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An accurate and robust parallel implicit adaptive mesh re�nement (AMR) algorithm is
proposed and described for the prediction of unsteady behaviour of laminar �ames. The
scheme is applied to the solution of the system of the partial-di�erential equations govern-
ing time-dependent, three-dimensional, compressible laminar �ows for reactive thermally
perfect gaseous mixtures. A high-resolution �nite-volume spatial discretization procedure
is used to solve the conservation form of these equations on body-�tted multi-block hexa-
hedral mesh. A local preconditioning technique is used to remove numerical sti�ness and
maintain solution accuracy for low-Mach-number, nearly incompressible �ows. A �exible
block-based octree data structure has been developed and is used to facilitate automatic
solution-directed mesh adaptation according to physics-based re�nement criteria. The data
structure also enables an e�cient and scalable parallel implementation via domain decom-
position. The parallel implicit formulation makes use of a dual-time-stepping like approach
with an implicit second-order backward discretization of the physical time, in which a
Jacobian-free inexact Newton method with a preconditioned generalized minimal residual
(GMRES) algorithm is used to solve the system of nonlinear algebraic equations arising
from the temporal and spatial discretization procedures. An additive Schwarz global pre-
conditioner is used in conjunction with block incomplete LU type local preconditioners
for each sub-domain. The Schwarz preconditioning and block-based data structure read-
ily allow e�cient and scalable parallel implementations of the implicit AMR approach
on distributed-memory multi-processor architectures. Numerical results for steady and
unsteady laminar co-�ow di�usion and premixed methane-air �ames demonstrate the ca-
pabilities of the proposed approach for a range of reactive-�ow applications. The scheme is
shown to accurately predict key characteristics of the di�usion �ames. For a premixed �ame
under terrestrially gravity, the scheme is also shown to accurately predict the frequency of
the natural buoyancy induced oscillations.

I. Introduction and Motivation

Numerical methods have become an essential tool for investigating a wide range of combustion phenom-
ena. However despite the signi�cant advances in numerical methods and computer hardware, obtaining
accurate and reliable solutions can still place severe demands on available computational resources. Many
approaches have been taken to reduce the computational costs of simulating combusting �ows. One suc-
cessful approach is to make use of solution-directed mesh adaptation, such as the adaptive mesh re�nement
re�nement (AMR) algorithms developed for aerospace applications.1�6 Computational grids that automati-
cally adapt to the solution of the governing equations are very e�ective in treating problems with disparate
length scales, providing the required spatial resolution while minimizing memory and storage requirements.
A second approach for coping with the computational cost of reacting �ow prediction is to apply a domain
decomposition procedure and solve the problem in a parallel fashion using multiple processors. Large mas-
sively parallel distributed-memory computers have the potential to provide many fold increases in processing
power and memory resources beyond those of conventional single-processor computers and would therefore

∗PhD Candidate, UTIAS, northrup@utias.utoronto.ca.
†Professor, UTIAS, groth@utias.utoronto.ca, Senior Member AIAA.

1 of 20

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 C

lin
to

n 
G

ro
th

 o
n 

Ju
ly

 1
1,

 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
3-

24
33

 

 21st AIAA Computational Fluid Dynamics Conference 

 June 24-27, 2013, San Diego, CA 

 AIAA 2013-2433 

 Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. 



provide an obvious avenue for greatly reducing the time required to obtain numerical solutions of combusting
�ows, as a number of studies have already shown.

Northrup and Groth,7 Gao and Groth,8�11 and Gao et al.12 have combined these two numerical ap-
proaches, producing a parallel AMR method for steady non-premixed laminar and turbulent combusting
�ows having both two-dimensional (planar and axisymmetric) and fully three-dimensional geometries. For
time-invariant �ows, a preconditioned nonlinear multigrid algorithm with multi-stage semi-implicit time
marching scheme as a smoother was proposed by Gao et al.12 to obtain converged steady-state solutions to
the governing partial di�erential equations. Although accurate solutions were obtained, the approach was
found not to be optimal, as in many cases, a large number of multigrid cycles and solution residual evalua-
tions were required to obtain steady-state �ame solutions. Moreover, because of these di�culties and other
issues, it was felt that a multigrid approach would not be well suited for unsteady reactive �ow applications.

In order to reduce the time to achieve a solution and deal with the numerical sti�ness of unsteady, three-
dimensional, reactive �ow problems, a parallel implicit AMR scheme is proposed and developed herein in
which a block-based AMR approach is combined with Newton's method. In the proposed approach, which
is based on extensions of the earlier work by Northrup and Groth13 for two-dimensional laminar reactive
�ows, Newton's method is used to solve the system of nonlinear algebraic equations arising from a cell-
centred, density-based, �nite-volume, spatial discretization procedure coupled with an implicit time-marching
scheme applied to the integral form of the governing equations for three-dimensional, fully-compressible,
laminar, reactive �ows. The spatial discretization is applied to each hexahedral computational cell of a
multi-block body-�tted mesh, with the latter allowing solution-directed mesh adaptation via a block-based
AMR technique.10,11 A Riemann-solver based �ux-function14 is combined with a local low-Mach number
preconditioning technique15 to provide both an accurate and robust upwind discretization, as well as alleviate
the numerical di�culties that arise with the low-Mach-number, nearly incompressible �ow regimes that
characterize the laminar reactive �ows of interest. A preconditioned generalized minimal residual (GMRES)
method is used to solve the resulting system of linear equations at each step arising from the application of
Newton's method. An additive Schwarz preconditioner is used in combination with local block incomplete
lower-upper (BILU) preconditioning to improve performance of this linear iterative solver so as to make
it of practical use. The unconditional stability of the implicit time-marching procedure leads to a robust
scheme for which time step selection is dictated solely by accuracy considerations and not those of stability.
Moreover, the Schwarz preconditioning and block-based AMR readily allow e�cient and scalable parallel
implementations of the implicit time-marching approach on distributed-memory multi-processor computers.
The algorithm targets solution of large-scale problems using 10,000-30,000 processor cores.

In what follows, the proposed parallel implicit AMR scheme is described in detail. This includes a
discussion of the mathematical and physical modelling used to describe the reactive laminar �ows of interest,
details of the proposed �nite-volume method and parallel implicit time-marching scheme, a discussion of the
parallel performance of the overall solution method, as well as a description of the results of the application
of the methodology to several laminar �ames. The proposed parallel implicit AMR method is shown to be
particularly well suited for predicting, in a reliable and e�cient fashion, complex unsteady reactive �ows
containing widely disparate spatial and temporal scales as encountered in many combustion processes and
demonstration of these capabilities is achieved here by through the application of the proposed scheme to
both unsteady laminar non-premixed and premixed �ames. In particular, the numerical results demonstrate
the promise of the proposed scheme for application to the prediction of combustion instabilities and thermo-
acoustic phenomena in practical combustor con�gurations.

II. Mathematical Description of Laminar Reactive Flows

A. Navier-Stokes Equations for a Compressible Reactive Mixture

For the laminar reactive �ows of interest here, the Navier-Stokes equations for a thermally-perfect, com-
pressible, gaseous, reactive mixture, which can be expressed using tensor notation as

∂

∂t
(ρ) +

∂

∂xi
(ρui) = 0 , (1)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj + δijp− τij) = ρgi , (2)
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∂

∂t
(ρE) +

∂

∂xi
[(ρE + p)ui − τijuj + qi] = ρuigi (3)

∂

∂t
(ρYk) +

∂

∂xi
(ρYkui + Jk,i) = ω̇k , (4)

are used to represent the transport and combustion of the gaseous fuels and oxidizers. Equations (1)�(3)
re�ect the conservation of mass, momentum, and energy for the mixture, ρ is the mixture density, ui is the
mixture velocity, E is the total speci�c energy of the mixture given by E = e+ 1

2uiui, e is the speci�c internal
energy, p is the mixture pressure, τij is the �uid stress tensor for the mixture, qi is the heat �ux vector, and
gi is the acceleration due to gravitational forces. Equation (4) is the mass concentration equation for species
k, where Yk is the species mass fraction, J̌k,i, is the mass �ux of species k due to di�usion processes, and ω̇k

is the time rate of change of the species concentration due to �nite-rate chemistry. For a thermally perfect
mixture, it follows that e =

∑N
k=1 Yk(hk + ∆h0

f,k)− p/ρ, where hk and ∆h0
f,k are the sensible enthalpy and

heat of formation for species k, respectively, N is the number of species, and the ideal gas equation of state
for the mixture is given by p =

∑N
k=1 ρYkRkT , where Rk is the species gas constant and T is the mixture

temperature.
Note that most solution techniques to date for reactive �ows are based on low-Mach number forms of

the Navier-Stokes equations. While accounting for the variable-density nature of such �ows, they are not
capable of capturing transient variations in the pressure �eld associated with acoustic phenomena. The use
of the compressible form of the Navier-Stokes equations readily allows for the often large density variations
associated with combusting �ows as well as the accurate prediction of both high-speed combustion and
thermo-acoustic phenomena. Nevertheless, care must be taken to deal properly with the low-Mach-number
limit for low-speed �ows.

B. Weak Conservation Form of Governing Equations

The Navier-Stokes equations given by Eqs. (1)�(4) above can be re-expressed in the following general weak
conservation form using matrix-vector notation:

∂U
∂t

+ ~∇ · ~F =
∂U
∂t

+ ~∇ · ~FH (U) + ~∇ · ~FE

(
U, ~∇U

)
= S (5)

where U is the vector of conserved solution variables given by

U =
[
ρ, ρui, ρE, ρYk

]T
, (6)

and ~F is the solution �ux dyad. The �ux dyad can be decomposed into two components and written as
~F = ~FH + ~FE where ~FH = ~FH(U) contains the hyperbolic or inviscid components of the solution �uxes
~FE = ~FE(U, ~∇U) contains the elliptic or viscous components of the �uxes. The latter depend on both the
solution and its gradient.

C. Thermodynamic and Transport Properties and Chemical Kinetics

For the numerical results presented herein, thermodynamic and molecular transport properties of each mix-
ture component needed to complete the mathematical description of a reactive mixture are prescribed using
the database compiled by Gordon and McBride.16,17 Perfect mixture rules are used to determine mix-
ture thermodynamic properties. In the case of the mixture transport coe�cients, Wilke's mixture rule18 is
adopted to evaluate the mixture viscosity. Similarly, the thermal conductivity for the mixture is found using
Mason and Saxena's19 mixture rule.

For the purposed of this numerical study, attention is restricted to the combustion of gaseous fuels and
methane is used as the representative fuel. Although full or detailed chemical reaction mechanisms are
available for describing methane-air (CH4-air) fuel-oxidizer combustion processes (e.g., refer to the detailed
GRI-Mech 3.0 chemical kinetic mechanism20), further computational convenience is achieved by employing
a the simpli�ed one-step chemical reaction mechanism of Westbrook and Dryer21 to represent the �nite-rate
reaction processes. This 1-step, 5-species model represents the combustion of methane by means of a single
forward reaction given by

CH4 + 2O2 → CO2 + 2H2O (7)
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cell (i, j, k)

∆Am

n̂m

(a) Hexahedral computational cell (b) Multi-block body-�tted mesh

(c) Multi-block body-�tted grid blocks (d) Quadtree data structure

Figure 1. Block-based AMR scheme for multi-block body-�tted mesh showing: (a) hexahedral computational
cell; (b) example of a multi-block body-�tted mesh; (c) multi-block body-�tted grid blocks following three
levels of re�nement; and (d) corresponding grid blocks and octree data structure.

and just �ve species are tracked: methane (CH4), oxygen (O2), carbon dioxide (CO2), water(H2O), and
nitrogen (N2). Nitrogen is assumed to be inert. The one-step mechanism obviously signi�cantly reduces
the complexity of the reactive �ow modelling yet retains many computational features of the more complete
problem. Additionally, many key physical features of methane combustion, such as the premixed laminar
�ame speed, can be described reasonably accurately with a well-tuned model. Future follow-on studies will
consider the use of more detailed chemical kinetic mechanisms for a wider range of both gaseous and liquid
fuels.

III. Parallel Implicit Finite-Volume Scheme with AMR

A. Finite-Volume Spatial Discretization

Numerical solutions of Eq. (5) are sought here by applying a cell-centred, �nite-volume, spatial discretization
procedure. A semi-discrete form of the governing equations can be derived from the application of the �nite-
volume method to the integral form of Eq. (5) for cell (i, j, k) of a three-dimensional multi-block mesh
composed of hexahedral computational cells as shown in Figs. 1(a) and 1(b). The resulting semi-discrete
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form can be written as

d
dt

[Ui,j,k(t)] = − 1
Vi,j,k

Nf∑
l=1

(
~F · ~n ∆A

)
i,j,k,l

+ Si,j,k = −Ri,j,k(U) , (8)

where each cell has Nf = 6 faces and standard mid-point rule quadrature is used to evaluate the solutions
�uxes through each face, providing second-order spatial accuracy. The variables ∆A and ~n represent the
surface areas and unit vectors normal to the cell faces, respectively. Formally, Ui,j,k, is the average value of
the conserved solution vector for cell (i, j, k) at a given instance in time as de�ned by the integral expression

Ui,j(t) =
1

Vi,j,k

y

Vi,j,k

U( ~X, t) dx dy dz , (9)

where ~X=[x, y, z] and Vi,j is the volume of the hexahedral cell of interest. Similarly, Si,j,k is given by

Si,j,k(t) =
1

Vi,j,k

y

Vi,j,k

S( ~X, t) dx dy dz , (10)

and approximated to second order using mid-point quadrature as Si,j,k ≈ S(Ui,j,k). The vector, Ri,j,k, is
referred to here as the solution residual vector.

B. Low-Mach-Number Local Preconditioning

As noted previously, the use of fully-compressible form of the Navier-Stokes equations allows for the automatic
treatment of density variations, high-speed �ows, and transient combustion phenomena with thermo-acoustic
coupling. However, the application of a fully-compressible �ow solver to a nearly incompressible �ow can
be computational problematic. For many laminar �ames, the �ow Mach number, M, can be very small
with M ≈ 0.001�0.003 and this value tends to decrease with increasing pressure. Hence, |~u| + a � |~u|
and the resulting coupled non-linear system of ordinary di�erential equations (ODEs) of the form given
by Eq. (8) arising from an upwind-based �nite-volume discretization procedure is both ill-conditioned and
can introduce excessive numerical dissipation. The local preconditioning technique proposed by Weiss and
Smith15 is applied here to alleviate these numerical di�culties in the low-Mach-number limit for nearly
incompressible �ows.

The low-Mach-number local preconditioning technique of Weiss and Smith15 is applied to the conservation
form of the governing Navier-Stokes equations by introducing a pseudo time, τ , and the preconditioning
matrix, Γ, and re-writing the equations as

Γ
∂U
∂τ

+
∂U
∂t

+ ~∇ · ~F = S . (11)

The corresponding semi-discrete form is then taken to be

Γi,j,k
d
dτ

[Ui,j,k] +
d
dt

[Ui,j,k] = −Ri,j,k(U) , (12)

where Γi,j,k is the preconditioning matrix that is applied locally to hexahedral cell (i, j, k). Steady-state
solutions in pseudo time of Eq. (12) are then sought for which ∂U/∂τ = 0. Appropriate choices of the

preconditioning matrix, Γ, do not a�ect the desired steady-state solution satisfying ∂U/∂t + ~∇ · ~F=S but
alter the eigenstructure of the governing partial di�erential equations such that the numerical sti�ness and
required dissipation can be controlled, making the reactive �ow problem more tractable. Refer to the original
paper of Weiss and Smith15 for the choice and details of the preconditioning matrix.

C. Numerical Flux Evaluation

The solution of Eq. (8) requires the evaluation of the moment �uxes at the mid-points of each cell face.

Upwind values for the hyperbolic �uxes, ~FH · ~n, for each cell face, l, are determined from the solution of a
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Riemann problem. Given the left and right values of the solution vectors, Ul and Ur, in the cells just to the
left and right of the face quadrature point, the hyperbolic �ux is given by

~FH · ~n = FH(Ul,Ur, ~n) , (13)

where the numerical �ux function FH is evaluated by solving a Riemann problem in a direction de�ned by
the normal to the cell face with initial data Ul and Ur. The approximate linearized Riemann solver of Roe14

is used here with an extension to account for mixture composition. This �ux function is further modi�ed by
applying the preconditioning matrix to the upwind dissipation term such that the numerical �ux takes the
form

FH (UL,UR) =
1
2

(FH,R + FH,L)− 1
2
Γ(U∗) |AΓ(U∗)| (UR −UL) , (14)

where AΓ(U)=Γ−1A(U) and A(U) is the Jacobian of the inviscid �ux with respect to the conserved solution
variables. This preconditioning of the Roe �ux provides an improved scaling of the dissipation terms in the
low-Mach-number limit and avoids the introduction of excessive numerical dissipation. The left and right
solution vectors, Ul and Ur, of Eqs. (13) and (14) are determined via a least-squares, piece-wise, limited,
linear solution reconstruction procedure in conjunction with the limiter of Venkatakrishnan.22 The latter
provides a second-order-accurate spatial discretization for smooth solutions.

The elliptic �uxes arising from thermal di�usion are evaluated using a second-order centrally weighted
scheme of the form

~FE · ~n = FE(Um, ~∇Um, ~n) = ~FE(Um, ~∇Um) · ~n , (15)

where Um is the interpolated value of the solution vector at the mid-point of the face or edge and the face
gradient, ~∇Um, is evaluated a weighted cell-face gradient approach of Mathur and Murthy.23

D. Dual-Time-Stepping-Like Approach and Implicit Time-Marching Scheme

The semi-discrete form of the governing equations given in Eq. (8) form a coupled set of non-linear ODEs. For
unsteady �ows, time-dependent solutions are obtained by employing a dual-time-stepping-like procedure.24

In the proposed approach a modi�ed residual is de�ned by

R∗(U) =
dU
dt

+ R(U) . (16)

and steady-state solutions in pseudo time are sought to the ODEs

Γ
dU
dτ

+ R∗(U) = 0 , (17)

satisfying R∗(U) = 0. Application of an implicit second-order backward di�erence time-marching scheme
with time step, ∆t, to the physical time derivative yields

R∗(U(n+1)) =
3U(n+1) − 4U(n) + U(n−1)

24t
+ R(U(n+1)) = 0 , (18)

The preceding non-linear algebraic equations de�ne the solution U(n+1) given U(n) and U(n−1) at the
previous time steps.

E. Block-Based Adaptive Mesh Re�nement

Solution of Eq. (18) yields area-averaged solution quantities de�ned within hexahedral computational cells.
These cells are embedded in structured, body-�tted, grid blocks consisting of Ncells = Ni × Nj × Nk cells
as depicted in Fig. 1, where Ni, Nj and Nk are integers representing the number of cells in each logical
coordinate direction of the grid block. The multi-block mesh and spatial discretization procedure described
above readily allows for the application of solution-directed block-based AMR.7,10�12 The block-based AMR
algorithm developed here builds on the previous work by Gao et al.9,11,12,25 for three space dimensions. In
this previous work, the focus was primarily on re�nement and the application was restricted to steady-state
�ow problems. Assumptions concerning grid block connectivity were made that restricted the generality of
the approach, speci�cally the approach used for determining block connectivity was not su�ciently general
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to allow for both re�nement and coarsening dynamically in unsteady �ow applications. A more generalized
block connectivity and data structure has been developed here that allows for both re�nement and coarsening
as required for unsteady �ows with a corresponding wider range of multi-block mesh topologies.

In the proposed AMR scheme, local re�nement and coarsening of the mesh is carried out by division
and merging of solution blocks, respectively, as depicted in Figs. 1(b) and 1(c). Standard restriction and
prolongation operators are used to evaluate the solution on all blocks created by the coarsening and division
processes. The solution-directed adaptation of the multi-block, body-�tted, hexahedral meshes is based
on physics-based re�nement criteria, such as the gradients of scalar quantities and the divergence and curl
of vector quantities (blocks containing high and low values of the selected criteria are �agged for either
re�nement or coarsening). Furthermore, changes in mesh resolution at grid block interfaces are restricted to
at most one level. A �exible block-based hierarchical octree data structure has been developed and is used
to keep track of the mesh adaptation and connectivity between grid blocks, an example of which is given in
Figs. 1(c) and 1(d). The octree data structure allows for general unstructured connectivity of the root grid
blocks. Solution information is shared between adjacent blocks through the use of �ghost� or �halo� cells
and the �ux conservation properties of the �nite-volume scheme are preserved by using the interface �uxes
computed on re�ned blocks to correct the interface �uxes computed on adjacent coarser blocks. Refer to the
recent papers by Northrup and Groth7 and Gao and Groth,10,11 and Gao et al.12 for further details of the
parallel AMR scheme.

F. Newton's Method

Newton's method is used for the solution of the coupled non-linear algebraic equations of Eq. 18 as de�ned
by the solutions quantities in each computational cell of the grid. This requires the solution of the following
linear system of equations[(

3
24t

)
I +

∂R
∂U

]
4U(n+1,k) = J∆U(n+1,k) = −R∗(U(n+1,k)) , (19)

for the solution change ∆U(n+1) =U(n+1) −U(n) at time level n, at each Newton step or iteration level, k.
Using the previous time step as the initial estimate, U(n+1,k=0) = U(n), successively improved estimates for
the solution, U(n+1,k), are obtained by solving Eq. 19 at each step, k, of the Newton method, where J is the
modi�ed residual Jacobian. The improved approximation for the solution is then given by Un+1 =Un+∆Un.
The iterative procedure is repeated until an appropriate norm of the solution residual is su�ciently small,
i.e., ||R∗(U(n+1,k+1))||2 < ε||R∗(U(n+1,k))||2 where ε is some small parameter (typically, ε ≈ 10−2�10−3).

As noted above, each step of Newton's method requires the solution of a system of linear algebraic
equations of the form

Jx = b . (20)

This system is large, sparse, and non-symmetric and a preconditioned GMRES method26,27 is used for its
solution. In particular, a restarted version of the �exible GMRES algorithm, GMRES(m), is used, where m
is the number of steps after which the GMRES algorithm is restarted. Application of this iterative technique
leads to an overall solution algorithm with iterations within iterations: the �inner loop� iterations involving
the solution of the linear system and the �outer loop� iterations associated with the solution of the nonlinear
problem. An inexact Newton method is adopted here in which the inner iterations are not fully converged
at each Newton step. The inner iterations are carried out only until ||R∗ + J∆U||2 ≤ ζ||R∗||2, where ζ is
typically in the range 0.01�0.5. As discussed by Dembo et al.,28 an exact solution of the linear system is not
necessary for rapid convergence of Newton's method.

Preconditioning is required for the GMRES algorithm to be e�ective. Right preconditioning of the form

(JM−1)(Mx) = b , (21)

is used here where M is the preconditioning matrix. An additive Schwarz global preconditioner with variable
overlap27,29,30 is used in conjunction with local BILU preconditioners for each sub-domain. The local
preconditioner is based on a block ILU(f) or BILU(f) factorization of an approximate Jacobian for each
subdomain. Here, f is the level of �ll. This combination of preconditioning �ts well with the block-based
AMR described previously and is very compatible with domain decomposition methods, readily enabling
parallel implementation of the overall Newton method. Rather e�cient parallel implementations of implicit
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algorithms via Schwarz preconditioning have been developed by Keyes and co-researchers and successfully
applied to the prediction of transonic full potential, low-Mach-number compressible combusting, and three-
dimensional inviscid �ows.29,31,32

As the GMRES algorithm does not explicitly require the evaluation of the global Jacobian matrix, J, a
so-called �matrix-free� or �Jacobian-free� approach can be adopted and is used here. Numerical di�erentiation
based on Fréchet derivatives is used to approximate the matrix-vector product JM−1x as follows:

JM−1x ≈ R(U + εM−1x)−R(U)
ε

+
3M−1x

24t
, (22)

where R(U + εM−1x) is the residual vector evaluated at some perturbed solution state and ε is a small
scalar quantity. Although the performance of the Jacobian-free method is sensitive to the choice of ε, Neilsen

et al.33 have found that ε = ε◦/||x||1/2
2 seems to work well, with ε◦≈10−8�10−7.

G. Parallel Implementation

As indicated above, the multi-block, body-�tted, AMR scheme and and additive Schwarz global precondi-
tioning technique used in the GMRES algorithm are well suited to the parallel implementation of the parallel
implicit �nite-volume AMR scheme on distributed-memory multi-processor architectures via domain decom-
position. Because of the self-similar nature of the grid blocks, Domain decomposition is a achieved here by
simply distributing the the blocks making up the computational mesh equally among available processors
and/or processor cores, with more than one block permitted per core. A Morton ordering space �lling curve
is used to provide nearest-neighbour ordering of the solution blocks in the multi-block hexahedral AMR
mesh for more e�cient load balancing.34 Parallel implementation of the overall scheme has been carried out
using the MPI (message passing interface) library.35,36 Message passing of information between processors
is largely limited to the asynchronous communication of ghost-cell solution values as well as communication
associated with the evaluation of norms of global residual vectors in the Newton method.

All of computations presented herein were performed on a high performance parallel cluster consisting
of 3,780 Intel Xeon E5540 nodes with two quad-core 2.53 GHz Intel Xeon processors and 16GB RAM
main memory per node. The cluster is connected with a high-speed low-latency In�niBand switched fabric
communications link.

IV. Numerical Results

A. Unsteady Laminar Di�usion Flame

The proposed parallel implicit AMR algorithm has been applied to the solution of a forced, time-dependent,
methane-air co-�ow laminar di�usion �ame in three space dimensions. In particular, the solution of the �ame
studied by Day and Bell,37 and Dworkin et al.38 is considered. The �ame boundary and initial conditions
are the same as those used in the previous studies and are illustrated along with the burner geometry in
Figure 2(a).

The computational domain is cylindrical in shape with a radius of r = 5 cm and height ofH = 10 cm. The
far-�eld or outer wall boundary is taken to be a free-slip boundary along which inviscid re�ection boundary
data is speci�ed. The top or outlet of the �ow domain is open to a stagnant reservoir at atmospheric pressure
and temperature and Neumann-type boundary conditions are applied to all properties except pressure which
is held constant. The bottom or inlet is subdivided into four regions. The innermost region (r = 0 to
r = 2 mm) is the fuel inlet or jet, which injects a nitrogen diluted methane fuel mixture (cCH4 = 0.5149,
cN2 = 0.4851, cO2 = 0, cCO2 = 0, cCO = 0, and cH2O = 0) at 298 K with a parabolic axial velocity pro�le. The
time-variation in the �ame is produced by imposing a sinusoidal axial velocity �uctuation across the fuel jet,
vz = 70(1− r2/R)(1 +α sinωt) cm/s where α is the velocity amplitude and ω is the frequency of oscillation.
Matching the experiments of Dworkin et al.,38 the velocity amplitude was set at 50% at a frequency of 20Hz.
The next region (δ = 0.38 mm) is a small gap associated with the annular wall separating the fuel and
oxidizer. The third region (r = 2.38 mm to r = 2.5 cm) is the co-�owing oxidizer, in this case air at 298K
(cO2 = 0.232, cN2 = 0.768, cCH4 = 0, cCO2 = 0, cCO = 0, and cH2O = 0), with a uniform velocity pro�le of 0.35
m/s. The �nal outer region of the lower boundary (r = 2.5 cm to r = 5 cm) is again a far-�eld boundary
along which free-slip boundary conditions are applied.
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1R
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Constant Pressure

Free−Slip
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H

δ

(a) Laminar co-�ow �ame geometry (b) Steady laminar co-�ow �ame

Figure 2. (a) Schematic showing the co-�ow laminar di�usion �ame domain geometry and boundary conditions;
and (b) initial steady 3D methane-air co-�ow laminar di�usion �ame computational grid with 3 levels of
re�nement.

The solution domain is initialized with a uniform solution state corresponding to quiescent air at 298K,
except for a thin region across the fuel and oxidizer inlets, which is taken to be air at 1500 K so as to ignite
the �ame. Additional details concerning the setup for this di�usion �ame can be found in the papers by Day
and Bell,37 and Dworkin et al.38

The �ame was calculated by �rst letting the steady-state �ame develop and using 3 levels of mesh
re�nement (4 mesh levels) as shown in Figure 2(b), with the fuel �ow velocity held constant at 70 cm/s,
then four-full periods of the �ame oscillation were calculated to avoid any non-periodic oscillations created
during start-up. Newton's method was used with a GMRES tolerance of 0.1, ILU(0) preconditioner and at
each time step the Newton iterations were converged two orders of magnitude, to a maximum of 10 Newton
steps, where 5-7 is typical. The approximate Jacobian preconditioner was only updated for the �rst Newton
step of each time-step, unless the number of GMRES iterations required increased. A �xed time-step of 0.05
ms was used during the unsteady calculation and mesh re�nement was carried out every 2.5 ms based on the
gradient of temperature. Figure 3 shows the resulting cross-section isotherms and adapting mesh at three
times through the �ames periodic �uctuation of 50 ms.

The predicted �ames shape and structure matches well with the previous experimental results of Mo-
hammed et al.39 and numerical results of Dworkin et al.38 The most signi�cant di�erence is in the over
prediction of temperature, however this is related to the use of the simpli�ed non-reversible one-step re-
action mechanism used to model the methane-air chemistry in the present work, whereas a more detailed
mechanism was used in the previous studies.

B. Unsteady Premixed Di�usion Flame

The previous combustion case studied the well characterized and predictable behaviour of non-premixed
�ames where the fuel and oxidizer are mixed through di�usion. In a premixed �ame the fuel and oxidizer
are �rst mixed outside the combustion chamber and the resulting mixture is injected into the combustion
chamber. Conical methane-air premixed laminar �ames, unlike di�usion �ames, do not typically form a
steady �ame, but instead have an oscillation or �ickering of the �ame tip. Buoyancy-induced interactions
between the hot products and the cold environment produces velocity �uctuations in the reactants which
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Figure 3. Time-varying methane-air co-�ow laminar di�usion �ame cross-section isotherms at three intervals
calculated each with 3 levels of re�nement.

results in �ickering of the �ame tip.
A number of aspects of the �ame/buoyancy coupling in conical and V-shaped premixed �ames have been

investigated experimentally such as the frequency as a function of �ow velocity, pressure, and gravitational
levels.40,41 Kostiuk and Cheng42,43 have also shown that premixed �ame oscillations with characteristic
frequencies of 10�20 Hz can be correlated to a wide range of system parameters. Recent experimental
investigations into �ame-intrinsic Kelvin�Helmholtz instabilities in premixed �ames by Guahk et al.44 in
inverted conical �ames showed that the Strouhal number, dimensionless frequency, can be correlated to the
Richardson number.

Experimental and numerical comparisons were performed by Shepherd et al.45 using the numerical
approach developed Day and Bell37 for laminar di�usion �ames. In this research they found a quasi-periodic
�ame �icker could be developed given the correct conditions namely the correct balance of equivalence ratio
and inlet mass �ow. The premixed methane-air �ame studied herein attempts to reproduce the quasi-periodic
�ame oscillations using the proposed time-accurate parallel implicit AMR algorithm.

The �ame con�guration is very similar to that used for the laminar di�usion �ame cases, however this
time the fuel being injected through the inlet is replaced with a premixed methane-air mixture at a �xed
equivalence ratio. The same initial and boundary conditions described previously and shown in Figure 2(a)
are adopted, however the size of the computational domain used is much larger with a height of 0.3m and
outer radius of 0.1m to avoid any boundary condition a�ects on the solution. The premixed reactants with
a φ = 0.8 are injected into the domain through a 0.025 m diameter inlet with a parabolic velocity pro�le
with a peak velocity of 0.73 m/s. The gas mixture in the domain is quiescent standard atmospheric air and
there is no co-�ow.

The time-accurate parallel implicit algorithm was used to predict the behaviour of the unsteady premixed
�ame with a GMRES tolerance of 0.05 and ILU(0) preconditioning, with each time step of the Newton
iteration converged two orders of magnitude, to a maximum of 10 Newton steps. The approximate Jacobian
preconditioner was only updated for the �rst Newton step of each time-step, unless the number of GMRES
iterations required increased. A �xed time-step of 0.01 ms was used during the unsteady calculation and
mesh re�nement was carried out every 0.1 ms, 10 steps, based on the gradient of temperature, and 3 levels of
mesh re�nement (4 mesh levels) were used. The calculation was run for 0.75 s to allow the solution to evolve
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(a) 0.4s (b) 0.44s (c) 0.48s

Figure 4. 3D solution of a time-varying methane-air co-�ow laminar premixed �ame at 3 time intervals during
its approximately 10Hz periodic cycle, with a) 12,707 b) 12,539 and c) 12,553 (8×8×8 cell) blocks each with 4
levels of re�nement.
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(a) Temperature Isotherms

(b) Block boundaries

Figure 5. 3D solution xz cross-section (y=0) of a methane-air premixed �ame showing the (a) computed
isotherms and (b) block boundaries with four levels of re�nement at 6 time intervals showing the approximately
10 Hz buoyancy driven oscillations.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Comparison of (a-d) Schlieren images of experiments by Kostiuk et al.41 and (e-h) numerical 2D
cross-section density contours of an unsteady laminar premixed methane air �ame with gravity.

toward a quasi-periodic solution in which the in�uences of the initial conditions and startup transients are
e�ectively eliminated.

The resulting solution, as shown in Figure 4, matches well with the 2D axisymmetric results of Shepherd et
al.45 in terms of temperature, �ame front size, and centerline velocities. When compared with the Schlieren
imagery of the Kostiuk and Cheng41 experiments, the 2D density distribution cross-sections at y=0 as given
in Figure 6 also match reasonably well, showing the buoyancy interaction of the hot products and cold
ambient air that produces the unsteady oscillations. Figure 5(a) shows six predicted isotherm cross-sections
in the y=0 plane over 0.1 s time period showing the formation and evolution of the �ame edge vortices.
The adaptive mesh re�nement indicated by the block boundaries in Figure 5(b) would seem to accurately
track and resolve the vortices as they are shed and propagate downstream of the �ame. The predicted �ame
tip height is nominally 22 mm which matches well with Shepherd's et al.45 experimental estimates of the
measured �ame height that was reported to be about 20 mm. The oscillation frequency can be determined
by tracking the centerline axial (z) velocity, Figure 7(a), verses time. When plotted in frequency space,
shown in Figure 7(b), a dominant peek at 10.4Hz is observed which is the the periodic frequency of the
�ame oscillations. This agrees well with Shepherd's et al45 measurement of 10.2 Hz and consistent with
Kostiuk and Cheng42's characterization of premixed methane �ame oscillations in the 10�20Hz range.

Overall the combination of the time-accurate parallel implicit algorithm with dynamic AMR does a very
good job at resolving the buoyancy driven instability. The adaptive mesh re�nement, as mentioned, was
required to provide signi�cant resolution to resolve the thin �ame front and allow the buoyancy induced
oscillations to develop naturally. The agreement with previous numerical and experimental studies is quite
good considering the limitations of the reduced methane-air chemical mechanisms.

V. Algorithm Performance

A. Solution Performance Comparison

To investigate the performance of the proposed time-accurate parallel implicit algorithm, referred herein
as BDF2-NKS, two contemporary time-marching schemes were used for comparison. An explicit two-step,
Runge-Kutta, time-marching scheme, RK2, without the temporal low-Mach-number preconditioning applied
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(a) Axial Velocity (b) Frequency

Figure 7. Premixed methane-air (a) centerline �ow velocity �uctuations at an axial height of z=0.1 m as a
function of time and after (b) spectrum analysis shows a dominant frequency of 10.4 Hz.

as that would break time accuracy, as well as the same BDF2 implicit time scheme implemented within a
dual-time stepping procedure using an explicit multi-stage optimally-smoothing scheme as the pseudo-time
stepping method, referred herein as BDF2-DTS. The time-step of the Runge-Kutta scheme is limited by
the CFL condition, whereas the implicit BDF2 schemes are not. Nevertheless, the solution accuracy of the
implicit methods are a�ected by inner loop convergence tolerance.

Unlike for steady problems where a direct comparison of convergence histories shows the algorithms
performance for time-accurate problems the only fair comparison is to compare overall solution CPU time
at an equivalent solution accuracy for the same simulation or problem. The methodology used herein for
comparison is similar to that used by Tabesh et al.46 when comparing computational costs of various
time-marching methods.

The performance is investigated using the solution of the 3D laminar di�usion �ame discussed previously.
As the solution is periodic it provides a rather good test case for comparing the time-marching schemes.
The accuracy of the solutions is assessed by comparing the solution of the axial component of the center-line
velocity, w, over one full oscillation, which for this case is 0.05 s. As there is no analytical solution for
this case, the solution error, werror, is calculated with reference to a computed solution, wi,ref shown in
Figure 8, calculated with a very small time step. Equation (23) shows the error calculation where N is the
total number of time steps.

werror =

√√√√√ N∑
i=0

(wi − wi,ref )2

N
(23)

A 126 (8×8×8 cell) block mesh with 64,512 computational cells was used without any dynamic adaption
to ensure consistent solutions with the di�erent time-marching schemes. Initially the problem was run for
10 full periods (0.5 s) to remove any initial condition hysteresis a�ects and ensure a period solution was
achieved. The BDF2 schemes were run with physical time steps, ∆t, of 0.1, 0.05, 0.025, 0.01, and 0.005 ms
corresponding to 500, 1000, 2000, 5000, and 10000 steps per period respectively. The RK2 solutions were
run with CFL's of 0.3, 0.2 and 0.1, as 0.3 was found to be the largest stable value for this method. For the
NKS-BDF2 an Newton tolerance of 0.01 with a GMRES tolerance of 0.01 was used.

The performance results depicted in Figure 9 provide a comparison of the various algorithms solution
error, werror verses the associated computational time. It is clear that the proposed BDF2-NKS algorithm
outperforms the other methods requiring considerably less computational time to achieve the same solution
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Figure 8. Time-accurate driven 3D laminar di�usion
�ame centerline velocity w at z=0.1 m for one period
at 20 Hz oscillation (0.05 s).

Figure 9. Unsteady algorithm performance compar-
isons of BDF2-NKS, BDF2-DTS, and RK2 for the
solution of a time-accurate 3D driven laminar di�u-
sion �ame.

accuracy. The RK2 scheme is considerably handicapped by having to take very small time steps to maintain
stability, and also not being able to utilize the low-Mach-number preconditioning of the numerical �ux to
maintain solution accuracy. The BDF2-DTS scheme does bene�t from the greater stability of the implicit
time scheme allowing it to use much large time-steps; however, it requires a far larger number of inner
loop iterations of the multi-stage optimally smoothing scheme which completely o�sets any possible gains
in computational savings. Much like the performance of the steady solutions, the unsteady NKS solver
outperforms the other methods by signi�cantly reducing the number of residual evaluations that are required.
For the reactive �ow cases, the cost of the residual evaluation is very high due to the thermally perfect gas
relationships and the chemical source terms. Thus the residual evaluation cost dominates over the extra
costs associated with the NKS, i.e. preconditioner and GMRES overhead, resulting in the very signi�cant
performance gains in overall solution time.

B. Parallel Performance

Estimates of the parallel performance and scalability of the proposed parallel implicit AMR algorithm for
the laminar di�usion �ame problem are shown in Figure 10. The performance evaluation was carried out on
a cluster of 2-way 4-core Intel Xeon E5540 CPU's connected with DDR In�niband. The �gure depicts the
strong scaling of the algorithm. In particular, the relative parallel speed-up, Sp, given by Sp = (t1/tp)p, and
the relative parallel e�ciency, Ep, de�ned by Ep = Sp/p, for a �xed-size problem (�xed total computational
work) as a function of the number of processors, p, are both provided where tp is the total processor time
required to solve the problem using p processors, and t1 is the processor time required to solve the problem
using a single processor.

The performance curves of Figure 10 are compared to the idealized results for up to 6400 processors for a
methane/air di�usion �ame calculation on a mesh consisting of 6400 8× 8× 8 cell solution blocks (3,276,800
cells). Although, there are some ine�ciencies in the Schwarz preconditioning for this problem, it is quite
evident that the speed-up is nearly linear and the e�ciency remains above 80% for up to 6400 processors,
the maximum number considered in this performance assessment.

C. E�ects of Additive Schwarz Preconditioning

The strong parallel scaling simulation results described previously were performed using a �xed number of
iterations and a �xed domain decomposition, thus the number of total blocks were held constant, regardless
the number of processor cores being used. These results portray accurately the algorithms ability to scale
well with the increases in communication; however, they do not assess or include the expected degradation
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Figure 10. Parallel performance of the Newton algorithm for laminar di�usion �ame calculation on a mesh
consisting of 6400 8× 8× 8 cell solution blocks (3,276,800 cells) showing the relative parallel speed-up (strong
scaling), Sp = (t1/tp)p, and parallel e�ciency, Ep, as a function of the number of processors, p, used in the
calculation.

in performance of the parallel implicit algorithm caused by the domain decomposition procedure and the
Schwarz preconditioning. Typically the decomposition changes as the number of processors are increased as
further subdivisions of the domain are required. For explicit calculations this typically does not change the
underlying algorithm or convergence rates, it just adds the increased overhead involved with communication
at the boundaries. However, in the proposed parallel implicit algorithm, where the domain decomposition
procedure is also used as the global Schwarz preconditioner, the algorithms convergence can be deleteriously
a�ected by the decomposition. As more blocks are used, the less accurate the approximate inverse that
results from the Schwarz preconditioner. As a result, typically a greater number of GMRES iterations to
converge the problem are required, resulting in a higher computational cost. This was well illustrated by
Groth et al.47 for 2D inviscid �ow problems.

As the Schwarz preconditioner is tied to the domain decomposition in this implementation, the e�ect of
the preconditioner can be investigated by adjusting the partitioning (i.e. the number of blocks) for a mesh
with a �xed number of cells. As the number of blocks increases the number of cells per block decreases and
thus the global Schwarz preconditioner subdivides the global linear system into smaller and smaller local
systems.

The in�uence of the Schwarz preconditioning and the resulting degradation in overall performance is
investigated using the solution of a steady three-dimensional co-�ow methane-air laminar di�usion �ame.
The overall solution was converged four orders of magnitude using a GMRES tolerance of 0.01 and ILU(0).
An initial 13 (12×12×72 cell) block grid with 134,784 cells total is subdivided into 26, 52, 104, 208, 312,
and 624 blocks as shown in Figure 11 with the 624 block portioning having only 6×6×6 cells per block. All
other algorithm and grid parameters, beside the block partitioning, are held constant.

Figure 12(a) shows the convergence histories for all 7 cases computed using 1 block per processor core.
As is expected the 13 block case, with the least amount of Schwarz preconditioning, converges fastest and
the 624 block slowest. The spread however is only about 20%, which is much better than 50% seen in the
previous two-dimensional inviscid cases by Groth et al.47 When looking at the solver statistics given in
Table 1, the overall NKS iterations are relatively constant; however the total number of GMRES iterations
increases by about 20%. This is consistent with what is expected as the global GMRES problem becomes less
well conditioned as it is subdivided, requiring a greater number of iterations to achieve a speci�ed tolerance.
Figure 12(b) shows the strong parallel scaling for this case and even with the combined e�ects of the Schwarz
preconditioner and parallel communication overhead parallel e�ciency at 624 cores is just under 80%.

In summary, it would seem that overall the Schwarz preconditioner has a less of a detrimental e�ect on
solution performance for the 3D reactive case than for the 2D inviscid cases of Groth et al.47 Also the 3D
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(a) 13 blocks (b) 26 blocks (c) 52 blocks (d) 104 blocks

(e) 208 blocks (f) 312 blocks (g) 624 blocks

Figure 11. 3D laminar di�usion �ame 134,784 cells mesh partitioned (a) 13, (b) 26, (c) 52, (d) 104, (e) 208 ,
(f) 312, and (g) 624 blocks.
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(a) Convergence histories (b) Strong scaling

Figure 12. 3D Steady Laminar Di�usion �ame computed with 134,784 cells and partitioned with 13, 26, 52,
104, 208, 312, and 624 blocks showing (a) the e�ect of the Schwarz preconditioner on convergence rate and
(b) the associated strong parallel scaling.

reactive �ow case has a much more expensive residual evaluation enabling greater parallel e�ciency, due to
the increased computation to communication ratio, ultimately reducing the overall time to achieve a solution.

Blocks NKS Iterations GMRES Iterations CPU time (min) Wall time (min)

13 4,501 37,155 48,446 3,726

26 4,521 37,548 48,988 1,884

52 4,573 37,622 50,421 969

104 4,552 38,105 50,871 489

208 4,596 41,313 53,186 254

312 4,567 42,625 53,572 171

624 4,640 46,527 60,236 96

Table 1. Summary of NKS algorithm solution statistics for the same 134,784 cells mesh with varying levels of
Schwarz preconditioning determined by the number of blocks.

VI. Conclusions

A 3D parallel implicit AMR scheme has been developed for solving unsteady laminar reacting �ows. The
combination of �nite-volume discretization procedure, parallel block-based AMR strategy, low-Mach-number
preconditioning, dual-time-stepping-like approach, and Newton method solution procedure has resulted in
a powerful and highly scalable computational tool for predicting a wide range of unsteady laminar reactive
�ows. Future research will involve the consideration of anisotropic mesh re�nement strategies, the investi-
gation of high-order temporal and spatial discretization procedures for reactive �ows, and the application of
the computational tool to the prediction of both turbulent reactive �ows as well as combustion instabilities
and thermo-acoustic phenomena.
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