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An extended fluid-dynamic model for micron-scale flows with heat transfer based on the
Gaussian moment closure is presented. The standard Gaussian closue moment equations
are hyperbolic and closure is achieved by assuming a form for the velocity distribution
function which will, by construction, yield zero heat flux; the proposed extension leads to
the addition of anisotropic thermal-diffusion terms having an elliptic nature. The extended
model can be achieved by taking a Chapman-Enskog-type expansion about either the Gaus-
sian moment equations of the kinetic equation and both methods are presented here. The
elliptic nature of the additional generalized heat-flux terms lead to fully dispersed shock
wave solutions, unlike the partially dispersed solutions provided by the Gaussian closure
as the Mach number increases. Using a Godunov-type finite-volume scheme with block
based adaptive-mesh refinement (AMR) on body-fitted multi-block meshes, the proposed
equations are applied to several canonical continuum and micron-scale flow situations such
as shock structure, Couette flow, and flow past a circular cylinder, as well as for transonic
flow past a micro airfoil. Comparisons with analytic, experimental, and direct-simulation
Monte Carlo (DSMC) results are made and demonstrate the capabilities of the proposed
non-equilibrium model.

I. Introduction and Background

Non-equilibrium micron-scale flows possess a variety of characteristics which make them difficult to
simulate by means of existing numerical techniques. Flow Knudsen numbers, Kn, in the range 0.01<Kn<10
may be encountered, even for pressures above one atmosphere, and, as a result, non-continuum and thermal
non-equilibrium effects can significantly influence momentum and heat-transfer phenomena in typical micro-
channel flows.1,2 In most cases, these flows are in the subsonic to low-supersonic regimes and, due to their
micro-geometries, have low Reynolds numbers and remain laminar. These flows can deviate significantly from
local thermodynamic equilibrium, and thus, traditional equation sets, such as the Euler and Navier-Stokes
equations cannot be used to model flow behaviour.

Particle-simulation techniques, such as the direct-simulation Monte Carlo (DSMC) method,3 have been
developed for the prediction of general non-equilibrium gaseous flows. However, for near-continuum through
to transitional-regime flows, the computational costs incurred by these techniques are considerable. This is
especially true for flows with low Mach numbers and, in these situations, computational expense can prohibit
their usage.4,5

Alternate approaches for the simulation of micron-scale flows include methods based on moment clo-
sures.6,7 These methods are based on approximate solutions to the Boltzmann equation of kinetic theory.
In these techniques, an assumed form for the probability distribution function is chosen such that moments
(or macroscopic quantities), whose transport can then be determined by a set of moment equations, can be
determined. Moment closures provide an extended set of partial differential equations (PDEs) describing the
transport of macroscopic fluid properties. In general, the solution of these PDEs require considerably less
effort than that associated with obtaining solutions using particle simulation methods. Previous studies by
the authors have demonstrated the applicability of moment-closure based techniques to micron-scale flows.8
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Moment closures, unfortunately, are not without their limitations. Early hierarchies of closures, such as
those proposed by Grad,6 provide hyperbolic PDEs for the time evolution of non-equilibrium quantities. The
equations, however, suffer from closure breakdown and loss of hyperbolicity for what appear to be relatively
benign flows. The Grad closures also do not guarantee moment realizability of solutionsa. The hyperbolicity
of moment equations, though pleasing from a physical point of viewb, also leads to a well known problem
of discontinuous, or partially dispersed, shock-wave solutions which contain sub-shocks when the upstream
flow exceeds a critical speed. These sub-shocks are an aphysical artifact of the moment closures.

Levermore has proposed a new hierarchy of non-perturbative moment closures with several desirable
mathematical properties.7 Closures belonging to this hierarchy do not suffer from the closure-breakdown
deficiency of many previous closures and the resulting PDEs remain hyperbolic with realizable moment solu-
tions for all physically realistic situations. Unfortunately, moments of all but the two lowest-order members
of this hierarchy prove impossible to evaluate analytically, and thus, explicit forms of moment equations with
all solution fluxes expressed explicitly in terms fo the lower-order moments cannot be determined. The two
closures which can be evaluated are the so-called five- and ten-moment closures which result in the Euler
equations, in the prior case, and the Gaussian closure, in the latter. In addition to the typical continuity and
momentum equations, the Gaussian closure furnishes a set of equations for an anisotropic pressure tensor.
However, it is deficient in that, by construction, it always results in a zero heat-flux vector and tensor. This
closure is therefore obviously unsuitable for situations in which heat flux plays a significant role. Higher-order
closures of the Levermore variety would provide moment equations for heat-transfer phenomena, however,
as stated earlier, explicit analytic forms of the transport equations for the moments of interest cannot be
determined.

In an effort to extend the Gaussian closure to include higher-order effects, Groth et al.9,10 formulated
perturbative variants to the original moment closure yielding a new extended fluid dynamic model. The most
well studied of these closures is a 35-moment closure. This closure remains hyperbolic for a large range of
flow situations, however it still does not possess the robustness of the original Levermore closures. Recently,
Stuchtrup11 has shown a technique for the regularization of moment equations and has applied this to the
13-moment equations of Grad. In essence, this technique consists of creating an expansion about the moment
equations, thus allowing small deviations from the assumed distribution function. A required assumption for
this procedure is that deviations from the assumed distribution function are suppressed by inter-molecular
collisions more quickly than non-equilibrium effects contained in the original moment equations. In this
paper, a similar regularization technique is applied to the Gaussian closure. This procedure results in the
addition of elliptic terms to the standard equations of the Gaussian closure. The resulting terms lead to a
heat-transfer treatment which is dependent on the anisotropic pressure tensor. The elliptic nature of the
added terms leads to smooth solutions, even through high-Mach-number shocks.

The following section will describe the derivation of the present correction to the Gaussian equations.
This is done both by expansion about the moment equations (this is the technique used by Struchtrup), and
also by explicitly taking an expansion around the assumed form of the distribution function in the kinetic
equation. It is shown that both techniques yield identical results. Following these derivations, the application
of a finite-volume scheme to the solution of the resulting equations is detailed. Numerical results for a range of
canonical continuum and micron-scale flow problems are then explored, including shock structure, Couette
flow, and flow past a circular cylinder, as well as transonic flow past a micro airfoil. Comparisons with
analytic, experimental, and direct-simulation Monte Carlo (DSMC) results are also made and demonstrate
the capabilities of the proposed non-equilibrium model. Finally, some conclusions regarding the applicability
of these equations to practical micron-scale applications are drawn.

II. Governing Equations

II.A. Gaskinetic Theory

Moment closures arise from the field of gaskinetic theory. This theoretical approach takes into account the
particle nature of gases by defining a probability density function, F(xi, vi, t), in six-dimensional phase space
which specifies the probability of finding particles at a given location, xi, and time, t, having a particular gas

aMoment realizability refers to the existence of a physically realistic velocity distribution function which corresponds to the
predicted moment values.

bHyperbolic equations predict finite speed of propagation for infinitesimal disturbances. This is in contrast to elliptic
equations which predict infinite speeds of propagation.
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velocity, vi. Macroscopic “observable” properties of the gas are then obtained by taking appropriate velocity
moments of F . This is done by integrating the product of the distribution function and an appropriate
velocity dependent weight over all velocity space,

〈M(vi)F〉 =
∫ ∞

−∞
M(vi)F(xi, vi, t)d3v . (1)

The evolution of the velocity distribution function is prescribed by the Boltzmann equation.12–14 This is
an integro-differential equation for F having the form:

∂F
∂t

+ vi
∂F
∂xi

+ ai
∂F
∂vi

= δF . (2)

Here ai is the acceleration due to external forces. The term on the right hand side of the equation, δF , is the
Boltzmann collision integral and represents the time rate of change of the distribution function produced by
inter-particle collisions.

Transport equations governing the time evolution of macroscopic quantities can be derived by evaluating
velocity moments of the Boltzmann equation given above. This leads to the so-called Maxwell’s equation of
change. The transport equations describing the evolution of the moment 〈MF〉 is then given by

∂

∂t
〈MF〉+

∂

∂xi
〈viMF〉 = ∆ 〈MF〉 . (3)

Here the acceleration field is taken to be zero (as will be the case throughout the present work), ∆ 〈MF〉 =
〈MδF 〉 is the effect of collisions on the moment quantity, and M is an appropriate velocity dependent weight.

It is at this point that the problem of closure becomes apparent. The time evolution of a moment 〈MF〉
is clearly dependent on the spacial divergence of 〈viMF〉, a moment of one higher order in terms of the
velocity, vi. This pattern is repeat with the time evolution of every moment being dependent on a moment
of one higher order in vi. In general, an infinite number of moment equations is required to fully describe the
evolution of a macroscopic flow quantity, and solving this infinite system is equivalent to solving Eqn (2).

One technique used to obtain moment closure is to restrict the distribution function to an assumed
form.6 Restricting the form of the distribution function has the effect of restricting the value of certain
higher-order moments to be functions of lower-order moments, thus furnishing a closing relationship in the
moment equations. For example, for a monatomic gas if the distribution function is assumed to have the
form

F(xi, vi, t) = M(xi, vi, t) = n
(β

π

)( 3
2 )

e(−βcici) , (4)

where n is the number density, ci is the random component of the particle velocity and β is a function
of the local temperature, the method of moments will lead to the well-known compressible Euler equations
describing the time evolution of density, momentum, and energy. Equation (4) is the well-known the Maxwell-
Boltzmann distribution, M, describing the equilibrium behaviour of a monatomic gas. It can be shown that
the collision operator will force all distribution functions towards this form, and, once in this state, the
collision operator will produce no further effects. This entropy property of the collision operator is well
established by Boltzmann’s H theorem. Gases described by this distribution function are said to be in local
thermodynamic equilibrium.

II.B. The Collision Operator

In general, the collision operator present in Eqns (2) and (3) are difficult or impossible to evaluate. Fortu-
nately, for many engineering problems, approximate collision terms prove adequate. The most commonly
used approximation is the BGK collision operator.15 This operator can be written as

δF = −F −M
τ

. (5)

This is often referred to as the “relaxation-time” collision operator, as it describes the relaxation of a general
distribution function F towards the equilibrium Maxwellian with characteristic time τ . The parameter τ
can be chosen such that the correct continuum viscosity of the gas is predicted (µ = τp, where µ is the fluid
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viscosity and p is the thermodynamic pressure). This model will also predicts the correct free-molecular
behaviour of the collision operator (i.e., it has no effect when τ approaches infinity) and can be shown to
satisfy Boltzmann’s H theorem. A well-known limitation of the BGK model, however, is that it always yields
a Prandtl number of

2
5

γ

γ − 1
=

{
1 for monatomic gases, and

1.4 for diatomic gases.

This is in contradiction with physical Prandtl numbers for most gases, which tend to be less than one.
There are several other collision-operator models available which can provide more realistic Prandtl

numbers. In the present work, an approximate collision term proposed by Holway16 will be used to describe
collisional processes for monatomic gases. This model, often referred to the ellipsoidal statistical model,
preserves much of the simplicity of the BGK model, while allowing for a tunable Prandtl number. It can be
written as

δF = −F − GES

τES
, (6)

where

GES(xi, vi, t) =
ρ

m(2π)3/2(detTαβ)1/2
exp

(
−1

2
T−1

ij cicj

)
. (7)

where m is the gas particle mass and ρ is the mass density. It will be seen in the next sub-section that this
distribution is a Gaussian distribution function which possesses a modified pressure tensor. The tensor Tij

is defined as
Tij = (1− ν)RTδij + νΘij , (8)

where Θij is a symmetric ‘temperature’ tensor given by Θij = Pij/ρ and Pij is the generalized pressure tensor
of the gas. The deviatoric stress tensor, τij , is related to the pressure tensor as follows: τij = δijp − Pij ,
where p = Pii/3 is the equilibrium isotropic pressure. If the parameters τES and ν are chosen such that
(1− ν)µ = τESp and (1− ν)Pr = 1 the model will predict the correct values for fluid viscosity and thermal
conductivity in the continuum limit. The ellipsoidal statistical collision model’s adherence to Boltzmann’s
H theorem was only recently demonstrated by Andries and Perthame17 and only for monatomic gases. It
is important to note that the relaxation times for these two models (τ and τES) differ by a factor of the
Prandtl number and the moment equations which follow will be written in terms of the relaxation time for
the standard BGK model for consistency with traditional forms of these equations.

II.C. The Gaussian Closure

In the Gaussian closure, the velocity distribution function for monatomic gaseous particles is assumed to
have the following form:

G(xi, vi, t) =
ρ

m(2π)3/2(detΘαβ)1/2
exp

(
−1

2
Θ−1

ij cicj

)
, (9)

This assumed distribution function provides moment closure as 〈mcicjckG〉 = 0 by construction. Unfortu-
nately, this relationship causes the heat flux vector, qi = 1

2 〈mcicjcjG〉 to also vanish. This demonstrates
a significant limitation of the standard Gaussian closure: its inability to account for the effects of thermal
diffusion.

The Gaussian distribution appears to have been first derived in early work by Maxwell18 and then
re-discovered in subsequent but independent research by both Schlüter19,20 and Holway.16,21–23 It may be
regarded as a generalization of the bi- and tri-Maxwellian velocity distribution functions that does not require
the identification of the planes of principal stress.19,20,24,25 This approximate non-equilibrium distribution
possesses a Gaussian-like distribution in each of the principal strain axes, physically, this corresponds to a
non-equilibrium gas with a different temperature in each direction.

Substitution of Equation (9) into Equation (3) with use of the approximate relaxation-time collision
term of Holway16 described above leads to the following set of ten PDEs describing the transport of the
macroscopic quantities ρ, ρui, and Pij :

∂ρ

∂t
+

∂ρuk

∂xk
= 0 , (10)
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∂

∂t
(ρui) +

∂

∂xk
(ρuiuk + Pik) = 0 , (11)

∂Pij

∂t
+

∂

∂xk
(ukPij) + Pjk

∂ui

∂xk
+ Pik

∂uj

∂xk
= −1

τ

(
Pij −

1
3
Pkkδij

)
. (12)

The above equations were derived for a monatomic gas with no internal degrees of freedom. A modification
must be made to account for energy that can be present due to the extra internal degrees if diatomic molecules
are to be considered. Such an extension has been proposed Hittinger26 and has been previously studied by
the authors.8 This extension adds an extra transport equation for internal rotational energy, resulting in
the following moment equations:

∂ρ

∂t
+

∂ρuk

∂xk
= 0 , (13)

∂

∂t
(ρui) +

∂

∂xk
(ρuiuk + Pik) = 0 , (14)

∂Pij

∂t
+

∂

∂xk
(ukPij) + Pjk

∂ui

∂xk
+ Pik

∂uj

∂xk
= −3Pij − Pkkδij

3τt
− 2(Pkk − 3Erot)

15τr
δij , (15)

∂

∂t
(Erot) +

∂

∂xk
(ukErot) = −3Erot − Pkk

5τr
. (16)

Here, τt and τr are the relaxation times associated with translational and rotational degrees of freedom
respectively.

III. Extended Fluid Treatment for Thermal-Diffusion Effects

As stated earlier, one of the major shortfalls of the Gaussian closure is its inability to account for thermal
diffusion. This is due to the construction of the assumed form of the distribution function used to obtain
moment closure. By allowing small deviations from the Gaussian distribution, however, thermal diffusion
can be re-introduced into the moment equations. This can be done by taking an appropriate Chapman-
Enskog perturbative expansion of either the moment equations (Eq. 10-12) or the kinetic equation using the
Gaussian distribution as the base distribution. Both of these techniques are detailed here.

III.A. Perturbative Expansion About the Moment Equations

A similar technique was previously used by Struchtrup in the regularization of the 13-moment equations.11

For this expansion, it is convenient to define the quantities

Kijkl = m 〈cicjckclF〉 −m 〈cicjckclG〉 = m 〈cicjckclF〉 −
1
ρ

[PijPkl + PikPjl + PilPjk] . (17)

This is the deviation of the fourth random-velocity moment from that calculated using a Gaussian distribu-
tion. The general moment quantities are then re-written as a perturbative expansion about their values as
predicted by the Gaussian closure. This is done by introducing a formal smallness parameter, ε, which is
used to scale the solution and moment equations. For example, the scaled solution for the generalized heat
flux Qijk and previously defined Kijkl tensors are written as

Qijk = Q
(G)
ijk + εQ

(1)
ijk + ε2Q

(2)
ijk + ε3Q

(3)
ijk + · · · , (18)

and
Kijkl = K

(G)
ijkl + εK

(1)
ijkl + ε2K

(2)
ijkl + ε3K

(3)
ijkl + · · · . (19)

Here, the superscript (G) denotes the value for a moment calculated using a Gaussian distribution function
and the superscript (n) denotes the n-th order correction. The moment equation for the moment 〈cicjF〉 in
its general form (without using an assumed form for the distribution function) is

∂Pij

∂t
+

∂

∂xk
(ukPij) + Pjk

∂ui

∂xk
+ Pik

∂uj

∂xk
+

∂Qijk

∂xk
= −1

τ

(
Pij −

1
3
Pkkδij

)
. (20)
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It can be seen that for this general case, there is a term, ∂Qijk

∂xk
which is not present in Equation (12). Setting

this third-order tensor to be identically zero is how closure was obtained in the Gaussian model. However,
in the current technique, a non-zero first-order deviation, i.e., Q

(1)
ijk, is introduced. For small deviations

from the Gaussian closure, an approximation to this term can be determined by writing the scaled moment
equation for Qijk, which, again using the approximate relaxation-time collision term of Holway,16 can be
written as

∂Qijk

∂t
+

∂

∂xl
(ulQijk) + Qjkl

∂ui

∂xl
+ Qikl

∂uj

∂xl
+ Qijl

∂uk

∂xl

+Pkl
∂

∂xl

(
Pij

ρ

)
+ Pjl

∂

∂xl

(
Pik

ρ

)
+ Pil

∂

∂xl

(
Pjk

ρ

)
+

∂Kijkl

∂xl
= −Pr

ετ
Qijk , (21)

for a monatomic gas. Note that, in the expression above, Equation (17) has been used and the scaling
parameter, ε, has been explicitly introduced on the right-hand side. The small parameter ε is introduced
in accordance with the assumption that deviations of the moment quantities from those predicted by the
Gaussian closure (i.e., Qijk = 0) will be attenuated rapidly by collisional processes. By making use of
equations 18 and 19, it can be seen that the unscaled zeroth-order terms of Equation (21) yields

Q
(G)
ijk = 0 , (22)

in agreement with the Gaussian closure. The equation allowing for unscaled first-order deviations becomes

Q
(1)
ijk = − τ

Pr

[
Pkl

∂

∂xl

(
Pij

ρ

)
+ Pjl

∂

∂xl

(
Pik

ρ

)
+ Pil

∂

∂xl

(
Pjk

ρ

)]
. (23)

This is the correction which will be used herein to introduce thermal diffusion to the Gaussian equations.

III.B. Perturbative Expansion About the Kinetic Equation

The above derivation was based on an expansion about the moment equations. The same result can also
be obtained from an expansion about the kinetic equation with the ellipsoidal statistical collision model of
Holway.16 To do this, it is convenient to write the collision operator in a slightly different form. This is done
by first assuming (1− ν) = ε � 1 and rewriting the expression for the tensor Tij as

Tij = (1− ν)RTδij + νΘij

= εRTδij + (1− ε)Θij

= Θij + ε [RTδij −Θij ]
= Θiα [δαj − εΛαj ] , (24)

where ΘiαΛαj = [RTδij −Θij ]. It can be seen in Equation (7) that T−1
ij is needed. This can be written as

T−1
ij = [δiα − εΛiα]−1 Θ−1

αj . (25)

Provided the spectral radius of εΛiα is less than unity, a fact that is true given the assumption of the
smallness of ε, the term [δiα − εΛiα]−1 can be formally expanded as

[δiα − εΛiα]−1 = δiα + εΛiα + ε2Λ2
iα + ε3Λ3

iα + · · · =
∞∑

n=0

εnΛn
iα (26)

where the notation Λ3
iα = ΛiβΛβγΛγα and Λ0

iα = δiα has been used. Equation (7) can therefore be rewritten
as

GES =
ρ

m(2π)3/2(detTαβ)1/2
exp

(
−1

2

( ∞∑
n=0

εnΛn
iα

)
θ−1

αj cicj

)
. (27)

The summation in the exponent can be rewritten as a product of terms as

GES =
ρ

m(2π)3/2(detTβγ)1/2

∞∏
n=0

exp
(
−1

2
(εnΛn

iα) θ−1
αj cicj

)
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=
ρ

m(2π)3/2(detTβγ)1/2
exp

(
−1

2
θ−1

ij cicj

) ∞∏
n=1

exp
(
−1

2
(εnΛn

iα) θ−1
αj cicj

)

=
ρ

m(2π)3/2(detTβγ)1/2
exp

(
−1

2
θ−1

ij cicj

) ∞∏
n=1

 ∞∑
k=0

(
− 1

2εnΛn
iαθ−1

αj cicj

)k
k!


=

ρ

m(2π)3/2(detTβγ)1/2
exp

(
−1

2
θ−1

ij cicj

)[
1 +

(
− ε

2
Λiαθ−1

αj cicj

)
+O

(
ε2
)]

. (28)

At this point, using the small scaling parameter, ε, the scaled distribution function is assumed to have
the form

F = G
(
g(0) + εg(1) + ε2g(2) + ε3g(3) + · · ·

)
. (29)

This is then substituted into the scaled kinetic equation using Equation (28), which yields

∂F
∂t

+ vk
∂F
∂xk

+ = −Pr
ετ

{
F − G

[
1 +

(
− ε

2
Λiαθ−1

αj cicj

)]}
, (30)

where the smallness parameter multiplying the relaxation time is akin to assuming that the collision operator
will force general distribution functions towards a Gaussian on a very fast time scale. Equation (30) can be
rewritten by gathering terms of similar order in ε,

Pr
τ G

[
g(0) − 1

]
+ ε
[

∂g(0)G
∂t + vk

∂g(0)G
∂xk

− Pr
τ

{(
1
2GΛiαθ−1

αj cicj

)
− g(1)G

}]
+ε2 [· · ·] + ε3 [· · ·] = 0 . (31)

It is clear that the zeroth-order solution to this equation is g(0) = 0. Retaining first-order terms, the relation

g(1)G = − τ

Pr

[
∂G
∂t

+ vk
∂G
∂xk

− Pr
2τ
GΛiαθ−1

αj cicj

]
, (32)

is obtained. Substitution of this relation into the unscaled kinetic equation (i.e., using F = G
(
1 + g(1)

)
)

and taking moments using the weighting functions M = [m ,mvi ,mvivj ] leads to〈
M

∂G
∂t

〉
+

〈
M

∂
(
g(1)G

)
∂t

〉
+
〈
Mvk

∂G
∂xk

〉
+

〈
Mvk

∂
(
g(1)G

)
∂xk

〉
=

Pr
τ
〈M (GES −G)〉 − Pr

τ

〈
M
(
g(1)G

)〉
.

(33)
The second term on the left-hand side, as well as the second term on the right-hand side, must be equal to
zero. This is because solution consistency dictates that

〈
M
(
g(1)G

)〉
cannot alter the zeroth-order values of

〈MG〉. Once the moments have been computed, Equation (33) can be written as

∂U
∂t

+
∂F̄(U)
∂xk

+
∂

∂xk

〈
Mvkg(1)G

〉
=

C
τ

(UES −U) , (34)

where U is the solution state, UES is the solution state variables obtained from the ellipsoidal statistical
distribution function, F̄ is the flux diad and C is a vector arising from the collision operator. It is therefore
clear that

〈
Mvkg(1)G

〉
must be determined. The same consistency argument made earlier shows that the

moments
〈
mvig

(1)G
〉

and
〈
mvivjg

(1)G
〉

must be zero and that
〈
mvivjvkg(1)G

〉
=
〈
mcicjckg(1)G

〉
. It is this

moment which must be determined. This can be written as〈
mcicjckg(1)G

〉
= − τ

Pr

〈
mcicjck

(
∂G
∂t

+ vl
∂G
∂xl

− Pr
2τ
GΛlαθ−1

αmclcm

)〉
. (35)

The moment
〈
mcicjckclcm

Pr
2τ GΛlαθ−1

αm

〉
represents the integral of odd functions and is thus equal to zero.

The completion of this derivation, therefore, requires the calculation of
〈
mcicjck

∂G
∂t

〉
and

〈
mcicjckvl

∂G
∂xl

〉
.

These integrations will be demonstrated separately, beginning with
〈
mcicjck

∂G
∂t

〉
. This integration will make

use of the fact that
1
G

∂G
∂t

=
1
G

∂G
∂ρ

∂ρ

∂t
+

1
G

∂G
∂ui

∂ui

∂t
+

1
G

∂G
∂Θij

∂Θij

∂t
. (36)
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The derivatives of the Gaussian distribution function with respect to the quantities ρ, ui and θij can be
shown to be

1
G

∂G
∂ρ

=
1
ρ

, (37)

1
G

∂G
∂ui

= Θ−1
ik ck , (38)

1
G

∂G
∂Θij

= −1
2

1
det Θγδ

∂ det Θγδ

∂Θij
− 1

2
∂Θ−1

kl

∂Θij
ckcl . (39)

This results in the following expression

〈
mcicjck

∂G
∂t

〉
=

odd︷ ︸︸ ︷〈
mcicjck

1
ρ
G ∂ρ

∂t

〉
+
〈

mcicjckΘ−1
αl clG

∂uα

∂t

〉
+

〈
mcicjck

[
−1

2
1

det Θγδ

∂ det Θγδ

∂Θαβ
− 1

2
∂Θ−1

γδ

∂Θαβ
cγcδ

]
G ∂Θαβ

∂t

〉
︸ ︷︷ ︸

odd

= Θ−1
αl 〈cicjckclG〉

∂uα

∂t

= Θ−1
αl

[PijPkl + PikPjl + PilPjk]
ρ

{
−uβ

∂uα

∂xβ
− 1

ρ

∂Pαβ

∂xβ

}
= −1

ρ

[
Pij

∂Pkβ

∂xβ
+ Pik

∂Pjβ

∂xβ
+ Pjk

∂Piβ

∂xβ

]
−
[
Pijuβ

∂uk

∂xβ
+ Pikuβ

∂uj

∂xβ
+ Pjkuβ

∂ui

∂xβ

]
. (40)

The moment
〈
mcicjckvl

∂G
∂xl

〉
can be integrated as〈

mcicjckvl
∂G
∂xl

〉
=

∂

∂xl
〈mcicjckvlG〉 −

〈
G ∂

∂xl
[mcicjckvl]

〉

=
∂

∂xl

〈mcicjckclG〉+ ul 〈mcicjckG〉︸ ︷︷ ︸
odd


−
〈
G
[
mcicjvl

∂ck

∂xl
+ mcickvl

∂cj

∂xl
+ mcjckvl

∂ci

∂xl

]〉
=

∂

∂xl
〈mcicjckclG〉+

〈
G
[
mcicjvl

∂uk

∂xl
+ mcickvl

∂uj

∂xl
+ mcjckvl

∂ui

∂xl

]〉

=
∂

∂xl
〈mcicjckclG〉+

odd︷ ︸︸ ︷〈
G
[
mcicjcl

∂uk

∂xl
+ mcickcl

∂uj

∂xl
+ mcjckcl

∂ui

∂xl

]〉
+ul

〈
G
[
mcicj

∂uk

∂xl
+ mcick

∂uj

∂xl
+ mcjck

∂ui

∂xl

]〉
=

∂

∂xl

[
PijPkl + PikPjl + PilPjk

ρ

]
+ ul

[
Pij

∂uk

∂xl
+ Pik

∂uj

∂xl
+ Pjk

∂ui

∂xl

]
. (41)

This series of steps made use of the facts that ∂vi

∂xj
= 0 and ∂ck

∂xl
= −∂uk

∂xl
.

Combination of equations 40 and 41, followed by some simple algebra, leads to the relation

Qijk =
〈
mcicjckg(1)G

〉
= − τ

Pr

[
Pkl

∂

∂xl

(
Pij

ρ

)
+ Pjl

∂

∂xl

(
Pik

ρ

)
+ Pil

∂

∂xl

(
Pjk

ρ

)]
, (42)
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which is exactly the same result as obtained by the previous derivation based on a perturbative expansion
applied directly to the moment equations. These same thermal diffusion terms can also easily be used with
the diatomic form of the Gaussian moment equations.

III.C. Solid-Wall Boundary Conditions

Appropriate solid-wall boundary conditions for the Gaussian closure are not immediately obvious. One
technique for determining the solution at a wall is to assume that there exists a Knudsen layer next to
the solid surface.6 In this infinitesimally thin layer, the fluid exists as a combination of the distribution
function defining incoming particles from the interior flow field and a distribution function defining reflected
particles arising from the wall. For example, for a solid wall extending in the x-direction with a fluid above
it, all the particles with negative y-direction velocities in the Knudsen layer will come from the neighbouring
fluid with statistical properties defined by the Gaussian. In order to model the particle interaction with
the wall, an accommodation coefficient, 0 ≤ α ≤ 1, is then defined. If α is zero (specular reflection), the
incoming particles will simply be reflected specularly from the wall back into the Knudsen layer. For α = 1
(diffuse reflection), incoming particles are fully accommodated and will therefore come into thermodynamic
equilibrium with the wall before being released from the wall and will re-enter the Knudsen layer with
the statistical properties of a Maxwell-Boltzmann distribution defined by a wall temperature, Tw. For any
intermediate α value, the reflected particles will enter the Knudsen layer as a combination of the two cases.
The resulting distributions function for the Knudsen layer is then given by

FKn = F+ + F− , (43)

where F+ and F− are given by

F− =

{
Gb(vx, vy, vz) for vy < 0 ,

0 for vy > 0 ,
(44)

F+ =

{
αMw(vx, vy, vz) + (1− α)Gb(vx,−vy, vz) for vy > 0 ,

0 for vy < 0 ,
(45)

and where Gb is Gaussian distribution at the edge of the Knudsen layer and Mw is the Maxwellian defining
particles which are fully accommodated by the wall. By assuming that the bulk y-direction velocity of the
fluid immediately above the wall is zero and by imposing the constraint that the net particle flux through
the wall must be zero, it is possible to show that the reflected Maxwellian has the form:

Mw(vx, vy, vz) =
√

nPyy

kTw

(
m

2πkTw

) 3
2

e−( m
2kTw

)((vx−(ux)w)2+vy2+vz2) , (46)

where k is Boltzmann’s constant and n is the number density. All the properties are those of the fluid outside
the Knudsen layer with the exception of Tw which is the temperature of the wall and (ux)w which is the
x-direction velocity of the wall.

Once this is determined, all of the required moments of FKn for two-dimensional flows can be shown to
be

(ρ)Kn = ρ

(
1 +

α

2

[√
mPyy

ρkTw

])

(ρux)Kn = (2− α)

(
ρux

2
− ρPxy√

2πρPyy

)
+

α

2

√
Pyy

nkTw
(ux)w

(ρuy)Kn = 0

(Pxx)Kn = (2− α)

(
Pxx

2
+

ρ(ux − (ux)Kn)2

2
− Pxy

√
2ρ

πPyy
(ux − (ux)Kn)

)

+α

(
nwkTw

2
+

ρw((ux)w − (ux)Kn)2

2

)
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(Pxy)Kn = α

(
Pxy

2
−
√

ρPyy

2π
(ux − (ux)Kn) +

√
ρwnwkTw

2π
((ux)w − (ux)Kn)

)

(Pyy)Kn =
2− α

2
Pyy +

α

2

√
PyynwkTw

(Pzz)Kn =
2− α

2
Pzz +

α

2

√
PzznwkTw .

The thermal diffusion terms which are added to the standard Gaussian closure when used with Knudsen-
layer boundary conditions6 do not allow for temperature slip between the gas and solid boundary. However
this phenomenon is expected for moderate Knudsen-number flows and must be accounted for. Fortunately
temperature-slip boundary conditions have been previously studied.27 For the present work, the following
expression is used

T = Tw + gλ
∂T

∂ni
, (47)

where T is the temperature of the fluid at the boundary, Tw is the temperature of the wall, ni is the unit
normal to the wall, and g is the slip distance factor given by the expression

g =
10π

16Pr

(
2− a

a

)
γ

γ + 1
. (48)

Here a is a thermal accommodation coefficient which describes the fractional extent to which molecules
which impact a surface and are re-emitted from it have their energy adjusted to that of a stream of particles
in thermal equilibrium with the wall; a = 0 corresponds to reflected particles having no change to their
energy and a = 1 corresponds to particles begin fully thermally accommodated by the wall. These boundary
conditions can be combined with Knudsen-layer boundary conditions by assuming that particles are emitted
from solid boundaries at the temperature predicted by the slip condition of Eq. (47).

IV. Parallel AMR Finite-Volume Scheme

A parallel high-order Godunov-type finite-volume scheme with block-based adaptive mesh refinement
(AMR) has been developed for the solution of the transport equations of the Gaussian closure with diffusive
heat transfer for two-dimensional planar flows on multi-block quadrilateral meshes. The hyperbolic numerical
fluxes are determined from the approximate solution of a Riemann problem posed in a direction defined by
the normal to the cell faces. The left and right solution states for the Riemann problems are determined via
a least-squares piece-wise limited linear solution reconstruction procedure with either the Barth-Jesperson
or Venkatakrishnan limiters.28,29 This provides a second-order-accurate spatial discretization for smooth
solutions. In the present algorithm, both Roe- and HLLE-type approximate Riemann solvers30,31 are used
to solve the Riemann problem and evaluate the numerical flux. Due to the stiffness of the source terms
arising from the collision operator, a point-implicit time integration scheme is used.8 Elliptic fluxes arising
from thermal diffusion are calculated using a diamond-path reconstruction technique.32,33

This finite-volume scheme has been implemented with a parallel block-based AMR scheme previously
developed by Sachdev et al.34 This technique allows initial body-fitted meshes to be automatically refined in
areas of interest which are found using physics-based refinement criteria. The scheme has been designed to
make efficient use of large-scale distributed-memory parallel clusters. This solver has previously been applied
to many continuum and micron-scale flow problems using the traditional Gaussian moment equations.8,35

V. Numerical Results

Application of the regularized Gaussian closure discussed above to some standard flow problems is now
considered for a range of Knudsen numbers. For the calculation of the mean free path required to determine
the Knudsen number, the gas is assumed to be comprised of hard spheres3 for which

λ =
16µ

5(2πρp)
1
2

. (49)
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V.A. Shock-Structure Calculations

As a preliminary study into the behaviour of the Gaussian closure with the present correction for thermal
diffusion, one-dimensional planar shock structures were investigated for shock waves of differing strengths
traveling through argon. The internal structure of shocks is characterized by highly non-equilibrium features
and represents a significant challenge for any non-equilibrium model. The results of the present investigation
can be seen in Figures 1 and 2 where normalized density and one entry on the generalized heat-flux tensor,
Qxxx, are plotted. The density is normalized by the relation

ρ? =
ρ− ρu

ρd − ρu
,

where ρu and ρd are the up- and down-stream densities respectively. The heat-flux entry Qxxx is normalized
as

Q?
xxx =

Qxxx(
pxx

√
pxx

ρ

) .

Results for shock Mach numbers, Ms, of 1.2, 1.5, and 2 are shown.
Unlike the Euler equations, the standard Gaussian moment equations do not predict discontinuous shock

structures for all Mach numbers. Rather, for Mach numbers lower than a critical value, a smooth transition
between up- and down-stream states is predicted; this can be observed in Figure 1(a). However, due to
hyperbolicity of the equations, above a critical Mach number a discontinuity will appear. This discontinuity
can clearly be seen in the Ms =1.5 and Ms =2 cases of Figures 1(b) and 1(c).

Conversely, it can be seen that the proposed correction for thermal diffusion leads to smooth (fully
dispersed) shock transitions for a wide range of shock Mach numbers. It can also be seen that for lower-Mach-
number cases, the agreement between the regularized Gaussian moment equations and DSMC calculations
is generally quite good. However, for the Ms =2 case, the generalized Gaussian and the DSMC results begin
to differ. A comparison of the predicted normalized values of Qxxx for the regularized Gaussian closure and
DSMC are shown in Figure 2. Again it can be seen that there is good agreement, especially for shock Mach
numbers of 1.2 and 1.5.

V.B. Heat Transfer Between Infinite Plates

A good test case to verify the proper implementation of the temperature-slip boundary conditions is heat
transfer between infinite isothermal plates. This case can be used both to ensure that the correct temperature
slip is predicted at the boundary and to study the predicted heat transfer between the plates over a range of
flow regimes and Knudsen numbers. It is expected that for low-Knudsen-number situations, the temperature
slip between the boundary and the fluid should be imperceptible. It is only as the Knudsen number increases
into the slip-flow regime that any appreciable slip should be observed. Finally, in the limit of infinite Knudsen
number, the temperature slip should be perfect and the fluid should have a uniform temperature throughout.

Figure 3(a) shows the temperature of argon gas at one of the solid plates for the situation where the
plate temperatures differ by 20 K. This temperature is normalized by the formula

T ? =
T − Tm

Tw − Tm
,

where T ? is the normalized temperature, T is the temperature of the gas at the wall, Tw is the temperature
of the solid wall, and Tm is the temperature of the gas midway between the plates. It can be seen that all
of these expected behaviours detailed above are observed; there is no noticeable slip (T ? ≈ 1) in the low-
Knudsen-number situations and the slip approaches perfect (T ? approaches zero) as the Knudsen number
increases.

Non-continuum effects are also very evident when the predicted heat transfer between the plates is
considered. This data has been plotted in Figure 3(b). This figure shows the predicted heat flux for the
continuum Navier-Stokes equations, the Navier-Stokes equations with slip-temperature boundary conditions,
solutions obtained using the regularized Gaussian moment equations with slip boundary conditions, and the
heat flux predicted by integration of two half Maxwellians emitted from the solid walls (the free-molecular
solution); these have all been normalized with respect to the free-molecular solution. It can be seen that the
extended Gaussian moment equations together with slip-temperature boundary condition transition from the
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(a) (b)

(c)

Figure 1. Normalized density variations through shock waves with shock Mach numbers of (a) Ms =1.2, (b) Ms =1.5, and (c) Ms =2.

continuum solution to a free-molecular limit which is slightly higher than the true free-molecular solution.
This is a consequence of the derivation used to calculate the slip distance (Eq. 48). It is possible to “tune”
the slip distance so as to obtain the correct free-molecular heat flux for the case of heat transfer between
two plates, however it would only be correct in this situation. It seems more advisable to use the equation
for slip distance given above as this is derived from more physical arguments.

V.C. Subsonic Flow Past a Circular Cylinder

In previous studies by the authors,8,35 low-speed flow past a circular cylinder as predicted by the standard
Gaussian moment equations has been considered. There is a reasonable amount of data and theory available
in the literature regarding this situation. In particular the coefficient of drag, Cd, is available for continuum,
transitional, and free-molecular flow regimes. In the previous studies comparison between the Gaussian
equations, experimental results collected by Coudeville et al.36 and an approximate solution developed by
Patterson37 for airflow at a speed ratio of 0.027 and 0.107 have shown good agreement for low-Knudsen-
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(a) (b)

(c)

Figure 2. Normalized heat-flux variations through shock waves with shock Mach numbers of (a) Ms =1.2, (b) Ms =1.5, and (c) Ms =2.

number situationsc. However, as the Knudsen increases, the Gaussian moment equations seem to over-predict
the coefficient of drag. Figure 4 shows the results of this previous study.

With hopes of obtaining better agreement for higher-Knudsen-number situations, a portion of these flow
situations were re-computed using the regularized Gaussian moment equations. Figure 5 shows the results
of this effort.

It was found that the slip-temperature boundary conditions described above introduce numerical diffi-
culties for the cylinder flows and often result in aphysical negative temperatures at the boundary when a
large temperature gradient is present. In order to obtain solutions, it was found that isothermal boundary
conditions had to be imposed at the cylinder wall. This was carried out by maitaining a fixed or constant
value for the wall temperature, Tw, in Eq. (46). In Figure 5, it can be seen that the addition of thermal
diffusion seems to reduce the predicted coefficient of drag for this case. Unfortunately, in the transition
regime, the regularized Gaussian equations now seem to under-predict the coefficient of drag. This could
be due to the use of the isothermal boundary conditions at the cylinder wall. It was shown in the previous

cThe speed ratio is the ratio of the bulk speed to the most probable random speed of a particle, it differs from the Mach
number by a constant of order unity.
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(a) (b)

Figure 3. Heat transfer between infinite plates: (a) normalized temperature of the gas the wall, (b) predicted heat flux between the
plates.

Figure 4. Coefficients of drag for airflow past a circular cylinder computed using the standard Gaussian moment closure on a
body-fitted mesh as compared to experimental results of Coudeville et al.36 and Patterson’s37 approximate analytic expression.

infinite-plate calculations that slip-boundary conditions reduce the heat transfer from a boundary in the slip-
and free-molecular-flow regimes. Inclusion of more realistic boundary conditions may improve the results in
this regime.

The magnitude of the differences caused by thermal diffusion may seem surprising given that the low-
speed nature of the flow does not produce a large variation in the gas temperature. However, the decreasing
spatial scales associated with higher-Knudsen-number situations leads to large gradients, even for small total
differences in temperature.

V.D. Transonic Flow Past a NACA0012 Micro-Airfoil

Lastly, the application of the Gaussian closure to the prediction of transonic steady flow around a NACA0012
micro-airfoil at zero angle of attack is now considered. For the case presented, the free-stream values of the
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Figure 5. Coefficients of drag for S = 0.027 airflow past a circular cylinder computed using the standard and regularized Gaussian
moment closure on a body-fitted mesh as compared to experimental results of Coudeville et al.36 and Patterson’s37 approximate
analytic expression.

flow Mach number, temperature, and density are 0.8, 257 K, and 1.161× 10−4 Kg/m3, respectively, and the
chord length of the airfoil is 0.04 m. These conditions correspond to a Knudsen number of 0.017 are the same
as those considered in a study of the standard Gaussian moment equations by Suzuki and van Leer.38 In this
previous study, Suzuki and van Leer reproduce results for this case obtained using a DSMC-based scheme
obtained by Sun and Boyd5 and experimental results obtained by Allegre, Raffin and Lengrand.39 Both of
these results are again reproduced here in Figures 6(c) and 6(d). For comparison, Figures 6(a) and 6(b)
show results obtained using the standard and regularized Gaussian moment equations respectively. Again,
due to problems with negative temperatures at the boundary, slip-temperature boundary conditions could
not be used and isothermal Knudsen-layer boundary conditions were used instead.

It is evident from the comparisons Figures 6(c)–6(b) that the simulations obtained using the standard
Gaussian equations agree well with DSMC and experiment at the leading edge, however the density seems
to be very under-predicted along the length of the airfoil. A similar finding was reported in the earlier work
by Suzuki and van Leer.38 However, for this case, the inclusion of thermal diffusion greatly improves the
agreement with both DSMC and experiment, particularly towards the trailing edge of the airfoil. In general,
the agreement between DSMC and the regularized Gaussian equations seems very good.

VI. Discussion

It has been shown that the current extension to the standard Gaussian moment equations can lead to
improved results for transition-regime flows in which heat transfer has a significant effect. There are, however,
several issues in the derivation which should be mentioned. First, the assumption that deviations from the
moment quantities predicted by the Gaussian closure will be attenuated rapidly by collisional processes
which lead to the introduction of ε on the right-hand side of Eq.(21) is not well founded as relaxation times
for higher-order moment tend to be larger than for lower-order moments.11

There is a related problem with the derivation using the kinetic equation. Remembering the relation
between the Prandtl number and the parameter ν in the ellipsoidal statistical collision model ((1−ν)Pr = 1),
it can be seen that the assumption that (1− ν) = ε � 1 is equivalent to assuming that the Prandtl number
of the gas is much larger than unity. This is in contrast with most gases.

It should also be mentioned that the ellipsoidal statistical collision model’s adherence to Boltzmann’s H

15 of 18

American Institute of Aeronautics and Astronautics



(a) (b)

(c) (d)

Figure 6. Comparison of th normalized density contours around a NACA0012 micro-airfoil: (a) predictions of the standard Gaussian
moment equations, (b) predictions of the the regularized Gaussian moment equations, (c) predictions of the DSMC-based method of
Sun and Boyd5 and (d) experimental data of Allegre, Raffin and Lengrand.39

theorem has only been demonstrated for monatomic gases. However, experience obtained during this study
suggest that for the present purposes it also leads to good results for diatomic gases.

VII. Conclusions

This study has presented a derivation of an extended fluid-dynamic model for micron-scale flows with
heat transfer based on the Gaussian moment closure. The derivation makes use of a Chapman-Enskog
expansion about either the moment equations or the kinetic equation. This results in additional elliptic
terms describing a generalized non-equilibrium heat-flux tensor. Boundary conditions using a combination
of temperature-slip and Knudsen-layer approximations have been presented. A Godunov-type finite-volume
scheme has been used to obtain numerical solutions for several flow problems including shock-structure
calculations, predictions of heat transfer between parallel plates, flow past a circular cylinder, and flow past
a micro-airfoil. The capabilities of the method for describing non-equilibrium flows has been illustrated and
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it has been shown that thermal diffusion can have a significant effect on many transition-regime micron-scale
flows. Future work will involve further assessment of the proposed model.
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