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High-order discretization techniques offer the potential to significantly reduce the computational costs nec-
essary to obtain accurate predictions when compared to lower-order methods. However, efficient, universally-
applicable, high-order discretizations remain somewhat illusive, especially for more arbitrary unstructured
meshes and for large-eddy simulation (LES) of turbulent reacting flows. A novel, high-order, central essentially
non-oscillatory (CENO), cell-centered, finite-volume scheme is proposed for the solution of the conservation
equations of turbulent, reactive, low speed flows on three-dimensional unstructured meshes. The proposed
scheme is applied to the pseudo-compressibility formulation of the Favre-filtered governing equations and
the resulting discretized equations are solved with a parallel implicit Newton-Krylov algorithm. Temporal
derivatives are discretized using the family of high-order backward difference formulas (BDF) and the re-
sulting equations are solved via a dual-time stepping approach. Large-eddy simulations of a laboratory-scale
turbulent flame is carried out and the proposed finite-volume scheme is validated against experimental mea-
surements. The high-order scheme is demonstrated to provide both reliable and accurate solutions for complex
turbulent reactive flows.

I. Introduction

Many practical flows that are relevant to science and engineering present significant challenges to model numeri-
cally, primarily due to the wide range of scales and physical/chemical phenomena involved. Such flows include, but
are not limited to, multiphase, turbulent, and combusting flows encountered in propulsion systems (e.g., gas turbine
engines and solid propellant rocket motors). Nonetheless, computational fluid dynamics (CFD) has proven to be an
important enabling technology in these areas. But for most of these practical flows, there is currently a limit on what
can be simulated because of the complexities in the physics and the range of scales that must be resolved. For exam-
ple, direct numerical simulation (DNS) of full-scale practical turbulent flows is not possible. Therefore, mathematical
models of these complex flows must rely heavily on engineering approximations and sophisticated numerical methods
to represent the underlying physics and ensure that computations remain tractable.

The primary approaches for modelling turbulent flows are Reynolds-Averaged Navier-Stokes (RANS) and Large-
Eddy Simulation (LES)1,2. RANS-based methods are more commonly used in engineering applications due to their
computational efficiency. However, they cannot resolve any part of the turbulent fluctuations since information re-
garding fluctuations is lost through the averaging process. LES separates the turbulent scales via a low-pass filtering
process applied to the governing equations and, as a result, provides information about the large-scale turbulent fluc-
tuations. As such, LES is considered an intermediate between DNS and RANS since LES resolves the large-scale
motions of the flow and models the small scales.

Despite the physical simplifications employed by LES, LES of full-scale practical turbulent reactive flows still
requires significant computational resources. One promising numerical technique to reduce the computational cost
associated with LES calculations is the use of high-order methods (i.e., methods higher than second order). High-
order methods are more accurate than standard low-order methods (i.e, methods up to second order) and also offer
improved numerical efficiency since fewer computational cells are required to achieve a desired level of accuracy3.
∗Post-Doctoral Fellow, UTIAS, charest@utias.utoronto.ca, Member AIAA.
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However, these advantages of high-order methods are difficult to fully realize because of the conflicting relation-
ship between accuracy and robustness. For hyperbolic conservation laws and/or compressible flow simulations, the
main challenge involves obtaining accurate discretizations while ensuring that discontinuities and shocks are handled
reliably and robustly4. High-order schemes for elliptic partial differential equations (PDEs) should satisfy a maxi-
mum principle while remaining accurate5. Additionally, modelling reacting flows requires integrating numerically
stiff and mathematically complex source terms over the computational domain. There are many studies of high-order
schemes developed for finite-volume4,6–15, discontinuous Galerkin16–20, and spectral finite-difference/finite-volume
methods21–25 on both structured and unstructured mesh. In spite of many advances, there is still no consensus for a ro-
bust, efficient, and accurate scheme that fully deals with all of the aforementioned issues and is universally applicable
to arbitrary meshes.

Ivan and Groth 26,27 proposed a high-order Central Essentially Non Oscillatory (CENO), cell-centered, finite-
volume scheme that was demonstrated to remain both accurate and robust in a variety of physically-complex flows.
The CENO scheme uses a fixed central stencil which avoids the difficulties encountered by standard and weighted
ENO schemes4,10,12,13 that result from the use of variable stencils. With ENO and WENO schemes, selecting the
appropriate stencils on general multi-dimensional unstructured meshes is not straightforward7,8,11,28 and using these
stencils can produce poor conditioning of the linear systems involved in performing the solution reconstruction11,28.

The CENO scheme is based on a hybrid solution reconstruction procedure that combines an unlimited high-order
k-exact, least-squares reconstruction technique with a monotonicity preserving limited piecewise linear least-squares
reconstruction algorithm. Fixed central stencils are used for both the unlimited high-order k-exact reconstruction and
the limited piecewise linear reconstruction. Switching between the two reconstruction algorithms is determined by
a solution smoothness indicator that indicates whether or not the solution is resolved on the computational mesh.
Originally developed for structured two-dimensional mesh, this scheme has been successfully extended to two- and
three-dimensional unstructured mesh and applied to a variety of inviscid and viscous flows by McDonald et al. 29 ,
Charest et al. 30 .

In the present research, the high-order CENO finite-volume scheme is extended to solve the equations governing
low-Mach-number, turbulent, reactive flows on unstructured mesh. The ability of the scheme to accurately model
turbulent flames is demonstrated using a LES approach coupled with an eddy-dissipation-based model for turbulence-
chemistry interactions. The resulting governing equations are solved using the pseudo-compressibility approach cou-
pled with an implicit Newton-Krylov algorithm. The algorithm is applied to a laboratory scale turbulent premixed
flame and analyzed in terms of accuracy and robustness. In particular, low- and high-order numerical predictions are
compared with experimental measurements for quantities such as flame surface density, flame curvature, and flame
height.

II. Pseudo-Compressibility Approach for Reactive Low Speed Flows

II.A. Governing Equations and Turbulent Closure Models

In the present research, the equations governing turbulent, reactive flows at low Mach numbers are considered. Large-
scale turbulence is captured using LES with the constant-coefficient Smagorinsky model31 for the subgrid-scale
stresses. For the premixed turbulent flame investigated in the present study, chemical reactions are assumed to oc-
cur very fast. As a result of this assumption, the rate of combustion is controlled by the rate mixing between fresh
reactants and hot combustion products only. The rate of mixing, and consequently the rate of combustion, is described
by the eddy-dissipation or eddy-break-up model32,33.

In three space dimensions, the resulting Favre-filtered partial-differential equations which govern the reactive tur-
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bulent flow are

∂ρ̄

∂t
+

∂

∂xi
(ρ̄ũi) = 0 (1a)

∂

∂t
(ρ̄ũi) +

∂

∂x j

(
ρ̄ũ jũi

)
+
∂p̄
∂xi

=
∂λ ji

∂x j
(1b)

∂

∂t

(
ρ̄h̃

)
+

∂

∂x j

(
ρ̄ũ jh̃

)
= −

∂q j

∂x j
(1c)

∂

∂t

(
ρ̄ f̃

)
+

∂

∂x j

(
ρ̄ũ j f̃

)
=

∂

∂x j

[
DT

∂ f̃
∂x j

]
(1d)

∂

∂t
(ρ̄ỹf) +

∂

∂x j

(
ρ̄ũ jỹf

)
=

∂

∂x j

[
DT

∂ỹf

∂x j

]
+ ρ̄ω̇T (1e)

where t is the time, p is the total pressure, ρ is the fluid density, u j is the bulk fluid velocity, f is the mixture fraction,
yf is the fuel mass fraction, h =

∫ T
T0

cp dT is the fluid enthalpy, T is the fluid temperature, cp is the fluid specific heat,
DT is the turbulent eddy-diffusivity, and ω̇T is the turbulent source term. The fluid stress tensor, λi j, is given by

λi j = (µ + µT)
[(
∂ũi

∂x j
+
∂ũ j

∂xi

)
−

2
3
δi j
∂ũk

∂xk

]
(2)

where µ is the dynamic viscosity and µT is the turbulent eddy-viscosity. The heat flux vector due to molecular and tur-
bulent motion is computed using Fick’s law of diffusion and a gradient-based assumption for the turbulent component

q j = −

[
µcp

PrL
+
µTcp

PrT

]
∂T̃
∂x j

(3)

where constant Prandtl numbers for the laminar, PrL, and turbulent, PrT, components were assumed. Here, PrL = 0.7
and PrT = 0.9.

The turbulent eddy-diffusivity is determined from the eddy-viscosity using a constant subfilter scale Schmidt num-
ber, ScT, by the following relation:

DT =
µT

ρ̄ScT
(4)

The turbulent eddy viscosity, µT, defined by the constant-coefficient Smagorinsky model31 is

µT = ρ̄L2
s

√
2S i jS i j (5)

where Ls is the mixing length for the subgrid scales and S i j is the local strain rate tensor. The local strain rate tensor
is defined as

S i j =
1
2

(
∂ũi

∂x j
+
∂ũ j

∂xi

)
(6)

The length scale is computed using a two-layer approach to account for the presence of walls34,35,

Ls = min
(
κywall, fµcs∆

)
(7)

where κ = 0.41 is the von Kármán constant, ywall is the local distance from the wall, fµ is the Van Driest36 damping
function, cs = 0.17 is the Smagorinsky coefficient, and ∆ is the filter width. The Van Driest36 damping function is

fµ = 1 − exp
(
−y+/A

)
(8)

where y+ is the dimensionless wall distance and A = 25.
An implicit filtering approach is employed here whereby the grid is assumed to be the low-pass filter. A filter width

equal to twice the average local mesh size was employed,

∆ = 2
3√
∆V (9)

where ∆V is the local cell volume.
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The rate of turbulent combustion, as defined by Magnussen and Hjertager 32 , is given by

ω̇T = τ−1
m a min

(
ỹf, ỹo/s, bỹp/(1 + s)

)
(10)

where s is the reaction stoichiometric coefficient, ỹo and ỹp are the mass fractions of oxygen and products, respectively,
and τm is a turbulent mixing time scale. The reaction coefficients, a and b, were set to 2.0 and 0.5, respectively. The
turbulent mixing time scale is determined from the local eddy-viscosity and length scale as

τm =
µT

ρ̄(cs∆)2 (11)

II.B. Pseudo-Compressibility Approach

Incompressible and low-Mach-number flows are challenging to solve numerically because the partial derivative of
density with respect to time vanishes. As a result, the governing equations (Eq. (1)) are ill-conditioned. The pseudo-
compressibility method is employed here to overcome this ill-conditioning by modifying partial derivatives of density
with respect to time37–40. In the original formulation of Chorin 37 for incompressible flows, a pressure time derivative
was added to the steady form of the continuity equation and the primitive form of the governing equations were solved
using a time-marching procedure. Turkel 40 derived the conservative form of Chorin’s modified governing equations
and showed that time derivatives of pressure should also be added to the other equations.

Since the the pseudo-compressibility method modifies the original partial derivatives with respect to time in Eq. (1),
a dual-time-stepping approach is employed to regain time-accuracy41–45. Applying the pseudo-compressibility and
dual-time-stepping approach to Eq. (1), the resulting governing equations are

∂U
∂t

+ Γ
∂W
∂τ

+
∂

∂x
(E − Ev) +

∂

∂y
(F − Fv) +

∂

∂z
(G −Gv) = S (12)

where U and W are the vectors of conserved and primitive variables, ~F = [E,F,G] and ~Fv = [Ev,Fv,Gv] are the
inviscid and viscous solution flux dyads, S is the source vector, and Γ is the transformation matrix. They are defined
as

U =



ρ̄

ρ̄ũ
ρ̄ṽ
ρ̄w̃
ρ̄h̃
ρ̄ f̃
ρ̄ỹf


, W =



p̄
ũ
ṽ
w̃
T̃
f̃
ỹf


, E =



ρ̄ũ
ρ̄ũ2 + p̄
ρ̄ũṽ
ρ̄ũw̃
ρ̄ũh̃
ρ̄ũ f̃
ρ̄ũỹf


, F =



ρ̄ṽ
ρ̄ṽũ

ρ̄ṽ2 + p̄
ρ̄ṽw̃
ρ̄ṽh̃
ρ̄ṽ f̃
ρ̄ṽỹf


, G =



ρ̄w̃
ρ̄w̃ũ
ρ̄w̃ṽ

ρ̄w̃2 + p̄
ρ̄w̃h̃
ρ̄w̃ f̃
ρ̄w̃ỹf


,

Ev =



0
λxx

λxy

λxz

−qx

DT
∂ f̃
∂x

DT
∂ỹf
∂x


, Fv =



0
λyx

λyy

λyz

−qy

DT
∂ f̃
∂y

DT
∂ỹf
∂y


, Gv =



0
λzx

λyz

λzz

−qz

DT
∂ f̃
∂z

DT
∂ỹf
∂z


, Γ =



1
β

0 0 0 ρ̄T ρ̄ f ρ̄yf

α

β
ũ ρ̄ 0 0 ρ̄T ũ ρ̄ f ũ ρ̄yf ũ

α

β
ṽ 0 ρ̄ 0 ρ̄T ṽ ρ̄ f ṽ ρ̄yf ṽ

α

β
w̃ 0 0 ρ̄ ρ̄T w̃ ρ̄ f w̃ ρ̄yf w̃

α

β
h̃ 0 0 0 ρ̄cp + ρ̄T h̃ ρ̄h̃ f + ρ̄ f h̃ ρ̄h̃yf + ρ̄yf h̃

α

β
f̃ 0 0 0 ρ̄T f̃ ρ̄ + ρ̄ f f̃ ρ̄yf f̃

α

β
ỹf 0 0 0 ρ̄T ỹ f ρ̄ f ỹ f ρ̄ + ρ̄yf ỹf



.
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where the subscripts T , f , and yf denote partial derivatives with respect to temperature, mixture fraction, and fuel
mass fraction, respectively. β is the pseudo-compressibility factor, α is a preconditioning parameter, and τ denotes the
pseudo-time since the modified equations are no longer time-accurate. The preconditioning parameter, α, controls how
the original governing equations are modified. The original pseudo-compressibility method of Chorin 37 corresponds
to α = 0. When α = 1 or 2, the pressure time derivatives are added directly to the conserved or primitive formulation
of the governing equations, respectively.

II.C. Inviscid Eigenstructure

Based on the analysis conducted by Turkel 40 and the numerical results obtained by Qian et al. 46 and Lee and Lee 47 ,
the optimal value of α is 2. However, Malan et al. 48,49 and Lee and Lee 47 found that a loss of robustness can occur
for α > 1 if β is too small. This loss of robustness occurs because the determinant of the modal matrix can be zero
when α > 1. Since larger values of α display better convergence characteristics46,47, α = 1 was selected for the current
work. For α = 1, the Jacobian matrix of the steady-state inviscid system with respect to the primitive variables is

A = Γ−1
∂
(
~F · n̂

)
∂W

=



0 nxρ̄β nyρ̄β nzρ̄β 0 0 0

nx

ρ̄
q 0 0 0 0 0

ny

ρ̄
0 q 0 0 0 0

nz

ρ̄
0 0 q 0 0 0

0 0 0 0 q 0 0

0 0 0 0 0 q 0

0 0 0 0 0 0 q



(13)

where q = ~v · n̂ and c2 = q2 + 4β. The resulting matrix of right eigenvectors is

R =



−
ρ

2
(q − c) −

ρ

2
(q + c) 0 0 0 0 0

nx nx −ny −nz 0 0 0

ny ny nx 0 0 0 0

nz nz 0 nx 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1



(14)

The eigenvalues of the steady-state inviscid system defined by Eq. (12) in a particular direction are

λ =

[1
2

un −
1
2

√
un

2 + 4β, un, un, un, un, un,
1
2

un +
1
2

√
un

2 + 4β
]

(15)

where un is the velocity of the bulk flow projected onto the direction vector of interest.
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The minimum value of β was chosen based on the following formulation proposed by Turkel 40 :

β = max
[
2
(
u2 + v2 + w2

)
, ε

]
(16)

where ε is a smallness parameter.

III. CENO Finite-Volume Scheme

In the proposed cell-centered finite-volume approach, the physical domain is discretized into finite-sized compu-
tational cells and the integral forms of conservation laws are applied to each individual cell. For a cell i, the approach
results in the following coupled system of partial differential equations (PDEs) for cell-averaged solution quantities:

dUi

dt
+ Γi

dWi

dτ
= −

1
Vi

	 (
~F − ~Fv

)
· n̂ dA +

1
Vi

$
S dV = −Ri (17)

where the overbar denotes cell-averaged quantities, V is the cell volume, A is the area of the face and n̂ is the unit
vector normal to a given face. Applying Gauss quadrature to evaluate the surface and volume integrals in Eq. (17)
produces a set of nonlinear ordinary differential equations (ODEs) given by

dUi

dt
+ Γi

dWi

dτ
= −

1
Vi

Nf∑
l=1

NGf∑
m=1

[
ωf

(
~F − ~Fv

)
· n̂A

]
i,l,m

+
1
Vi

NGv∑
n=1

[ωvSV]i,n (18)

where Nf is the number of faces (equal to 4 for tetrahedra and 6 for hexahedra), NGf and NGv are the number of
quadrature points for the surface and volume integrals, respectively, and ωf and ωv are the corresponding surface and
volume integral quadrature weights. In Eq. (18), the number of quadrature points required along each face or over
each cell is a function of the reconstruction order and number of spatial dimensions. For tetrahedra and Cartesian
(hexahedra with rectangular faces) cells, Gauss quadrature points can be directly mapped from the canonical form
to the Cartesian coordinate system. More general hexahedra can have non-rectangular faces or faces composed of
vertices that do not all lie on a particular plane. In this case, the Gauss quadrature points are mapped to the Cartesian
coordinate system using a trilinear coordinate transformation50,51. The coefficients for the quadrature rules applied
here are tabulated by Felippa 52 and summarized in Table 1.

Table 1. Gauss quadrature rules used for integration.

Reconstruction Tetrahedra Cartesian / Hexahedra

NGf NGv Polynomial Degree NGf NGv Polynomial Degree

Constant (k=0) 1 1 1 1 1 1
Linear (k=1) 1 1 1 1 1 1
Quadratic (k=2) 3 4 2 4 8 3
Cubic (k=3) 4 8 3 4 8 3
Quartic (k=4) 6 14 4 9 27 5

III.A. Trilinear Coordinate Transformation for Arbitrary Hexahedra

Geometric representation of a general hexahedral cell shown in Fig. 1 is based on the trilinear transformation

~r(p, q, r) = ~a + ~bp + ~cq + ~dr + ~epq + ~f pr + ~gqr + ~hpqr (19)

where p, q and r are Cartesian coordinates in the canonical space of the reference hexahedron and ~a, ~b, ~c, ~d, ~e, ~f , ~g
and ~h are the transformation coefficient vectors. The reference hexahedron, shown in Fig. 1, consists of a unit cube
with faces aligned with the p, q and r coordinate axes. Using the transformation defined by Eq. (19), integrals over the
volume of an arbitrary hexahedral cell, Q, are evaluated over the reference element Q̂ as$

Q
f (x, y, z) dQ =

$
Q̂

f (~r(p, q, r)) J(p, q, r) dQ̂ (20)
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r

pq y x

z

(0,0,0)

(0,1.1) (1,0,1)

(1,0,0)(0,1,0)

(1,1,1)

(0,0,1)

(1,1,0)

Figure 1. (Left) Reference cube Q̂ and (right) arbitrary hexahedron Q.

where f (x, y, z) = f (~r) is an arbitrary function defined in the general Cartesian coordinate system. The determinant of
the transformation Jacobian, J, is

J(p, q, r) = ~X(q, r) ·
(
~Y(p, r) × ~Z(p, q)

)
(21)

where ~X = ∂~r/∂x, ~Y = ∂~r/∂y and ~Z = ∂~r/∂z. Integrals over the cell faces are evaluated in a similar manner. For
example, integrating f (x, y, z) over a face in the logical direction, Γx, gives"

Γx

f (x, y, z) dΓx =

"
Γp

f (~r(p, q, r)) Jx(p, q, r) dΓp (22)

where Γp is the corresponding surface on the reference cube. The surface Jacobian, Jx, is

Jx(p, q, r) =
∣∣∣∣~Y(p, r) × ~Z(p, q)

∣∣∣∣ (23)

The unit normal to the surface Γx at a particular location is related to the surface Jacobian by

n̂ =
~Y(p, r) × ~Z(p, q)∣∣∣∣~Y(p, r) × ~Z(p, q)

∣∣∣∣ (24)

Using Eqs. (20) and (22), relations can be derived for the cell volume as well as the area of cell faces by setting
f (x, y, z) to unity. They are also used to transform the quadrature points and weights from the canonical element to the
arbitrary hexahedron.

III.B. CENO Reconstruction

Evaluating Eq. (18) requires integration of the numerical flux along the cell faces, but only cell-averaged quantities
are known. The high-order CENO method uses a hybrid solution reconstruction process to interpolate the primitive
solution state at the Gauss quadrature points along each face26,27. This hybrid approach involves a fixed central stencil
in smooth or fully-resolved regions which is switched to a limited piecewise linear reconstruction when discontinuities
in solution content are encountered. This switching provides a means of eliminating spurious oscillations that can
occur near regions where the solution is under-resolved. It is facilitated by a parameter called the smoothness indicator
which indicates the current level of resolution.

Even though most features of low-speed flows are relatively smooth, there are cases where discontinuities can
occur, such as across flame fronts or fluid interfaces. Oscillations can even occur for relatively smooth flows when
there is insufficient mesh resolution.

III.B.1. k-Exact Reconstruction

The CENO spatial discretization scheme is based on the high-order k-exact least-squares reconstruction technique of
Barth6. The k-exact higher-order reconstruction algorithm begins by assuming that the solution within each cell can

7 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 C

lin
to

n 
G

ro
th

 o
n 

Ju
ly

 1
1,

 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
3-

25
67

 

 Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. 



be represented by the following Taylor series expansion in three dimensions:

uk
i (x, y, z) =

(p1+p2+p3)≤k∑
p1=0

∑
p2=0

∑
p3=0

(x − xi)p1 (y − yi)p2 (z − zi)p3 Dp1 p2 p3 (25)

where uk
i is the reconstructed solution quantity, (xi,yi,zi) are the coordinates of the cell centroid, k is the degree of

the piecewise polynomial interpolant and Dp1 p2 p3 are the unknown coefficients of the Taylor series expansion. The
summation indices, p1, p2 and p3, must always satisfy the condition that (p1 + p2 + p3) ≤ k.

The following conditions are applied to determine the unknown coefficients: i) the solution reconstruction must
reproduce polynomials of degree N ≤ k exactly; ii) the mean or average value within the computational cell must be
preserved; and iii) the reconstruction must have compact support. The second condition states that

ui =
1
Vi

$
Vi

uk
i (x, y, z) dV (26)

where ui is the cell average.
The third condition dictates the number and location of neighboring cells included in the reconstruction. For a

compact stencil, the minimum number of neighbors is equal to the number of unknowns minus one (because of the
constraint imposed by Eq. (26)). For any type of mesh, the total number of unknown coefficients for a particular order
is given by

N =
1
d!

d∏
n=1

(k + n) (27)

where d represents the number of space dimensions. In three-dimensions, there are four, ten, twenty and thirty-five
unknown coefficients for k=1, k=2, k=3 and k=4, respectively. Additional neighbors are included to ensure that the
stencil is not biased in any particular direction and that the reconstruction remains reliable on poor quality meshes
with high aspect ratio cells26. For each neighboring cell, p, a constraint is formed by requiring that

up =
1

Vp

$
Vp

uk
i (x, y, z) dV (28)

Since the constraints of Eqs. (26) and (28) result in an over-determined system of linear equations, a least-squares
solution for the coefficients, Dp1 p2 p3 , is obtained in each cell. Equation (26) is strictly enforced by Gaussian elimination
and a minimum-error solution to the remaining constraint equations is sought. Substituting Eq. (25) into Eq. (26) and
rearranging for D000 gives

D000 = ui −

(p1+p2+p3)≤k∑∑∑
(p1+p2+p3)>0

Dp1 p2 p3

1
Vi

$
Vi

(x − xi)p1 (y − yi)p2 (z − zi)p3 dV (29)

A similar relation is obtained using Eqs. (25) and (28) to give

D000 = u j −

(p1+p2+p3)≤k∑∑∑
(p1+p2+p3)>0

Dp1 p2 p3

1
V j

$
V j

(x − xi)p1 (y − yi)p2 (z − zi)p3 dV (30)

Equating Eq. (29) and Eq. (30) gives

u j − ui =

(p1+p2+p3)≤k∑∑∑
(p1+p2+p3)>0

Dp1 p2 p3
̂(xp1 yp2 zp3 )i j (31)

where

̂(xp1 yp2 zp3 )i j =
1
V j

$
V j

(x − xi)p1 (y − yi)p2 (z − zi)p3 dV −
1
Vi

$
Vi

(x − xi)p1 (y − yi)p2 (z − zi)p3 dV (32)
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are geometric coefficients which only depend on the mesh geometry. The new overdetermined linear system is formed
using Eq. (31) and given by

̂(x0y0z1)i1 · · · ̂(xp1 yp2 zp3 )i1 · · · ̂(xky0z0)i1
...

...
...̂(x0y0z1)i j · · · ̂(xp1 yp2 zp3 )i j · · · ̂(xky0z0)i j

...
...

...̂(x0y0z1)iNn
· · · ̂(xp1 yp2 zp3 )iNn

· · · ̂(xky0z0)iNn


·



D001
...

Dp1 p2 p3

...

Dk00


=



u1 − ui
...

u j − ui
...

uNn − ui


(33)

where Nn is the number of neighbors in the stencil. The remaining polynomial coefficient, D000, is obtained from
Eq. (29) after obtaining the least-squares solution to the overdetermined system given by Eq. (33).

The resulting coefficient matrix of the linear system defined in Eq. (33) depends only on the mesh geometry, so it
can be inverted and stored prior to computations14,53. Either a Householder QR factorization algorithm or orthogonal
decomposition by the SVD method was used to solve the weighted least-squares problem54. Weighting is applied here
to each individual constraint equation to improve the locality of the reconstruction55. An inverse distance weighting
formula is applied. For the reconstruction in cell i,

w j =
1

|~x j − ~xi|
, (34)

where ~x j is the centroid of the neighbor cell j.

III.B.2. Reconstruction at Boundaries

To enforce conditions at physical boundaries, the least-squares reconstruction was constrained in adjacent control
volumes without altering the reconstruction order of accuracy14,15,27. Constraints are placed on the least-squares
reconstruction for each variable to obtain the desired value/gradient (Dirichlet/Neumann) at each Gauss integration
point. Here we implement them as Robin boundary conditions

f
(
~x
)

= a
(
~x
)

fD
(
~x
)

+ b
(
~x
)

fN
(
~x
)

(35)

where a
(
~x
)

and b
(
~x
)

define the contribution of the Dirichlet, fD
(
~x
)
, and Neumann, fN

(
~x
)
, components, respectively.

In terms of the cell reconstruction, the Dirichlet condition is simply expressed as

fD
(
~xg

)
= uk

(
~xg

)
(36)

where ~xg is the location of the Gauss quadrature point. The Neumann condition is

fN
(
~xg

)
= ∇uk

(
~xg

)
· n̂g

=

(p1+p2+p3)≤k∑∑∑
p1+p2+p3=1

∆xp1−1∆yp2−1∆zp3−1
[
p1∆y∆znx + p2∆x∆yny + p3∆x∆ynz

]
Dp1 p2 p3 (37)

where ∆(·) = (·)g − (·)i, the subscript i denotes the location of the centroid of the cell adjacent to the boundary and g
denotes the Gauss quadrature point.

Exact solutions to the boundary constraints described by Eq. (35) are sought, which adds linear equality constraints
to the original least-squares problem (Section III.B.1). Gaussian elimination with full pivoting is first applied to remove
these additional boundary constraints and the remaining least-squares problem is solved as described in Section III.B.1.

For inflow/outflow or farfield-type boundary conditions where the reconstructed variables are not related, the
constraints may be applied separately to each variable. Thus, a separate least-squares problem with equality constraints
can be set up for each variable and solved independently of the other variables. More complex boundary conditions
involving linear combinations of solution variables, such as symmetry or inviscid solid walls (where ~v · n̂ = 0), can
cause the reconstruction coefficients in Eq. (25) for different variables to become coupled. For these types of coupled
boundary conditions, the reconstruction for all of the coupled solution variables is performed together15,27. Thus the
final matrix in Eq. (33) for the constrained least-squares reconstruction contains the individual constraints for each
variable (Eq. (35)), the relational constraints, and the approximate mean conservation equations for each variable
(Eq. (31)).
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III.B.3. Smoothness Indicator

After performing a k-exact reconstruction for each solution variable in each computational cell, the smoothness indi-
cator is computed for every reconstructed variable to identify under-resolved solution content. It is evaluated as

S =
σ

max [(1 − σ), δ]
(SOS − DOF)

DOF − 1
(38)

where σ is a smoothness parameter, δ is a tolerance to avoid division by zero (equal to 10−8), DOF is the number of
degrees of freedom and SOS is the size of the stencil. The smoothness parameter, σ, for a cell i is given by

σ = 1 −

∑
p

[
uk

p(xp, yp, zp) − uk
i (xp, yp, zp)

]2

∑
p

[
uk

p(xp, yp, zp) − ui

]2 (39)

where u is the solution variable of interest, the subscript p refers to the cells in the reconstruction stencil, uk
p(xp, yp, zp)

is the reconstructed solution in cell p evaluated at the cell’s centroid (xp, yp, zp), uk
i (xp, yp, zp) is the projected value of

the reconstruction polynomial for cell i evaluated at (xp, yp, zp), and ui is the average value for cell i. By definition,
σ can have a value between negative infinity and one. A value of unity indicates that the solution is smooth whereas
small or negative values indicate large variations in solution content within the reconstruction stencil.
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Figure 2. Variation of smoothness indicator with σ.

The behavior of the smoothness indicator is demonstrated in Fig. 2. As σ approaches unity, the smoothness
indicator grows rapidly. Solutions are deemed smooth when the value of S is above critical value, S c. Previous studies
found that values for S c between 1000–5000 provided an excellent balance between stability and accuracy26. Typical
values for S in smooth regions tend to be orders of magnitude greater than these cutoff limits. Unless otherwise
specified, a value for S c of 1000 was used.

In regions where S is below the critical value, monotonicity is preserved by reverting the high-order k-exact recon-
struction to a limited piecewise linear (k=1) reconstruction. Limiting is performed using the procedure developed by
Park et al. 56 specifically for multiple dimensions in conjunction with the slope limiter function of Venkatakrishnan 57 .
Note that the limited linear reconstruction in non-smooth regions is only applied to the inviscid terms in Eq. (18). The
viscous flux and source term is still evaluated using the higher-order representation since it is generally the inviscid
terms that generate instabilities.

III.C. Numerical Flux

An upwind Godunov scheme is used to integrate the inviscid numerical flux, ~F, over the cell face. Given the left and
right solution states, WL and WR, the numerical flux at the cell interface is defined as

~F · n̂ = F (WL,WR, n̂) (40)
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where F is a flux function which solves a Riemann problem, R, in a direction aligned along the face normal, n̂. The
left and right solution states at the interface are determined using the k-exact reconstruction procedure described in
Section III.B. As a result, the leading truncation error due to the inviscid operator is O

(
∆xk+1

)
.

The flux function, F , was derived by applying Roe’s approximate Riemann solver58,59 to the new modified inviscid
eigensystem for Eq. (12). The numerical flux at the interface between two cells is given by

F (R (WL,WR)) =
1
2

(FR + FL) −
1
2
|Â|∆W (41)

where FL and FR are the inviscid fluxes evaluated based on WL and WR, ∆W = WR −WL, |Â| = R̂|Λ̂|R̂−1, R̂ is
the matrix of primitive variable right eigenvectors and Λ̂ is the eigenvalue matrix. The matrix Â is the linearized flux
Jacobian evaluated at a reference state, Ŵ. A simple arithmetic average between the left and right states was chosen
as the reference state.

The viscous fluxes at each quadrature point are evaluated by averaging the interface state and gradients

G (WL,WR,∇WL,∇WR) = Fv

{
1
2

(WL + WR) ,
1
2

(∇WL,∇WR)
}

(42)

Because derivatives of the reconstructed polynomial are required, the leading truncation error due to the viscous
operator is only O

(
∆xk

)
. The degree of the reconstruction polynomial is therefore increased by one to match the

leading truncation error introduced by the inviscid operator. The Gauss quadrature rule is selected to maintain an order
of accuracy of k + 1 when integrating the fluxes over the cell faces.

For piecewise-linear (k = 1) representations, second-order (k +1) accuracy of the viscous operator can be achieved
without increasing the degree of the polynomial interpolatant. In this case, the average gradient at the interface is
evaluated by60

∇Wi+1/2 =
(
Wn −Wp

) n̂
n̂ · ~rpn

+

(
∇W − ∇W · ~rpn

n̂
n̂ · ~rpn

)
(43)

where Wn and Wp are the solutions at the center of the two adjacent cells, and ~rpn = ~xn − ~xp is the vector between the
neighboring cell centers. The weighted average of the neighboring cell gradients, ∇W, is evaluated as

∇W = χ∇Wp + (1 − χ)∇Wn (44)
χ = Vp/(Vp + Vn)

Equation (43) is second-order accurate if the gradient representation is also second-order accurate. Thus, k + 1 recon-
struction is not required for k = 1.

III.D. Dual-Time Stepping Approach for Unsteady Problems

Integration of the governing equations is performed in parallel to fully take advantage of modern computer architec-
tures. This is carried out by dividing the computational domain up using a parallel graph partitioning algorithm, called
Parmetis61, and distributing the computational cells among the available processors. Solutions for each computational
sub-domain are simultaneously computed on each processor. The proposed computational algorithm was implemented
using the message passing interface (MPI) library and the Fortran 90 programming language62. Ghost cells, which
surround an individual local solution domain and overlap cells on neighboring domains, are used to share solution
content through inter-block communication.

Newton’s method is applied in this work for transient continuation using a dual-time-stepping approach41–45 with
the family of high-order backwards difference formulas to discretize the physical time derivative. Newton’s method is
used to relax

R∗(W) = R +
dW
dt

= 0 (45)

at each physical time level. This particular implementation follows the algorithm developed by Groth et al.63–65

specifically for use on large multi-processor parallel clusters.
Applying the BDF temporal discretization and Newton’s method to the semi-discrete form of the governing equa-

tions, Eq. (45), gives a
∆tn

(
∂U
∂W

)(n+1,k)

+
Γ

∆τk +

(
∂R
∂W

)(n+1,k) ∆W(n+1,k) = −R(n+1,k) −
dU
dt

∣∣∣∣∣∣
(n+1,k)

= −R∗(n+1,k) (46)
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where n is the outer time level, k is the now the inner iteration level, and a is a constant which depends on the temporal
discretization (a = 1 for implicit Euler, 3/2 for BDF2, 11/6 for BDF3 and 25/12 for BDF4). Since Newton’s method
can fail when initial solution estimates fall outside the radius of convergence, an implicit Euler discretization was
applied to the pseudo-time term in Eq. (46).

Coefficients for the different BDF schemes are provided in Table 2. The order of accuracy of the temporal dis-
cretization scheme was chosen to match the accuracy of the spatial discretization. Note however, it is well known that
BDF methods with accuracy higher than second-order can be unstable when the real component of the eigenvalues of
the system are negative. A stability analysis of the BDF methods applied to the one-dimensional form of the linear
advection equation is shown in Fig. 3. The eigenvalues, λ, for a first-order upwind discretization applied to this system
with uniform mesh spacing ∆x and periodic boundary conditions are also shown in Fig. 3. BDF4 is stable for a CFL,
ν = a∆t/∆x, up to 2. This condition may be relaxed for systems involving diffusion and relaxation processes since
they tend to shift the eigenvalues further into the negative portion of the real λ∆t-plane. As such, the BDF methods
are still suitable for the present application since Eq. (12) involves a system of advection-diffusion-reaction equations.
No issues related to the stability of the BDF methods were encountered throughout this research.

Table 2. Coefficients for the BDF methods.

bn+1un+1 + bnun + . . . = ∆t f n+1

Order un+1 un un−1 un−2 un−3

1 1 -1

2 2
3 −2 1

2

3 11
6 −3 3

2 − 1
3

4 25
12 −4 3 4

3
1
4

−4 −2 0 2 4 6 8 10
−8

−6

−4

−2

0

2

4

6

8

Re(λ∆t)

Im
(λ
∆
t)

BDF1

BDF2

BDF3

BDF4

ν=2

ν=1

Stable

∂u

∂t
+ a

∂u

∂x
= 0

Figure 3. Stability diagram for the BDF methods applied to the linear advection equation. Lines enclose the unstable regions for each method; symbols are the
eigenvalues for a first-order upwind spatial discretization with uniform mesh spacing ∆x and periodic boundaries. λ represents the eigenvalues, ∆t is the time
step size, a is the wave speed, and ν = a∆t/∆x is the CFL number.

In Eq. (46), ∆τk is the inner pseudo time step while ∆tn is the physical time step. The pseudo time step size was
determined by considering the inviscid Courant-Friedrichs-Lewy (CFL) and viscous Von Neumann stability criteria
based on the steady pseudo-compressible system. The maximum permissible time step for each local cell is determined
by

∆τk ≤ CFL ·min
[

∆x
max(λ)

,
ρ∆x2

µ

]
(47)

where CFL is a constant greater than zero which determines the time step size and ∆x = V1/3 is a measure of the grid
size. A value for CFL of 103 is typically used. The stability of the unsteady system is governed by the physical time
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step size, which is determined based on the physical CFL criterion:

∆tn ≤ CFLphys ·min
(

∆x
u2 + v2 + w2

)
(48)

where the CFLphys is the physical CFL number.

III.D.1. Inexact Newton Method

In the dual time-stepping procedure, at each physical time step n, a steady problem is solved using a Newton procedure.
A solution to Eq. (46) is sought by iteratively solving a sequence of linear systems given an initial estimate, W(n+1,0),
at the beginning of each physical time step. Successively improved estimates are obtained by solving(

∂R∗

∂W

)(n+1,k)

∆W(n+1,k) = J(W(n+1,k)) ∆W(n+1,k) = −R∗(W(n+1,k)) (49)

where J = ∂R∗/∂W is the residual Jacobian. After solving Eq. (49) for ∆W(n+1,k), the improved solution at step
(n + 1, k) is determined from

W(n+1,k+1) = W(n+1,k) + ∆W(n+1,k) (50)

The Newton iterations proceed at each physical time level until some desired reduction of the norm of the residual is
achieved and the condition ‖R∗(W(n+1,k))‖ < ε‖R∗(W(n+1,0))‖ is met. The tolerance, ε, used in this work was 10−2.

For a system of nonlinear equations, each step of Newton’s method requires the solution of the linear problem
J∆W = −R∗(W). This system tends to be relatively large, sparse, and non-symmetric for which iterative methods
have proven much more effective than direct methods. One effective method for a large variety of problems, which is
used here, is the generalized minimal residual (GMRES) technique of Saad and co-workers66–69. This is an Arnoldi-
based solution technique which generates orthogonal bases of the Krylov subspace to construct the solution. The
technique is particularly attractive because the matrix J does not need to be explicitly formed and instead only matrix-
vector products are required at each iteration to create new trial vectors. This drastically reduces the required storage.
Another advantage is that iterations are terminated based on only a by-product estimate of the residual which does not
require explicit construction of the intermediate residual vectors or solutions. Termination also generally only requires
solving the linear system to some specified tolerance, ‖R∗k + Jk∆Wk‖2 < ζ‖R∗(Wk)‖2, where ζ is typically in the
range 0.1 − 0.570. We use a restarted version of the GMRES algorithm here, GMRES(m), that minimizes storage by
restarting every m iterations.

Right preconditioning of J is performed to help facilitate the solution of the linear system without affecting the
solution residual, b. The preconditioning takes the form(

JM−1
)

(Mx) = b (51)

where M is the preconditioning matrix. A combination of an additive Schwarz global preconditioner and a block
incomplete lower-upper (BILU) local preconditioner is used. In additive Schwarz preconditioning, the solution in
each block is updated simultaneously and shared boundary data is not updated until a full cycle of updates has been
performed on all domains. The preconditioner is defined as follows

M−1 =

Nb∑
k=1

BT
k M−1

k Bk (52)

where Nb is the number of blocks and Bk is the gather matrix for the kth domain. The local preconditioner, M−1
k , in

Eq. (52) is based on block ILU(p) factorization69 of the Jacobian for the first order approximation of each domain.
The level of fill, p, was maintained between 0–1 to reduce storage requirements. Larger values of p typically offer
improved convergence characteristics for the linear system at the expense of storage. To further reduce computational
storage, reverse Cuthill-McKee matrix reordering is used to permute the Jacobian’s sparsity pattern into a band matrix
form with a small bandwith71.

IV. Results For Three-Dimensional Unstructured Mesh

The proposed finite-volume scheme was assessed in terms of both accuracy and stability through its application to
a laboratory-scale turbulent premixed flame. All computations were performed on a high performance parallel cluster
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Figure 4. Measured and predicted instantaneous temperature contours. Instantaneous experimental results are unfiltered in this figure.

consisting of 3,780 Intel Xeon E5540 (2.53GHz) nodes with 16GB RAM per node. The cluster is connected with a
high speed InfiniBand switched fabric communications link.

The lean turbulent premixed methane flame of Yuen and Gülder 72,73 was chosen for validation purposes in this
research. It was modelled using both the second- and fourth-order numerical schemes that were described previously
in Section III. The flame — which is a piloted, conical jet flame — is generated using an axisymmetric Bunsen-type
burner with an inner nozzle diameter of 11.2 mm. Yuen and Gülder 72,73 employed various perforated plates to generate
upstream turbulence over a range of intensities. A co-annular pilot flame surrounds the central jet in order to stabilize
the main flame. The original investigators used Rayleigh scatting to capture planar images of the flame and particle
image velocimetry of the cold flow to measure the instantaneous velocity field.

The particular flame configuration studied here is an atmospheric lean premixed methane-air flame with an equiv-
alence ratio of 0.7. It is the same configuration that Hernández-Pérez et al. 74 and Shahbazian et al. 75 employed for
their detailed numerical analysis. The turbulence intensity and length scale at the burner exit are u′/sL = 14.38 and
L = 1.79 mm, where sL is the laminar flame speed. The temperature and mean velocity of the reactants at the burner
exit plane is 300 K and 15.58 m/s, respectively. This flame lies in the thickened wrinkled flame or thin reaction zone
regime and has a turbulent Reynolds number of 324.

Both the second- and fourth-order numerical schemes described in Section III were applied to this bunsen flame.
A cylindrical computational domain with a diameter of 0.05 m and height of 0.1 m was subdivided into approximately
1.8 million hexahedral cells. In the mathematical model, the pilot flame was approximated by hot combustion prod-
ucts entering the domain at a velocity of 16.81 m/s. Turbulent velocity fluctuations that matched the experimental
measurements were prescribed at the inlet using the synthetic eddy method developed by Jarrin et al. 76 . A time step
size of 12.5 µs was employed for all calculations, which corresponds to a CFLphys ≈ 0.8.

The unfiltered instantaneous measurements are compared with the Favre-filtered predictions for temperature in
Fig. 4. Similar structures are observed in both the experiments and predictions. The predictions underestimate the
degree of wrinkling, with the 2nd-order predictions displaying significantly less wrinkling than the 4th-order predic-
tions. The 4th-order predictions have a thicker flame front and display more penetration of hot combustion products
into the inner core of fresh reactants. Low in the flame, the two sets of predictions are similar. However, pockets of
fresh unburned reactants begin to break off much lower in the 4th-order predictions. As a result, the 4th-order scheme
predicts a shorter flame which agrees better with the experimental measurements.

The differences in predicted flame height are evident in Fig. 5, which illustrates the time-averaged flame surface.
Here, the flame surface was defined by the location where the time-averaged value of the progress variable based on

14 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 C

lin
to

n 
G

ro
th

 o
n 

Ju
ly

 1
1,

 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
3-

25
67

 

 Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. 



x (mm)

y
 (

m
m

)

­10 ­5 0 5 10
40

45

50

55

60

65

70

75

80

Experimental

2nd­Order

4th­Order

Figure 5. Comparison between measured and predicted average flame heights for the Yuen and Gülder 72,73 flame. Contour lines define the location where
〈c〉 = 0.5.

temperature was equal to 0.5. The progress variable is defined in this research as

c =
T − Tu

Tbu − Tu
(53)

where Tu and Tb are the temperatures of the unburned and burned gases. The 2nd-order scheme greatly over-predicts
the measured flame height while the 4th-order scheme slightly under-predict the average height. Overall, the 4th-order
results show excellent agreement with the measured flame height.

The two-dimensional (2D) flame surface density (FSD) was extracted from the planar Rayleigh scattering images
and compared with predictions in Fig. 6(a). As in Fig. 5, the flame surface was defined as the location where 〈c〉 = 0.5.
2D FSD values were determined using the method developed by Shepherd 77 . Here, the instantaneous flame front
edges are superimposed onto the time-averaged progress variable field, 〈c〉, and the FSD is computed based on the
ratio of the flame length to the flame area. A similar procedure was applied to 2D slices extracted from the numerical
predictions. For direct comparison with the numerical predictions, the measurements for the instantaneous temperature
were filtered using a moving average filter with a width equal to the value used in the computations.

Both sets of predicted FSD values qualitatively reproduce the experimentally-observed trends. The FSD is zero
in the reactants and products, and peaks near a progress variable equal to c = 0.5. However, the predicted peak
FSD obtained from both numerical schemes is higher than the measured peak. The predictions provided by the 2nd-
order scheme are in better agreement with the measurements. They over-predict the experimental value by a factor
of approximately 1.2 whereas the 4th-order results over-predict the peak by a factor of 1.3. A higher predicted peak
value for the FSD is expected from the 4th-order scheme since a larger degree of flame wrinkling was observed by
this scheme in Fig. 4. This general over-prediction of the FSD is attributed to errors introduced by the eddy-break-up
turbulent combustion model.

Predicted and measured normalized probability density functions (PDFs) for the flame curvature are compared in
Fig. 6(b). These PDFs were computed for a flame surface corresponding to c = 0.5. The predicted curvature PDFs
agree favorably with the experiments, but both numerical schemes predict a slightly narrower PDF than observed in
the experiments. As with the predictions for the 2D FSD, these discrepancies in predicted flame curvature statistics
are attributed to errors introduced by the turbulent combustion model.

In terms of algorithm robustness and numerical stability, the fourth-order scheme was able to accurately and ro-
bustly capture the nearly discontinuous flame surface, illustrated in Fig. 4, without generating any unphysical numeri-
cal oscillations. Additionally, the smoothness indicator correctly identified regions where large turbulent fluctuations
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Figure 6. Measured and predicted (a) 2D flame surface density and (b) normalized PDF of 2D curvature for the Yuen and Gülder 72,73 flame. Results
correspond to a flame surface defined by a progress variable of c = 0.5.

were under-resolved by the employed computational mesh. This ensured the reliable convergence of the Newton-
Krylov algorithm at each physical time step.

V. Conclusions

A high-order finite-volume solver has been developed for the LES of low-Mach-number turbulent reactive flows on
unstructured meshes using the pseudo-compressibility approach. The scheme is a high-order variant of cell-centered,
Godunov-type, finite-volume, methods and uses the hybrid CENO reconstruction method recently proposed by Ivan
and Groth26,27.

The proposed finite-volume formulation was validated by comparing predicted solutions of a laboratory-scale
premixed turbulent flame to experimental measurements for temperature, flame surface density, flame curvature, and
flame height. Predictions were obtained using both the second- and fourth-order variants of the proposed algorithm.
Overall, both schemes predicted many of the experimentally observed trends. However, the fourth-order scheme
provided significantly improved predictions for average flame height and degree of wrinkling. Discrepancies between
predictions and measurements are largely attributed to the eddy-break-up turbulent combustion model.

Robust and monotone solutions were maintained throughout this study even in regions with sharp gradients, such
as across flame fronts. This demonstrates the effectiveness of the smoothness indicator, which lowers the order of
accuracy of the scheme near areas of discontinuities or under-resolved solution content in order to maintain mono-
tonicity. In general, the proposed scheme is able to accurately represent solutions with smooth extrema while robustly
handling under-resolved and/or non-smooth solution content. Combined with the parallel Newton-Krylov-Schwarz
solution algorithm, the proposed finite-volume scheme is able to obtain accurate solutions to the equations governing
low-Mach-number turbulent reactive flow.

Future work consists of further development and validation of the proposed Newton-Krylov-Schwarz CENO al-
gorithm for three-dimensional unstructured meshes. This includes applying the pseudo-compressibility approach to
more complex flows and incorporating a multi-block adaptive mesh refinement (AMR) algorithm78–81. The applica-
bility of CENO to AMR and the substantial benefits in terms of accuracy and computational savings have already been
demonstrated for body-fitted multi-block meshes26,27. More accurate models for turbulent combustion that incorporate
complex chemistry and detailed turbulence-chemistry interactions will also be included. One example is the presumed
conditional moment, flame prolongation of ILDM combustion model74,82.
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