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A high-order implementation of a residual-distribution scheme is proposed with a new
mechanism for enforcing nonlinear stability. Modern second-order accurate residual distri-
bution methods satisfy a positivity condition to achieve nonlinear stability in the vicinity
of unresolved gradients. While this approach is very effective at capturing discontinuities,
a degradation in accuracy and spatial order of convergence can occur for smooth flows.
Additionally, the best non-linear techniques have proven difficult to extend to systems of
equations. High-order (beyond second-order) implementations of the residual-distribution
method provide more information about the local variation of the solution. This extra in-
formation is used to implement a steady and element-local analogy to the nonlinear stability
condition of bounded total-variation. Essentially, the scheme examines the variation in the
solution and selectively applies the positivity condition only in mesh elements where the
variation is deemed to be too high. Steady solutions of scalar equations in two-dimensions
illustrate that the method shows potential for recovering the desired accuracy in smooth
regions while satisfactorily damping oscillations near discontinuities.

I. Introduction

R
esidual-distribution (RD) methods attempt to improve the accuracy of multidimensional solutions
to hyperbolic partial differential equations with respect to current techniques such as the Godunov-

type finite-volume (FV) method. There is some dissatisfaction with FV methods because the process for
extending a physical and rather elegant one-dimensional Godunov scheme to multiple dimensions is to apply
the one-dimensional scheme in multiple directions. In this process, the splitting of the flux becomes biased
in directions normal to the faces of the computational cells and the schemes are no longer quite as physical.
Desirable numerical properties, such as nonlinear stability, also simply inherit (possibly excessively) from
the one-dimensional scheme. Although this dimensional splitting has been proven to work quite well in
practice, improvements can be made. As shown by Roe and Sidilkover,1 dimensional splitting is about the
worst technique one can use for first-order solutions. Residual distribution methods attempt to correct this
deficiency by explicitly modelling the underlying multidimensional physics.

One of the main advantages of the RD method is that it features a multidimensional positivity property.2

The first-order positive formulation also features much less numerical diffusion than first-order dimensionally-
split Godunov-type schemes.1 Consequently, it is a very effective method for capturing discontinuities. The
improved resolution of discontinuities as compared to FV methods has been illustrated in previous studies
for both steady3–5 and unsteady6, 7 flows.

Unfortunately, extending the positive linear distribution schemes such that they are also linearity-
preserving (and can therefore produce second-order solutions in smooth regions) has proven challenging.
Solutions of smooth flows obtained with a nonlinear (second-order and monotone) formulation can exhibit
much less accuracy than linear (second-order and non-monotone) formulations. More importantly, the spa-
tial order-of-convergence can degrade significantly below second-order for the nonlinear formulation. The
exact mechanism behind the degradation of spatial convergence is not fully understood but it would seem
to be related to the behaviour of some limiters in smooth regions. While a method that does not degrade
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in accuracy is known (and will be presented), it has proven difficult to extend it to systems of equations. In
this work, the problem of degraded accuracy is approached from a different perspective, by examining the
variation of the solution to provide the non-linear coupling necessary for a scheme that is both monotone and
linearity-preserving. The positive nonlinear stability condition of current RD schemes is thereby weakened
by only applying it in selected elements.

Inspired by FV methods, which achieve nonlinear stability by examining the shape of a reconstructed
solution over several cells,8 a similar approach is sought for the RD method. The proposed formulation,
analogous to a total-variation-bounded scheme and specifically labeled element-variation-bounded (EVB)
scheme from here on, makes use of an interpolation that encompasses several elements. The extra information
from the expanded stencil is also used to increase the spatial order-of-accuracy. The compact stencil inherent
to the RD method is retained since the high-order reconstructions only use the minimum number of vertices
necessary to complete the interpolation.

There are two primary motivations for this work. The first is the argument that, in the vicinity of
discontinuities, the interpolation of the solution must be linear. It is not sufficient to merely use a monotone
distribution scheme. This argument will be supported by the numerical results to follow. The second
motivation is to circumvent the lack of accurate, monotone, and stable RD schemes for solving systems
of equations such as the Euler equations. The proposed technique for detecting large unresolved gradients
would allow for the application of monotone nonlinear RD schemes only in those regions and highly-accurate
linear RD schemes elsewhere.

The paper is organized as follows. In section II, fundamentals of the residual distribution method are
presented along with the method of high-order construction. Deficiencies of positive RD formulations are
illustrated by second-order solutions to smooth scalar flows. In section III, the EVB scheme is conceptualized
in one dimension before being extended to multiple dimensions. Enhancements to the scheme based on
numerical observations are also presented. Details of the numerical method are presented in section IV.
Application of the EVB scheme is shown in section V for both smooth and discontinuous flows.

II. RD Methods for Scalar Advection

Residual distribution methods calculate the residual (or fluctuation) on an element, E, of an unstructured
mesh and then, by some appropriate method, distribute the fluctuation to the nodes of that element to
advance the solution in time. Residual distribution methods are cell-vertex methods that are usually solved
on simplexes (triangles in two space dimensions).

For the scalar advection equation, one has

∂u

∂t
+

d
∑

j=1

(

λj
∂u

∂xj

)

= 0 , (1)

where d is the number of dimensions and λj is the advection speed in the jth coordinate direction. The
fluctuation on a simplex element, E, is defined as
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(2)

where ΩE is the element area, x̂j defines a unit vector in the jth coordinate direction, and λ̄j is linearized
over the element. For non-linear equations, λ̄j is determined via a conservative linearization such that





d
∑

j=1

(

λ̄j x̂j

)



 ·

∫

E

~∇u dΩE = −

∮

∂E

~F (u) · n̂ dS , (3)

where n̂ is the inwards-pointing unit normal vector of surface element dS. For second-order schemes, the
solution, u, is assumed to vary linearly in the element. The integral in Eq. (2) can then be evaluated exactly

2 of 22

American Institute of Aeronautics and Astronautics



to obtain

φE =





d
∑
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)
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 ·
1

d

d+1
∑

i=1,i∈E

ui~ni =

d+1
∑

i=1,i∈E

kiui . (4)

The index i loops over each node of an element and the vector ~ni defines the inwards normal of the edge
opposite node i and scaled by the length of the edge. The inflow parameters, ki, are defined by

ki =
1

d





d
∑

j=1

(

λ̄j x̂j

)



 · ~ni , (5)

and describe whether edge i sees the inflow (positive) or outflow (negative) of the solution quantity. Because

λ̄j is linearized,
∑d+1

i=1,i∈E ki = 0.

i

Ω

i

E

Ω

Figure 1. Primary elements (solid
lines) and dual mesh (dashed lines)
created from element centroids and
edge midpoints.

The distribution of the fluctuation to the nodes, φE
i , is governed

by distribution coefficients, βi, with φE
i = βiφ

E and, for consistency,
∑d+1

i,i∈E βi = 1. The nodal residual is defined as the sum of all fluctuations
distributed to node i from all elements, E, that share node i as a vertex.
The semi-discrete update formula is then

Ωi
dui

dt
+

∑

E

βE
i φE = 0 , (6)

where Ωi is the area of the dual mesh, shown in Fig. 1, associated with
node i of the unstructured mesh. Various time-marching schemes can be
applied to the solution of the ordinary differential equations for the nodal
values of the solution. An explicit-Euler algorithm is used for the results
herein.

There exist many formulae for defining the distribution coefficients,
βi, each of which leads to a scheme with different characteristics. Some
common schemes and their key properties are listed in Table 1. Schemes
that are positive (P) are monotonicity-preserving while those that are linearity-preserving (LP) achieve
higher-orders of accuracy (second-order for a linear interpolation of the fluctuation). It is sufficient that the
distribution coefficients are bounded for a scheme to be LP .2

Table 1. Properties of RD Schemes

Scheme Linearity P LP

N linear X

LDA linear X

LN non-linear X X

B non-linear Xa X

a Positivity has not been formally
demonstrated but is usually assumed
based on numerical results.

The N schemes is a linear first-order scheme that is formulated to ensure positivity.9, 10 The fluctuation
distributed to each vertex is computed by

φN
i = k+

i (ui − uin) , (7)

where

uin =

d+1
∑

j=1,j∈E

k−

j uj

d+1
∑

j=1,j∈E

k−

j

. (8)
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The distribution coefficients for the N scheme are not bounded and may tend to ±∞ as φE → 0.
The LN scheme is constructed from the N scheme but recovers property LP by limiting the distribution

coefficients when one of them becomes negative. Use of a minmod limiter produces a scheme identical to
the positive-streamwise-invariant (PSI) scheme of Struijs11 that is often quoted in the literature.12

Figure 2. The LDA distribution is
governed by the location λ̄ inter-
sects the outflow edge.

The LDA scheme is a linear scheme that ensures LP but has no mecha-
nism for enforcing nonlinear stability. The distribution is governed by the
location at which the linearized characteristic vector intersects the outflow
edge. In Fig. 2, βi = Li/L and βj = Lj/L. This is more conveniently
expressed as

βLDA
i = −

k+
i

d+1
∑

j=1,j∈E

k−

j

. (9)

The blended scheme is a blending of the N and LDA schemes, φB =
θφN +(1− θ)φLDA. There are several possible definitions of the blending
coefficient θ; see Abgrall3 for a definition that reproduces the PSI scheme.
In this work, the heuristic definition proposed by Deconinck et al.,2

θ =

∣

∣φE
∣

∣

d+1
∑

l=1,l∈E

∣

∣φN
l

∣

∣ + ǫ

, ǫ = 10−10 , (10)

is used where θ is defined to switch to the LDA scheme when divergence of the nodal fluctuation, as computed
by the N-scheme, is detected. Positivity of this particular blended scheme has not been formally proven.
However, it has been shown (and will be demonstrated herein) to have essentially the same behaviour as the
PSI scheme which is positive. For simplicity of the discussion, the B scheme will be subsequently referred to
as positive. The blended scheme is introduced here because it provides a convenient mechanism for selecting
either an N or LDA scheme. In smooth regions, θ can be explicitly set to 0 to mandate use of the LDA
scheme.

II.A. Accuracy of Residual Distribution Schemes

ND

L 1
E

rro
r

100 200 300 400

10-4

10-3

10-2

LDA
PSI
LN (MUSCL)
Blended
FV

PSI and blended (identical curves)

β = -2.50

β = -1.84

β = -2.18

β = -2.45

Figure 3. L1-error as a function of mesh density for circular
advection.

The spatial order of accuracy is demonstrated by
plotting the L1-error norms of the solution with re-
spect to the square root of the number of grid points
ND (i.e., the dimensional spacing of the computa-
tional grid). The variation of the error as a function
of ND is expected to have the form

L1-error = αND
β , (11)

where α describes the absolute magnitude of the er-
ror and β describes the order of convergence.

Figure 3 illustrates the accuracy of various
second-order RD distribution schemes and a second-
order Godunov-type FV scheme for the circular ad-
vection of a smooth exponential profile. While both
the LDA distribution scheme and the FV scheme
have similar orders of convergence, the absolute er-
ror (α in Eq. (11)) of the LDA scheme is almost an
order of magnitude less than that of the FV scheme.
The PSI and blended distribution schemes, on the
other hand, have similar absolute error to the FV method, and, disconcertingly, an order of convergence
that is less than second order. On finer meshes, the FV method becomes more accurate than the PSI and
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blended schemes. It would be highly desirable to have a monotonicity-preserving scheme that instead closely
follows the LDA curve. One way this can be achieved is by using a MUSCL limiter8 of the form

Ψ(r) = max

[

0, min

(

2r,
r + 1

2
, 2

)]

. (12)

The enhanced performance of the MUSCL limiter is thought to be related to the behaviour of the limiter
near r ≈ 1.13

To fully retain the benefits to accuracy provided by the RD method, it would seem necessary to use the
LN (MUSCL) scheme for flows that may contain discontinuities. Unfortunately, it is difficult to extend the
LN (MUSCL) scheme to the Euler equations. The best known approach at solving systems of equations is
to perform a hyperbolic/elliptic splitting.2, 5, 10, 14, 15 This decouples the system into four scalar equations for
supersonic flows and two scalar equations plus an acoustic subset for subsonic flows. With this approach, the
scalar equations may be solved using the LN (MUSCL) scheme (the theses by Mesaros14 and Rad15 provide
two techniques for solving the acoustic subset) but the entire system suffers from a degeneracy in the system
eigenvectors in stagnation regions. Another approach to solving systems, that of matrix distribution,2, 5, 16

works well with matrix versions of the LDA and blended schemes. Unfortunately, matrix distribution tends
to suffer from instabilities in smooth regions when mapped distribution schemes17, 18 (basically extensions
of the LN scheme that are easier to apply to matrix distribution) are used. Abgrall19 has performed an
analysis of this instability and proposed a fix involving the addition of artificial dissipation. The high-order
approach developed herein allows for explicit detection of large gradients. In smooth regions, the highly
accurate LDA scheme can be used. In regions with large gradients, the blended scheme can be applied
to ensure monotonicity. This approach circumvents the need to find an accurate, monotone, and stable
distribution scheme for all flow regions. The effectiveness of such an approach is examined in this paper for
scalar equations.

II.B. Construction of High-Order Schemes
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Figure 4. Fourth order reconstruc-
tion element consisting of an or-
dered collection of primary ele-
ments (shaded).

Schemes with an order of accuracy greater than two are constructed by
following a framework similar to that of finite-element theory. Abgrall
and Roe17 used such an approach to increase the number of degrees of
freedom in an element by inserting nodes in the interior. This leads to the
construction of P 2 and P 3 elements for third and fourth order solutions,
respectively. In this work, an inverse approach is taken where reconstruc-
tion elements are defined as an ordered collection of primary elements
with the desired degrees of freedom. Figure 4 shows a reconstruction el-
ement with 9 primary elements and 10 degrees of freedom (vertices) for
a fourth order solution. Although the primary elements should have an
arrangement similar to that shown in Fig. 4, the reconstruction elements
can have a completely unstructured connectivity. The differences from
the approach of Abgrall and Roe17 are purely ideological. Note that al-
ternative approaches to constructing high-order RD schemes do exist in
the literature.20–22

Lagrange basis functions are used to define a high-order interpolating
polynomial for the entire reconstruction element. Within a reconstruction
element, both the coordinates and the solution are interpolated by the Lagrange basis functions. These
polynomials are used to integrate the variation, the fluctuation, and the linearized solution state in each of
the primary elements that are members of the reconstruction element. The Lagrange basis functions also
provide C0 continuity along the edges of the reconstruction-elements, thereby ensuring consistent evaluations
of the fluctuation through an edge. In this work, the coordinates are always interpolated by linear Lagrange
basis functions within a primary element. Along with a high-order interpolation of the solution, this leads to
sub-parametric Lagrange-elements.23 At this stage in the research, the linear interpolation of the coordinates
provides some mathematical simplifications and reduces the expense of the numerical integrations. However,
this generally requires an assumption of straight edges in the reconstruction elements. For general problems
with curved boundaries, higher-order interpolations of the coordinates may be required.

The Lagrange basis functions can be defined in canonical, Fig. 5, or natural, Fig. 6, normalized coordinate
systems. The canonical coordinates, ξ and η, are orthogonal while the natural coordinates, L1, L2, and L3,
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are related by the expression L1 + L2 + L3 = 1. The symmetry of the natural coordinate system allows for
application of triangular Gauss quadrature rules.23 All the integrations required in a primary element are
performed using numerical Gauss quadrature. For integration in a specific primary element, a mapping is
performed such that the natural coordinate system, typically normalized for the reconstruction element, is
instead normalized over the primary element. We define the natural coordinates, normalized over a primary
element, as S1, S2, and S3.

3 1

2
η

ξ

Figure 5. Canonical coordinate sys-
tem for triangular Lagrange ele-
ments.

L1

L2

2

3

1

L3

Figure 6. Natural coordinate sys-
tem for triangular Lagrange ele-
ments.

The high-order integration of the linearized state is not necessarily conservative and may not satisfy
Eq. 3. To ensure that the scheme is still conservative, a contour-integration-based RD scheme is used.24 In
this technique, the N scheme (and any derivative schemes) is modified by replacing Eq. 8 with

uin = −

d+1
∑

i=1,i∈E

k+
i ui − φE

d+1
∑

i=1,i∈E

k−

i

. (13)

II.C. Boundary Conditions

The asymmetric stencil for the primary elements (the interpolation is not centered about each primary
element) allows for a treatment of boundaries that is comparable to approaches used for second-order RD
schemes.

Edge
Interface

Corner
Interface

Zone 1 Zone 2

Figure 7. Interfaces defined be-
tween two zones for accumulating
data.

At interior boundaries, interfaces are defined that provide a location
to accumulate data from all zones that share a given vertex. As shown in
Fig. 7, edge interfaces provide connection between zone edges (each vertex
is shared by only two zone) and corner interfaces provide connection
between zone corners (the single vertex can be shared by multiple zones).
The residual update from each zone, along with the area contributed to
the dual mesh, is accumulated in the interfaces. After updates from all
zones sharing an interface are complete, the accumulated data is then
redistributed to all the zones. Parallel implementations simply must find
a method for accumulating data between separate processes or threads.
The only extra requirement for a high-order scheme is to share the order
of interpolation along an edge if it may be less than the formal order of
the scheme (e.g., an element marked for linear interpolation because of
large gradients).

At domain boundaries, boundary conditions are implemented in
“weak” form using a method similar to that proposed by Paillère.10 In
Fig. 8, the elements labelled E1, E2, and E2 are interior elements with
vertices V1, V2, and V3 on the domain boundary. Two degenerate ghost
elements are assigned to each physical vertex on the domain boundary. In
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Fig. 8, the ghost elements GE1 and GE2 are assigned to vertex V2. Since these elements are degenerate, the
ghost vertices GV1, GV2, and GV3 are at the exact same position as the physical boundary vertices. This
causes the dotted line in Fig. 8 to have zero length and consequently, the contributions to vertices V1 and
V3 are zero. Therefore, only vertex V2 is affected by the ghost elements GE1 and GE2. Desired boundary
conditions are specified in ghost vertices GV1, GV2, and GV3. The ghost elements are treated the same as
physical elements except for the following modifications:

• The linearized state is taken from the value at the physical vertex (vertex 2 for ghost elements GE1
and GE2).

• For the purpose of computing a time step restriction in the ghost element, the area of each ghost
element associated with the physical vertex is taken to be half the total physical area of the dual mesh
associated with the physical vertex (the contributions made by all the physical elements to the dual
mesh at vertex V2 and divided by two).

• The ghost elements are computed with the same local solution-order as the physical element they share
an edge with.

• The fluctuation on finite edges of the ghost elements is computed with the aid of one-dimensional
Lagrange reconstruction-elements. These one-dimensional Lagrange reconstruction elements follow a
particular path depending on which edge is being integrated. Several paths, used for integrating the
edges between V2 and V3 (GV2 and GV3), are shown in red, green, and blue in Fig. 8.

GV3

GV2

GV1

GE1

GE2

V2

V1

V3

E3

E2
E1

Interior of
Domain

Figure 8. Degenerate ghost cells for defining boundary conditions.

III. An Element Variation Bounded Scheme

Nonlinear stability theory is usually presented in a one-dimensional unsteady framework and constrains
the creation, preservation, and destruction of waveforms in the domain. The theory often refers to the total
variation (TV) of the solution which is defined by25

TV(u) =
∑

i

|u(xi+1, t) − u(xi, t)| (14)

for a discrete representation of a function and by

TV(u) =

∫
∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

dx (15)

for a continuously differentiable function. A scheme is said to be total-variation-diminishing (TVD) if

TV(un+1) ≤ TV(un) (16)

and total-variation-bounded (TVB) if
TV(un) ≤ M ≤ ∞ (17)

for some positive constant M .
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The concepts of total-variation-diminishing (TVD) and total-variation-bounded (TVB) reference either
the variation at a previous time step or a constant. In this section, these concepts are adapted for steady
flows, where temporal evolution of the solution is not a concern. Consequently, the variation of the current
solution, based on the high-order interpolant, is instead compared against a trusted reference variation of
the solution. This reference is defined to be the variation predicted by a linear interpolation in each element.

x

u

Figure 9. Fourth order reconstruc-
tion element consisting of three pri-
mary elements in one dimension. A
linear (solid) and cubic (dashed) in-
terpolation of the solution is shown.

The proposed formulation is best presented in one dimension. Figure 9
displays a fourth-order reconstruction element consisting of three primary
elements and four degrees of freedom. Also shown is a linear (solid) and
cubic (dashed) interpolation of the solution. Of primary interest is the
difference in the variation provided by the two interpolations in a primary
element, E:

∆EV(u) = EV(uk=3) − EV(uk=1). (18)

The notation of element variation (EV) is introduced to define the TV de-
scribed by Eq. 15 but only integrated over one primary element. It is ob-
vious that ∆EV(u) ≥ 0; the high-order interpolated variation cannot pos-
sibly be less than the linearly interpolated variation. When ∆EV(u) = 0,
as in the center element of Fig. 9, the high-order interpolation is satisfac-
tory in the sense that it does not introduce more variation than a linear
(and hence monotone) estimation of the variation. When ∆EV(u) > 0 as in the left and right elements of
Fig. 9, the high-order interpolation is increasing the variation and possibly destabilizing the solution. When
this is detected, some action should be taken.

If increases in variation are suppressed whenever ∆EV(u) > 0, the resulting scheme becomes locally
analogous to enforcing a TVD condition. If increases in variation are suppressed whenever ∆EV(u) > M ,
the resulting scheme becomes locally analogous to enforcing a TVB condition.

III.A. Proposed EVB Scheme

The proposed variation bounded scheme (labeled element-variation-bounded (EVB) scheme) uses a high-
order interpolation and LDA distribution scheme wherever possible. The linear interpolation of the variation
and a high-order interpolation of the variation are integrated in each element. When

∆EV(u) > M , (19)

the interpolation is reduced to linear in the element E and a blended distribution scheme is used.
It would be preferable to set M = 0 and enforce the analogy to the TVD condition. In one dimension,

this approach would seem practical since it removes the necessity of defining M . In practice, however, setting
M = 0 is probably too restrictive. Instead, the value of M tends to define a compromise between damping
oscillations near discontinuities and clippinga the extrema in smooth regions of flow. For all the solutions in
this paper, M = 0.003. The motivation for this value will be discussed in more detail later but it is largely
based on numerical experiments involving circular advection.

In two-dimensions, the definition of total variation given by Goodman and LeVeque26 provides a baseline
or starting point:

TV(u) =

∫

|∇u| dxdy where |∇u| =

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

+

∣

∣

∣

∣

∂u

∂y

∣

∣

∣

∣

. (20)

Unfortunately, it is possible to have ∆EV(u) < 0 using this definition in two spatial dimensions. Modifica-
tions to this definition for application of the EVB approach in multiple dimensions are described below.

III.B. Modifications to the EVB Scheme for Multiple Dimensions

The proposed modifications to the EVB scheme are largely based on observations from numerical experi-
ments. In this section two problems of linear advection are studied. Two profiles, a smooth exponential,
u = e−0.5[(x−0.5)/0.08]2 , and a discontinuous “top-hat”, are advected at 30 ◦ to the grid. Both profiles range

aClipping is an error produced by the TVD condition where the maxima are prevented from increasing and the minima are
prevented from decreasing in a smooth solution. Consider a discrete representation of a smooth maximum without a mesh point
at the maximum. If the solution shifts such that the maximum is now at a mesh point, the variation will increase. However,
this violates the TVD condition and the peak is therefore clipped.
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in value from u = 0 to u = 1. Exact solutions, on a mesh of 48 × 48 primary elements are shown in
Figs. 10 and 11 for the smooth and discontinuous problems, respectively. With a seemingly reasonable

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
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0.85
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0.45
0.35
0.25
0.15
0.05

Figure 10. Exact solution to linear advection of
a smooth exponential profile on a mesh of 48×48
primary elements.
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0.35
0.25
0.15
0.05

Figure 11. Exact solution to linear advection of
a discontinuous “top-hat” profile on a mesh of
48 × 48 primary elements.

one-dimensional theory and the extension to multiple-dimensions given above, the results from our first
numerical experiment were surprising. Figures 12 and 13 show the difference in variation, ∆EV(u) (Eqs. 18
and 20), computed with a quadratic interpolation and a cubic interpolation, respectively, for the high-order
variation. Both figures illustrate ∆EV computed for an exact representation of the smooth problem on a
mesh of 48× 48 primary elements. As noted previously, it is expected that in one dimension, ∆EV must be
greater than 0. However, both figures show a regular occurrence of elements where ∆EV < 0.

0 0.2 0.4 0.6 0.8 1
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0.4
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0.8
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Figure 12. ∆EV computed from a quadratic interpolation
of the smooth problem.
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Figure 13. ∆EV computed from a cubic interpolation of
the smooth problem.

Interestingly, in each reconstruction element, there is a regular pattern to the ∆EV computed in each
primary element. For a quadratic interpolation, the absolute value of the ∆EV is the same for each primary
element in a reconstruction element. However, the sign in each element varies as in Fig. 14. Similar behaviour
is observed for a cubic interpolation. The signs follow the pattern shown in Fig. 15 but the absolute value
is not constant. Instead, it fits the linear interpolant

|∆EV| = aξ + bη + cζ + d , (21)

where the canonical coordinates ξ and η correspond to the centroid of each primary element. In the two
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sets of elements in Fig. 15, |∆EV| can be represented by two planes that are parallel but not coincident.
Separation of the planes in Eq. 21 is provided by ζ = 1 for the shaded elements and ζ = 0 otherwise.
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Figure 14. Sign of ∆EV computed in each pri-
mary element within a quadratic reconstruction
element. The shaded element has opposite sign
to the unshaded elements.
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Figure 15. Sign of ∆EV computed in each pri-
mary element within a cubic reconstruction el-
ement. The shaded elements have opposite sign
to the unshaded elements.
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Figure 16. Derivative ∂u/∂x of the linear and quadratic
interpolations of the solution. The centroids of the pri-
mary elements are shown by the red lines.
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Figure 17. Derivative ∂u/∂y of the linear and quadratic
interpolations of the solution. The centroids of the pri-
mary elements are shown by the red lines.
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Figure 18. Primary
elements in a recon-
struction element that
are plotted in Figs. 16
and 17.

The curious patterns of ∆EV are not fully understood. However, some insight
was gained be examining derivatives of the quadratic Lagrange polynomial for a
representative reconstruction element. The derivatives ∂u/∂x and ∂u/∂y are plotted
in Figs. 16 and 17, respectively, for both the linear and quadratic interpolations. Two
primary elements are shown in each of these figures, one with positive ∆EV and one
with negative ∆EV, as illustrated in Fig. 18. As expected, the linear derivatives have
constant value while the quadratic derivative is represented by a plane. The centroids
of the primary elements are shown by the red lines (marking a sampling location for
Gauss quadrature of the derivatives). In both cases, one primary element has one
linear derivative greater than the quadratic derivative, and one linear derivative less
than the quadratic derivative. A one-dimensional interpretation of the positive and
negative variation is shown in Fig 19. Two primary elements are shown in a quadratic
reconstruction element. Again, the linear derivatives are constant and the quadratic
derivative is represented by a sloped line. Although the average derivative, from
both interpolations, is of the same value in the reconstruction element, positive and negative ∆EV is shown.
In one space dimension, it is not possible to obtain the derivatives shown in Fig 19 and have the linear
and quadratic interpolations match at the vertices. However, it appears that in multiple dimensions, extra
degrees of freedom are available that permit this behaviour.
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{
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Figure 19. A one-dimensional rep-
resentation of the positive and neg-
ative ∆EV observed in two dimen-
sions.

With this understanding, a simple technique was devised to cancel
out the positive and negative patterns of ∆EV within a reconstruction
element. Using least squares, a constant value for quadratic interpolation
and Eq. 21 for cubic interpolation is fit to |∆EV | in each reconstruction
element. Next, a correlation is developed between the shaded and un-
shaded subgroups of primary elements in either Fig. 14 or 15 and the fit.
The subgroup with the largest correlation with the fit contains the posi-
tive elements. Finally, the fit is either added or subtracted from the ∆EV
in each primary element, depending on the sign in the element.

It should be mentioned that the regular pattern which allows for the
cancellation is a bit fortuitous in Figs 12 and 13. It is dependent on the
alignment of the element edges with the coordinate directions. This, and
the fact that the definition of the variation given by Eq. 20 is dependent
upon the orientation of the coordinate system, can be corrected by instead
computing the variation as a function of the natural coordinates in the
Lagrange element. The derivatives ∂u/∂x and ∂u/∂y are obtained as
follows. Defining the natural coordinates in a primary element to be S1, S2, and S3 one can obtain

∂φ

∂S1
,

∂φ

∂S2
, and

∂φ

∂S2
(22)

from the Lagrange polynomial where φ is either u, x, or y. A switch to the canonical coordinates, ξ = S1,
η = S2, and 1 − ξ − η = S3 is made by

∂φ

∂ξ
=

∂φ

∂S1

∂S1

∂ξ
+

∂φ

∂S2

∂S2

∂ξ
+

∂φ

∂S3

∂S3

∂ξ

=
∂φ

∂S1
−

∂φ

∂S3
,

∂φ

∂η
=

∂φ

∂S1

∂S1

∂η
+

∂φ

∂S2

∂S2

∂η
+

∂φ

∂S3

∂S3

∂η

=
∂φ

∂S2
−

∂φ

∂S3
.

(23)

The coordinate Jacobian is defined by

J =

[

∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]

(24)

and the derivatives ∂u/∂x and ∂u/∂y are computed as
[

∂u
∂x
∂u
∂y

]

= J−1

[

∂u
∂ξ
∂u
∂η

]

. (25)

To express the derivatives with the symmetry of the natural coordinate system, start from Eq.23 but also
with

∂u

∂ζ
≡

∂u

∂S1
−

∂u

∂S2
(26)

In place of Eq. 20, the element variation is defined as

EV =

∣

∣

∣

∣

∂u

∂ξ

∣

∣

∣

∣

+

∣

∣

∣

∣

∂u

∂η

∣

∣

∣

∣

+

∣

∣

∣

∣

∂u

∂ζ

∣

∣

∣

∣

. (27)

The meaning of the derivatives used to compute the variation is not entirely clear. It is known that one
cannot simply use ∂u/∂S1, ∂u/∂S2, and ∂u/∂S3 since the natural coordinates in the plane are not orthogonal.
Also, Eq. 26 would have been derived had one chosen the relationship between the canonical and natural
coordinates to be ξ = S1, η = S3, and 1 − ξ − η = S2. Equation 27 obviates the freedom in choosing the
relationship between the canonical and natural coordinates by incorporating all the differences

∂u

∂Si
−

∂u

∂Sj
, i = 1, 2, 3, j = (i mod 3) + 1 . (28)
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Note that Gauss quadrature of Eq. 27 may not be exact because the absolute value of the derivative
could change discontinuously near extrema in the solution. To circumvent this issue, a larger number of
Gauss points were used in the integration. In practice, however, using the extra Gauss points did not make
much difference indicating that this issue may not be of much concern.

Contour plots are now shown of ∆EV computed from the cubic and linear interpolations of exact solutions
to the two profiles shown in Figs. 10 and 11. Equation 27 is used to integrate the variation and results
are shown with and without cancellation of the positive and negative ∆EV within a reconstruction-element.
Figure 20 displays the ∆EV computed in each primary element for the exact solution to the smooth problem.
The cancellation tends to focus the non-zero ∆EV on the maximum in the center of the exponential profile.
At a mesh size of 96 × 96 primary elements, the maximum is clearly identifiable. At mesh size 192 × 192,
∆EV falls below visible levels demonstrating that local extrema in smooth solution will not be detected
with sufficient mesh refinement. Figure 21 displays the ∆EV computed in each primary element for the
exact solution to the discontinuous problem. The effect of the cancellation is to set ∆EV in some elements
closer to zero. However, in all cases, the discontinuity is well represented by tight bands where |∆EV| > 0.
The magnitude of the variation does not vary with mesh size indicating that integration of the variation
properly scales with mesh size. Therefore, the discontinuities will still be detected with mesh refinement.
That extrema in smooth solutions are not captured at fine mesh levels while there is virtually no effect on
discontinuities indicates that adaptive mesh refinement would be a useful tool for isolating discontinuities.

e) With cancellation (96x96)d) With cancellation (48x48)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a) No cancellation (48x48) b) No cancellation (96x96)

f) With cancellation (192x192)

c) No cancellation (192x192)
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Figure 20. Computed values of ∆EV from the exact solution to the smooth advection problem for various mesh sizes.
Results are shown with and without cancellation of the positive and negative ∆EV within a reconstruction element.
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a) No cancellation (48x48) b) No cancellation (96x96) c) No cancellation (192x192)
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Figure 21. Computed values of ∆EV from the exact solution to the discontinuous advection problem for various mesh
sizes. Results are shown with and without cancellation of the positive and negative ∆EV within a reconstruction
element.

IV. Numerical Method

Elements

Reconstruction Element 1

Reconstruction Element 2

Figure 22. Creation of cubic
reconstruction-elements from a 3×3
collection of quadrilaterals

Although the EVB RD scheme can be implemented on an unstruc-
tured mesh of reconstruction elements, in this work quadrilateral meshes
are used for the numerical computations. Since RD solutions are com-
puted on simplexes (triangles), the freedom exists to optimally tessellate
each quadrilateral by inserting a diagonal that is aligned with the ad-
vection vector. The reconstruction elements are constructed in a similar
manner. For a fourth-order solution, a 3 × 3 collection of quadrilaterals
is grouped together. This collection is divided into two reconstruction el-
ements by inserting a diagonal aligned with the average advection vector
over the 16 vertices in the collection. The concept is illustrated in Fig. 22.
Note that the tessellation of the primary elements may be restricted by
the tessellation of the reconstruction element.

The following steps summarize the numerical method used to obtain
the fourth-order results presented in the next section.

1. A cubic-reconstruction and blended RD scheme is iterated using explicit-Euler time-marching until
the solution is satisfactorily developed.

2. The ∆EV is computed in each primary element and compared against a cut-off value M = 0.003.
If ∆EV is greater than M , the element is marked as requiring a linear interpolation. The blended
distribution scheme is used in second-order elements and the LDA distribution scheme in high-order
elements. The tessellation of the reconstruction elements is frozen.

3. After a few hundred iterations. The blending coefficient is frozen for primary elements that use the
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blended scheme. The tessellation of the primary elements is also frozen. The residuals are converged
as desired; in this work, the residuals are converged by at least ten orders of magnitude.

V. Numerical Results

A formal proof that the proposed EVB scheme does indeed bound the variation according to the definition
of TVB in multiple dimensions is beyond the scope of this work. Instead, numerical experiments are used
to demonstrate the expected behaviour, namely:

• the strength of the nonlinear stability condition can be sufficiently weakened to eliminate undesirable
behaviour such as clipping in smooth solutions.

• the nonlinear stability condition should satisfactorily dampen numerical oscillations near discontinu-
ities.

The behaviours listed above are related. A scheme that eliminates all oscillations will typically clip. A scheme
the does not clip must permit some oscillation. The challenge is finding a suitable (and problem-independent)
compromise.

The performance of the EVB scheme is examined for solutions to the non-linear Burgers equation and
to linear problems of circular advection.

V.A. Non-Linear Burgers Equation

The exact solution to the non-linear Burgers equation, given by

∂u

∂t
+ u

∂u

∂x
+ 1

∂u

∂y
= 0 , (29)

is displayed in Fig. 23. Along the x-axis, the solution u is varied linearly from 1.5 to -0.5. This results in
a compression wave that strengthens and produces a shock at (x = 0.75, y = 0.5). The ability of the EVB
scheme to detect the shock is illustrated in Fig. 24. Elements that have been marked as requiring a linear
interpolation are colored black. The shock is correctly detected by the EVB scheme and marking of the
elements seems to be independent of the mesh size. The discontinuous change of the solution at the leading
and trailing edges of the compression wave is also marked. However, this marking is only prevalent on the
coarser meshes and the edges of the compression wave tend to be ignored as the mesh is refined.
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Figure 23. Exact solution to Burgers equation, represented on a mesh of 48 × 48 primary elements.

The effectiveness of the EVB scheme at enforcing monotonicity is illustrated in Fig. 25. A cross-section of
the shock is plotted at y = 0.708334. The second-order LN (MUSCL) and blended schemes perform equally
well at preserving monotonicity. Interestingly, the fourth-order blended scheme creates some overshoots
that nearly match the magnitude of the overshoots in the fourth-order LDA scheme. This indicates the
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Figure 24. Primary elements marked for a linear interpolation by the EVB scheme for Burgers equation. The shock is
similarly marked for all mesh sizes.

importance of reducing the order of the interpolation to linear in the vicinity of discontinuities. The EVB
scheme indicates monotonicity on par with the second-order scheme. Oscillations over the entire domain are
plotted in Fig. 26. The results generally agree with the profile in Fig. 25. The accuracy of each solution

X

u

0.8 0.9 1

-0.5

0

0.5

1

1.5
Exact
4th Order LDA
4th Order Blended
4th Order EVB
2nd Order LN (MUSCL)
2nd Order Blended

Figure 25. Cross-section of solutions to Burgers equation on a mesh of size 48 × 48. The cross-section is taken at
y = 0.708334.

as a function of mesh density per dimension is shown in Fig. 27. Because of the discontinuity, all schemes
have a spatial order-of-convergence less than one. Although not of much significance (monotonicity is more
important for this problem), the EVB scheme provides the lowest solution error.
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c) 2nd Order Blended

d) 4 th Order LDA e) 4th Order Blended f) 4 th Order EVB
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Figure 26. Oscillations in solutions to Burgers equation on a mesh of size 48 × 48. Contour levels: blue -0.51, cyan
-0.49, green 1.49, red 1.51.
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Figure 27. Spatial accuracy for solutions to Burgers equation.
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V.B. Linear Circular Advection

The performance of the EVB scheme was also examined for the problem of linear circular advection. The
linear advection equation is given by

∂u

∂t
+ a

∂u

∂x
+ b

∂u

∂y
= 0 , (30)

where a=a(x, y) and b=b(x, y) are the components of the advection velocity field. The two advected profiles
considered here, a smooth exponential and a discontinuous “top-hat”, are the same as previously described
in section III.B. Exact solutions and meshes of size 48×48 are shown in Figs. 28 and 29. The inflow/outflow
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Figure 28. Exact solution to circular advection
of a smooth exponential profile and a mesh of
48 × 48 primary elements.
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Figure 29. Exact solution to circular advection
of a discontinuous “top-hat” profile and a mesh
of 48 × 48 primary elements.

boundary extends along (0 ≤ x ≤ 1, y = 0) as shown by the thick black line in the figures. The initial profile
is assigned at this boundary and then advected 360 ◦ in a counter-clockwise direction.

In Fig. 30, elements that have been marked as second-order are shaded black. Plots are shown for the
smooth and discontinuous problems solved on meshes of size 96 × 96, 192 × 192, and 384 × 384. As with
previous results, the discontinuity is captured well, irrespective of the mesh size, while the maximum in the
smooth profile is not detected on the finest mesh. Although perhaps not visible, three elements near the
outflow boundary are still marked as second-order in Fig. 30c.

The effectiveness of the various schemes at damping oscillations is illustrated in Fig. 31 for solutions
involving the discontinuous profile. This figure displays a cross-section of the solution on the 96 × 96 mesh
after advecting 180 ◦ . Similar to Fig. 25, the second-order LN (MUSCL) and blended solutions are monotone.
While the fourth-order LDA scheme exhibits large overshoots, the fourth-order blended scheme does quite
well; the only observable overshoot is at x = −0.31. The EVB scheme performs similarly to the second-order
blended scheme. Oscillations over the entire domain are plotted in Fig. 32. The results were again computed
on a 96 × 96 mesh. It can be seen that oscillations are present in the fourth-order blended scheme but
they disappear quickly as the solution gradients dissipate. Interestingly, the second-order LN scheme with a
MUSCL limiter generates the result that most closely approximates the exact solution.

The spatial order of accuracy is illustrated in Fig. 33 for the smooth problem and Fig. 34 for the discon-
tinuous problem. In Fig. 33, the EVB scheme initially has the worst accuracy but approaches the accuracy
of the fourth-order LDA scheme as the increasing mesh density reduces the number of elements with a linear
interpolation. However, even with only three elements marked for a linear interpolation on the finest mesh,
the EVB scheme still has an absolute error almost an order of magnitude greater than the fourth-order LDA
scheme. The behaviour of the fourth-order blended scheme is unexpected in this figure, having a convergence
rate much less than four. In Fig. 34, the discontinuity causes all solutions to have a spatial order of conver-
gence less than one. Interestingly, the fourth-order LDA scheme is the most accurate, perhaps because the
gradients in the discontinuity dissipate quite rapidly.

Figure 35 attempts to illustrate the benefits, in terms of computation time, from using a high-order
algorithm on smooth problems. This figure was generated from the results for circular advection of the smooth
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Figure 30. Elements in which the interpolation order is reduced to linear by the EVB scheme.
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Figure 31. Cross-section of solutions to circular advection of the discontinuous profile. The mesh size is 96 × 96 and
the cross-section is taken after advecting 180 ◦ .
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Figure 32. Oscillations in solutions to circular advection of the discontinuous profile on a mesh of size 96× 96. Contour
levels: blue -0.01, cyan -0.01, green 0.99, red 1.01.
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Figure 33. Spatial accuracy for advection of the smooth
profile.
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Figure 34. Spatial accuracy for advection of the discon-
tinuous profile.
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Figure 35. Computation time required for a given accuracy for solutions
to circular advection of the smooth profile.

profile and all computation times have
been normalized by the time for com-
puting a second-order solution on the
coarsest mesh. The fourth-order LDA
scheme drastically outperforms anything
else, quickly having a computation time
that is orders of magnitude lower than
the second-order schemes for a com-
parable level of accuracy. The EVB
scheme, on the other hand, performs
rather poorly. In general, it only outper-
forms the second-order blended scheme
except on the finest mesh. The impor-
tance of eliminating clipping on coarser
mesh densities is obvious as the EVB
scheme will not approach the fourth-
order LDA scheme until all elements use
a fourth-order interpolation. As imple-
mented, the fourth-order schemes have
a computation time approximately three
times that of the second-order schemes
for the same mesh.

V.C. Comments on the Results

As noted previously, the cut-off value M for marking an element as second-order was set to 0.003. This value
was selected based on numerical experiments involving problems of circular advection with the goal of finding
the largest value that would still satisfactorily dampen oscillations in the solution. In some sense, the EVB
method is disappointing because, even on very fine meshes, some elements are still marked as second-order
in the smooth solution (see Fig. 30c). Although there is always a trade-off between damping oscillations and
clipping smooth extrema, we had hoped for less compromise on the finer meshes. If the EVB method would
not mark smooth extrema on more moderate meshes, then mesh refinement could be used more effectively
to eliminate clipping. A couple of reasons have been identified for the poor performance of the EVB method
when applied to problems of circular advection:

1. The discontinuity in the circular advection problem is a contact surface and therefore more prone to
numerical dissipation (as opposed to a shock in which the converging characteristics tend to counter
the numerical dissipation). Consequently, the gradients tend to diminish and the EVB scheme detects
smooth undulating waves rather than sharp overshoots. Although perhaps tolerable in practice, these
waves were damped in this work such that the Figs. 31 and 32 would be more or less non-oscillatory.
This may have required setting M too large.

2. Since the interpolation for a primary element is not necessarily centered, local extrema in the solution
can exist between the reconstruction elements. Consider the diagonal inserted into the collection of
quadrilateral elements in Fig. 22. A local maximum in the solution could exist along this line and not
be detected by computations of ∆EV in the reconstruction elements on either side of the line. Both
reconstruction elements would simply detect a monotonically increasing solution towards the line. This
behaviour has been observed in circular advection solutions of the discontinuous profile. Since ∆EV
is only computed once in a simulation, and is therefore relatively inexpensive to compute, it would be
prudent to test for extrema between the reconstruction elements. This may help detect extrema and
allow for a lower value of M .

3. In the solution to circular advection of a smooth profile on the finest mesh (384 × 384), only three
elements were marked as second order. All these elements are near the outflow boundary and seem to
have a value about twice that at other symmetrical locations in the flow. The large values of ∆EV may
be the result of interaction with the outflow boundary. Had those three elements not been marked as
second order, no clipping would have occurred and the solution would be identical to that produced by
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the LDA scheme. Consequently, the results shown may have been undesirably influenced by boundary
conditions.

As a final note, although the solution range for problems involving Burgers equation was twice that of the
circular advection problems (−0.5 → 1.5 vs. 0 → 1), the same cut-off value of M = 0.003 was used. A more
tuned selection of M might alleviate the marking of second-order elements at the leading and trailing edges
of the compression fan in the solution to Burgers equation. The scaling of M , such that it is representative
for all problems, has not yet been investigated.

VI. Conclusion

A high-order RD scheme has been developed that controls solution monotonicity in the vicinity of
discontinuities by implementing an analogue of TVB. The proposed EVB scheme compares the variation
between high-order and linear interpolations of the solution within an element to detect unresolved gradients.
Elements with unresolved gradients are solved using a linear interpolation and a blended distribution scheme.
All other elements are solved with a high-order interpolation and an LDA distribution scheme.

Numerical experiments indicate the necessity of reducing a high-order interpolation to linear in the
vicinity of discontinuities. It is not sufficient to simply use a positive distribution scheme. It is shown in
the results that the EVB scheme can effectively identify unresolved gradients and suppress oscillations near
discontinuities in a manner comparable to second-order positive RD schemes. Moreover, the detection and
damping of oscillations is consistent for all mesh resolutions.

Unfortunately, the high-order EVB scheme is also quite aggressive at clipping the extrema of smooth
solutions. While the scheme tends to ignore smooth extrema as the mesh is refined, the results indicate
that very fine meshes are required to eliminate the clipping entirely. Several reasons were given as to why
the clipping of the EVB scheme persists on such fine meshes and these provide an avenue for possible
improvements to the proposed scheme. The goal of using the EVB scheme to increase solution accuracy in
smooth regions is considered unfulfilled until clipping can be eliminated on more moderate mesh sizes.

Finally, it was shown that the high-order methods can drastically reduce the computation time compared
to second order methods. An improved EVB scheme, coupled with mesh refinement, could prove to be an
effective method for reducing the computational cost of simulations that feature both detailed smooth flows
and discontinuities.
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