evidenced by Figures 7(a) and 7(b). The addition of heat transfer in Figure 7(c) suppresses the
growth of the boundary layer and results in a cylinder drag more in line with experimental and analytical
data. However for Kn > 1, the suppressed boundary layer gives way to an underestimation of the drag
which becomes worse with increasing Kn. This limit may represent a point at which the current form of the
equations breaks down and can be also seen in the results of other moment techniques.72 Further study into
the physical phenomena occurring in this regime will be subject of future study.

It is useful at this point to illustrate the advantages in computational cost provided by the AMR and
NKS algorithm for solutions to the three-dimensional Gaussian closure. For Kn = 0.01, the AMR algorithm
was used to produce a cylinder mesh with up to four levels of refinement. A close-up view of the mesh blocks
produced from the AMR procedure can be seen in Figure 8.

At each mesh refinement, the drag over the cylinder was calculated and compared to the experimental
result from Coudeville et al.70 for the same flow conditions. Figure 9(a) shows the mesh convergence of the
solution method with reference to the calculated drag over the cylinder. The strength of the AMR/NKS
solution method is even more pronounced as the converged computational drag approaches the experimental
drag to within 0.6%. The convergence history of the NKS solution method with consecutive mesh refinements
from the AMR algorithm can be seen in Figure 9(b), showing rapid convergence can be seen at each mesh
level. The grid refinement is set to occur every 60 Newton iterations, though if allowed to proceed further
the norm can be reduced by more than the approximately five orders of magnitude shown here.

The advantages offered by the NKS include a vast saving in computational costs. Figure 10 shows the
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Figure 10. Convergence history for flow over a cylinder with respect to reduction of L2 density norms for
Kn = 0.01 using an explicit time marching scheme and the proposed implicit NKS solution method.

convergence history of the above-mentioned problem for measuring cylinder drag at Kn = 0.01 with no AMR
with a total of 179,200 cells. The explicit solver used for this evalutation has been previously described by
McDonald and Groth10,11 and used for the solution of the Gaussian closure without heat transfer by Lam
and Groth.69 Both schemes were performed over eight Intel Xeon E5540 cores at 2.53 GHz. As seen in
the figure, for an equivalent drop of four orders of magnitude in the residual, the NKS scheme requires 10
minutes while the explicit method requires 48 hours, providing a reduction in the overall computational costs
of the simulations by a factor of 100. The convergence history also shows that the NKS solution method
is capable of reducing the residual by almost eleven orders of magnitude. The ability to reach a highly
converged solution, the enormous savings in computational time, and the accuracy of the method shown
in the examples above demonstrate that these moment closures can be readily used for both research and
industrial applications.

D. Flow Past an Immersed Sphere

Non-equilibrium flow past a sphere is examined next. For the flow of interest, the sphere radius varies from
3.36× 10−5 to 6.72× 10−9 m, corresponding to a Knudsen number ranging from Kn = 10−3 to Kn = 5. The
computed Gaussian closure solutions were obtained for air at 288 K at standard atmospheric pressure. The
velocity and temperature slip boundary conditions were used in all cases. A cubed sphere grid consisting of
48 blocks with 25,600 cells per block for a grand total of 1,228,800 cells. The radius of the outer boundary
is set to be 100 times the sphere radius, though this limit is expanded to accommodate the larger boundary
layers as the Knudsen number increases. A sample of the cubed sphere grid blocks and a sample Mach
number profile can be seen in Figure 11.

The predicted drag coefficient on a sphere in immersed flow is plotted against the Reynolds number in
Figure 12. The numerical results are compared to the experimental results by Roos and Willmarth73 and
Liebster,74 as well as with an analytical solution given by Flemmer and Banks.75 The Reynolds number for
these cases is altered through the effective diameter of the sphere while keeping all other parameters constant.
Decreasing Re then corresponds to increasing Kn, reaching Kn = 1.0 at Re = 0.1935. For smaller Reynolds
numbers, the Gaussian closure begins to deviate from the analytical solution at about the same Knudsen
number where a similar breakdown in drag prediction was seen in the above-described cylinder drag study.
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(a) (b)

Figure 11. (a) A cutaway view of 6 mesh blocks for immersed flow over a sphere in the continuum regime
with Mach number contours, (b) Sample result Mach number profile for Kn = 0.01

It is important to note here that the Reynolds number for the experimental results was varied through the
manipulation of the free stream flow, while the Gaussian closure results were performed with varying sphere
diameters. While the use of non-dimensionalized parameters should negate any discrepancies in the overall
comparison of the two sets of results, the performance of the Gaussian closure for low Reynolds numbers
Re < 1 also corresponds to a Knudsen number entering the free-molecular range where slip flow is taken into
account. The analytical and experimental results were done in the continuum regime for these low Reynolds
numbers and may account for their discrepancies with the Gaussian closure. Additional modifications to the
analytical solution for low Reynolds numbers at high Knudsen numbers may be required, though the true
behavior of the sphere drag coefficient is difficult to ascertain in the absence of relevant experimental data
at this time.

V. Conclusion

The numerical solution of the regularized Gaussian closure by means of a parallel, implicit, AMR, upwind,
finite-volume scheme has been considered herein as an alternative for the simulation of micro-scale transition
regime flows. While the inclusion of elliptic terms to the underlying strictly hyperbolic system of PDEs in the
standard Gaussian closure may be incur a higher computational cost, the ability to model heat transfer in the
regularized system vastly outweighs this disadvantage. For the flow problems studied here, the regularized
closures’ ability to model non-equilibrium flows with velocity and temperature slip directly from kinetic
theory is contrasted with the extensive modifications needed when using the Navier-Stokes equations. The
relatively simple application of the parallel implicit NKS scheme for accelerated steady-state solutions makes
the regularized Gaussian closure an attractive option both for academic and industrial purposes. Future work
will involve extending the equation set further into the free molecular regime and a deeper investigation into
the construction of slip boundary conditions.
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Figure 12. Drag coefficient over a sphere for varying Reynolds numbers: Gaussian closure vs. experimental
and analytical results.

References

1Bird, G. A., Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, Oxford, 1994.
2Hellman, A. N., Kaustubh, R. R., Yoon, H. H., Bae, S., Palmer, J. F., Phillips, K. S., Allbritton, N. L., and Venugopalan,

V., “Laser-Induced Mixing in Microfluidic Channels,” Anal. Chem, Vol. 79, 2007, pp. 4484–4492.
3de Divitiis, N., de Matteis, G., and de Socio, L. M., “Dynamics of Aerospace Vehicles at Very High Altitudes,” Meccanica,

Vol. 29, 1994, pp. 61–80.
4Grad, H., “On the Kinetic Theory of Rarefied Gases,” Communications on Pure and Applied Mathematics, Vol. 2, 1949,

pp. 331–407.
5Levermore, C. D., “Moment Closure Hierarchies for Kinetic Theories,” Journal of Statistical Physics, Vol. 83, 1996,

pp. 1021–1065.
6Maxwell, J. C., “On the Dynamical Theory of Gases,” Philosophical Transactions of the Royal Society of London,

Vol. 157, 1867, pp. 49–88.
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