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A parallel block-based adaptive mesh refinement (AMR) scheme is developed and ap-
plied to the prediction of the structure of non-premixed axisymmetric methane-air laminar
diffusion flames. The parallel solution-adaptive algorithm solves the system of partial-
differential equations governing two-dimensional axisymmetric compressible laminar flows
for reactive thermally perfect gaseous mixtures. A finite-volume spatial discretization pro-
cedure is used to solve the conservation form of the mixture continuity, momentum, and
energy equations and species mass fraction equations on body-fitted multi-block quadri-
lateral mesh. The compressible formulation can readily accommodate large density varia-
tions and thermoacoustic phenomena. A local preconditioning technique is used to remove
numerical stiffness and maintain solution accuracy for low-Mach-number, nearly incom-
pressible flows. Limited piecewise linear solution reconstruction and Riemann solver based
flux functions are used in the evaluation of inviscid fluxes and a centrally weighted second-
order discretization procedure is adopted for determining the viscous fluxes. A flexible
block-based hierarchical data structure is used to facilitate mesh adaptation according to
physics-based refinement criteria. The data structure also enables efficient and scalable im-
plementations of the algorithm on multi-processor architectures via domain decomposition.
Numerical results are discussed for co-flow laminar diffusion flames. The validity of the
parallel AMR approach and the ability of the mesh adaption scheme to resolve fine-scale
features of laminar flames is demonstrated.

I. Introduction

Combustion refers to the complex physical/chemical processes by which a fuel and oxidizer undergo irre-
versible chemical reactions to produce heat. It is one of the most widely experienced phenomena in nature
and occurs in or is a key component of many of practical technologies that directly impact society today
including aircraft and rocket engines for transportation and propulsion. In spite of this, there are many
unresolved issues associated with our understanding of and ability to predict combustion phenomena. Over
the last 10-15 years, the application of computational fluid dynamics (CFD) methods to reactive flows has
yielded an improved understanding of combustion processes. Nevertheless, combustion involves a wide range
of complicated physical and chemical phenomena (flame behaviour is dictated by a strong interaction be-
tween the flow structure, chemical kinetics, and thermodynamic properties of the reactants and products),
each with their own characteristic spatial and/or temporal scales. In many cases, combusting flows exhibit
large disparities in these characteristic scales and the solution of such flows places heavy demands on cur-
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rently available computing resources. For these reasons, the prediction of combustion processes by numerical
methods remains a very challenging area of research.

Many approaches have been taken to reduce the computational costs of performing simulations of combusting
flows. One successful approach is to make use of solution-directed mesh adaptation, such as the adaptive
mesh refinement refinement (AMR) algorithms developed for aerodynamic flows.1–11 Computational grids
that automatically adapt to the solution of the governing equations are very effective in treating problems
with disparate length scales, providing the required spatial resolution while minimizing memory and storage
requirements. The work by Day and Bell12 describes the application of an AMR algorithm to laminar
diffusion flames. Another approach is to apply a domain decomposition procedure and solve the problem
in parallel using multiple processors. Large massively parallel distributed-memory computers can provide
many fold increases in processing power and memory resources beyond those of conventional single-processor
computers and would therefore seem to provide an obvious avenue for greatly reducing the time required to
obtain numerical solutions of combusting flows. Douglas et al.

13 describe a parallel algorithm for numerical
combustion modelling. The focus of the present study is to couple these two approaches, producing a method
that both reduces the overall problem size and the time to calculate a solution for combusting flows.

A parallel block-based adaptive mesh refinement (AMR) scheme is described and applied to the predic-
tion of the structure of non-premixed axisymmetric methane-air laminar diffusion flames. The parallel
solution-adaptive algorithm solves the system of partial-differential equations governing two-dimensional
axisymmetric compressible laminar flows for reactive thermally perfect gaseous mixtures. A finite-volume
spatial discretization procedure is used to solve the conservation form of the mixture continuity, momentum,
and energy equations and species mass fraction equations on body-fitted multi-block quadrilateral mesh.
High-temperature thermodynamic and transport properties of the gaseous species are prescribed using the
semi-empirical relations of Gordon and McBride.14, 15 The compressible formulation can readily accommo-
date large density variations and thermoacoustic phenomena. A local preconditioning technique is used
to remove numerical stiffness and maintain solution accuracy for low-Mach-number, nearly incompressible
flows. Limited piecewise linear solution reconstruction and Riemann solver based flux functions are used in
the evaluation of inviscid fluxes and a centrally weighted second-order discretization procedure is adopted
for determining the viscous fluxes. A flexible block-based hierarchical data structure is used to facilitate
mesh adaptation according to physics-based refinement criteria. The data structure also enables efficient
and scalable implementations of the algorithm on multi-processor architectures via domain decomposition.

Details are provided concerning the finite-volume solution scheme, low-Mach-number local preconditioning
technique, AMR strategy, and domain decomposition procedure. The parallel performance of the AMR
algorithm is also discussed. Numerical results are described for both premixed and non-premixed laminar
flames, including co-flow axisymmetric methane-air diffusion flames using a simple two-step reduced chemical
kinetic scheme.16 The validity of the parallel AMR approach and the ability of the mesh adaption scheme
to resolve the fine-scale features of laminar flames is demonstrated.

II. Mathematical Modelling

A. Navier Stokes Equations

The governing conservation equations describing the behaviour of a thermally perfect reactive gaseous mix-
ture can be expressed as

∂

∂t
(ρ) + ∇ · (ρU) = 0 , (1)

∂

∂t
(ρU) + ∇ · (ρUU + p

~~I) = ∇ · ~~τ − ρg , (2)
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∂

∂t
[ρE] + ∇ ·

[

ρU(E +
p

ρ
)

]

= ∇ · (U · ~~τ − q) − ρg · U , (3)

∂

∂t
(ρcs) + ∇ · (ρcsU) = ∇ · (ρDs∇cs) + ρω̇s , (4)

where Eqs. (1)–(3) reflect the conservation of mass, momentum, and energy for the reactive mixture, ρ is
the mixture mass density, U is the mixture velocity, E is the total specific energy of the mixture given by

E = e +
1

2
|U|2 , (5)

e is the specific internal energy, p is the mixture pressure, ~~τ is the fluid stress tensor for the mixture, q
is the heat flux vector, and g is the acceleration due to gravitational forces. Equation (4) is the species
concentration equation for species s, where cs is the species mass fraction, Ds is the diffusion coefficient, and
ω̇s is the time rate of change of the species concentration due to finite-rate chemistry. It follows from the
caloric equation of state for a thermally perfect mixture that

e =
N

∑

s=1

cshs −
p

ρ
, (6)

where hs is the species enthalpy, N is the number of species, and the ideal gas law for the mixture is given
by

p =
N

∑

s=1

ρcsRsT , (7)

where Rs is the species gas constant and T is the mixture temperature. For two-dimensional axisymmetric
flows, these equations can be re-expressed using vector notation as

∂U

∂t
+

∂F

∂r
+

∂G

∂z
=

∂Fv

∂r
+

∂Gv

∂z
+

Sa

r
+ S (8)

where U is the vector of conserved variables given by

U =
[

ρ, ρUr, ρUz, ρE, ρc1, . . . , ρcN

]T

, (9)

Sa and S are source terms associated with the axisymmetric geometry, finite rate chemistry and gravitational
forces, respectively, and have the form

Sa =





























−ρUr

−ρUrUr + τrr − τθθ

−ρUrUz + τrz

−ρUr

(

E +
p

ρ

)

+ Urτrr + Uzτrz − qr

−ρc1Ur + ρD1
∂c1

∂r
...

−ρcNUr + ρDN
∂cN

∂r





























, S =



























0

0

ρgz

ρgzUz
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...

ρω̇N



























, (10)
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the inviscid flux vectors, F and G, are

F =





























ρUr

ρUrUr + p

ρUzUr

ρUr

(

E +
p
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)
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...
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, G =
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ρUrUz

ρUzUz + p

ρUz
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E +
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ρ

)

ρc1Uz

...

ρcNUz





























, (11)

and the viscous flux vectors Fv and Gv are given by

Fv =



























0
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Urτrr + Uzτrz − qr

ρD1
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...

ρDN
∂cN

∂r



























, Gv =



























0

τrz

τzz

Urτrz + Uzτzz − qz

ρD1
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∂z
...

ρDN
∂cN

∂z



























. (12)

Here, r, z, and θ are the radial, axial, and azimuthal coordinates of the axisymmertric frame, Ur and Uz

are the radial and axial velocity components, gz is the acceleration due to gravity (assumed to have only an
axial component here), qr and qz the radial and axial components of the heat flux, and τrr, τrz, τzz , and τθθ

are the components of the viscous fluid stresses.

B. Thermodynamic and Transport Properties

Expressions for individual species and mixture thermodynamic and transport properties are required to
complete the system of partial differential equations for the reactive mixture given above. The empirical
expressions complied by Gordon and McBride14, 15 are used to specify the hs and the species specific heat,
cps

, entropy, ∆ss, viscosity, µs, and thermal conductivity, κs, as functions of temperature. The Gordon-
McBride dataset contains curve fits for over 2000 substances, including 50 reference elements. For example,
the enthalpy for a particular species, hs, is given by

hs = RsT

[

−a1,sT
−2 + a2,sT

−1 ln T + a3,s +
a4,sT

2
+

a5,sT
2

3
+

a6,sT
3

4
+

a7,sT
4

5
+ b1T

−1

]

+ ∆ho
fs

, (13)

where ai,s and b1 are the coefficients for the fit and ∆ho
fs

is the heat of formation for species s. Note
that the enthalpy, hs, defined here is the absolute enthalpy (as opposed to the sensible enthalpy) and
includes the heat of formation, ∆ho

fs
, for the species. Perfect mixture rules are then used to determine

the thermodynamic properties of the reactive mixture and Wilke’s17 and Mason and Saxena’s18 mixture
rules are used to evaluate the mixture viscosity and thermal conductivity, respectively. The species diffusion
coefficients, Ds are calculated by additionally specifying a Schmidt number, Scs = µ/ρDs for each species.

C. Reduced Chemical Kinetic Scheme

In order to demonstrate the validity of the proposed parallel AMR algorithm, numerical results are de-
scribed herein for the prediction of methane-air laminar flames. Although several detailed chemical reaction
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mechanisms are available for describing methane-air combustion processes (e.g., refer to the GRI-Mech 3.0
chemical kinetic model19), for the algorithm validation, a simplified six-species two-step reduced chemical
reaction mechanisms is used as described by Westbrook and Dryer.16 In this two-step mechanism, methane
oxidation is represented as follows:

2 CH4 + 3 O2 ⇀↽ 2 CO + 4 H2O , (14)

2 CO + O2 ⇀↽ 2 CO2 , (15)

with empirically derived reaction rates for both reactions. The six species considered are methane (CH4),
oxygen (O2), carbon dioxide (CO2), carbon monoxide (CO), water (H2O), and nitrogen (N2). The nitrogen
is assumed to be inert. Further details and reaction rates for this reduced mechanism are given by Westbrook
and Dryer.16

III. Parallel AMR Algorithm

A. Finite-Volume Scheme

The flow equations governing a reactive mixture given by Eq. (8) are solved by applying a finite-volume
technique in which the mixture conservation equations are integrated over quadrilateral cells of a body-fitted
multi-block quadrilateral mesh. The finite-volume formulation applied to cell (i, j) is given by

dUi,j

dt
= −

1

Ai,j

∑

faces,k

~Fi,j,k · ~ni,j,k∆`i,j,k +
1

ri,j

Sai,j
+ Si,j , (16)

here ~F = (F − Fv ,G − Gv), ri,j and Ai,j are the radius and area of cell (i, j), and ∆` and ~n are the
length of the cell face and unit vector normal to the cell face or edge, respectively. For the time-invariant
calculations performed as part of this study, the optimally-smoothing multi-stage schemes developed by van
Leer et al.

20 are used to integrate the set of ordinary differential equations that arises from this finite-
volume discretization procedure. To cope with numerical stiffness, a semi-implicit treatment is used in the
temporal discretization of the source terms associated with axisymmetric geometry, finite-rate chemistry,
and gravitational acceleration.

The inviscid component of the numerical fluxes at the faces of each cell, (F,G) · ~n, are determined from the
solution of a Riemann problem. Given the left and right solution states, Ul and Ur, at the cell interfaces,
the numerical flux is given by

(F,G) · ~n = F(Ul,Ur,n) , (17)

where the numerical flux F is evaluated by solving a Riemann problem in a direction defined by the normal
to the face with initial data Ul and Ur. The left and right solution states are determined using the least-
squares piece-wise limited linear solution reconstruction procedure of Barth.21 The modified limiter of
Venkatakrishnan22 has also been implemented. An extension of the approximate linearized Riemann solver
of Roe23 that accounts for variations in the mixture composition is used to solve the Riemann problem at
each cell face and determine the upwind-biased value for F . An approximation for the Roe-averaged solution
state is used that involves the mass weighting of the species mass fractions. The viscous component of the
cell face fluxes, (Fv ,Gv) · ~n, are evaluated by employing a centrally-weighted diamond-path reconstruction
procedure as described by Coirier and Powell.24

B. Local Preconditioning

The finite-volume scheme described above is a fully compressible formulation that can readily accommodate
large density variations and thermoacoustic phenomena (the latter will be the focus of future studies by the
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authors). Nevertheless, laminar combusting flows are in general characterized by very low Mach numbers
(M < 0.2) and nearly incompressible behaviour. The direct application of unmodified compressible flow
solvers to nearly incompressible flows can lead to several numerical difficulties related to disparities between
the convective and acoustic propagation speeds (i.e., |u| + a � |u|, where a is the sound speed). The
numerical difficulties include slow convergence rates and excessive numerical dissipation. To circumvent
these difficulties, a local preconditioning technique proposed by Weiss and Smith25, 26 is used here to remove
numerical stiffness and maintain solution accuracy for low-Mach-number flows.

The preconditioned form of the Navier-Stokes equations for the reactive mixture can be written as

Γ
∂U

∂t
+

∂F

∂r
+

∂G

∂z
=

∂Fv

∂r
+

∂Gv

∂z
+

Sa

r
+ S (18)

where Γ is the Weiss-Smith preconditioning matrix for the conserved variable system. The preconditioning
matrix reduces the spread of the eigenvalues and improves the numerical solution in the low-Mach number
limit. Note that the steady state solution is unaffected by the preconditioning procedure. Details of the
preconditioner and eigenstructure of the preconditioned equations are given in the papers by Weiss and
Smith25 and Turkel.26

C. Block-Based Adaptive Mesh Refinement (AMR)

Following the approach developed by Groth et al. for computational magnetohydrodynamics,9, 10 a flexible
block-based hierarchical data structure has been developed and is used in conjunction with the finite-volume
scheme described above to facilitate automatic solution-directed mesh adaptation on multi-block quadrilat-
eral mesh according to physics-based refinement criteria. The proposed AMR formulation borrows from
previous work by Berger and co-workers,1, 2, 7, 8 Quirk,3, 6 and De Zeeuw and Powell5 for Cartesian mesh and
has similarities with the block-based approaches described by Quirk and Hanebutte6 and Berger and Saltz-
man.7 Aspects of the block-based adaptive mesh refinement algorithm and parallel implementation for multi-
block quadrilateral mesh are described in the recent work by Sachdev et al.

11 Note that Other researchers
have considered the extension of Cartesian mesh adaptation procedures to more arbitrary quadrilateral and
hexagonal mesh. See for example the work by Davis and Dannenhoffer27 and Sun and Takayama.28

In this work, the governing equations are integrated to obtain area-averaged solution quantities within
quadrilateral computational cells and these cells are embedded in structured blocks consisting of Nx × Ny

cells, where Nx and Ny are even, but not necessarily equal integers. Mesh adaptation is accomplished by
the dividing and coarsening of appropriate solution blocks. A hierarchical tree-like data structure is used to
keep track of mesh refinement and the connectivity between solution blocks. In regions requiring increased
cell resolution, a “parent” block is refined by dividing itself into four “children” or “offspring”. Each of the
four quadrants or sectors of a parent block becomes a new block having the same number of cells as the
parent and thereby doubling the cell resolution in the region of interest. This process can be reversed in
regions that are deemed over-resolved and four children are coarsened into a single parent block. The mesh
refinement is constrained such that the grid resolution changes by only a factor of two between adjacent blocks
and the minimum resolution is not less than that of the initial mesh. Standard multigrid-type restriction
and prolongation operators are used to evaluate the solution on all blocks created by the coarsening and
division processes, respectively. Refinement criteria based on a combination of the gradients of the mixture
temperature and species mass fractions provide reliable detection of flame fronts.

Solution information is shared between adjacent blocks having common interfaces by employing an additional
two layers of overlapping “ghost” cells on each block, which contain solution information from neighbouring
blocks. Additional inter-block communication is also required at interfaces with resolution changes to strictly
enforce the flux conservation properties of the finite-volume scheme.1, 2 In particular, the interface fluxes
computed on more refined blocks are used to correct the interface fluxes computed on coarser neighbouring
blocks and ensure the solution fluxes are conserved across block interfaces.
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D. Parallel Implementation

The multi-block quadrilateral mesh and tree data structure lends itself naturally to domain decomposition
and enables efficient and scalable implementations of the solution algorithm for the reactive mixture conser-
vation equations on distributed-memory multi-processor architectures.11 A parallel implementation of the
block-based AMR scheme has been developed using the C++ programming language and the MPI (message
passing interface) library.29 Domain decomposition is carried out by farming the solution blocks out to the
separate processors, with more than one block permitted on each processor. For homogeneous architectures
with multiple processors all of equal speed, an effective load balancing is achieved by exploiting the self-
similar nature of the solution blocks and simply distributing the blocks equally among the processors. For
heterogeneous parallel machines, such as a network of workstations and computational grids, a weighted
distribution of the blocks can be adopted to preferentially place more blocks on the faster processors and less
blocks on the slower processors. Inter-processor communication is mainly associated with block interfaces
and involves the exchange of ghost-cell solution values and conservative flux corrections at every stage of
the multi-stage time integration procedure. Message passing of the ghost-cell values and flux corrections is
performed in an asynchronous fashion with gathered wait states and message consolidation.

IV. Numerical Validation

Initial validation of the proposed parallel AMR scheme is carried out by considering the numerical predictions
for two classical non-reacting flow problems and one reactive flow problem. The solutions for these problems
are well established and can be used to assess the validity and accuracy of the scheme.

A. Planar Couette Flow

The computation of laminar flow in a channel with a moving wall is used to demonstrate the accuracy of
the viscous spatial discretization scheme. Classical planar Couette flow,30 is considered with an upper wall
velocity of 29.4 m/s and a favourable pressure gradient of 635.54 Pa. The predicted x-direction velocity
component is plotted and compared to the exact analytic solution for this incompressible isothermal flow in
Figure 1(a). The L1- and L2-norms of the solution error are plotted in Figure 1(b). The slopes of the L1-
and L2-norms are 2.03 and 2.04 respectively, indicating that the scheme is indeed second-order accurate.

u-velocity (m/s)

Y
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1/N

E
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N

or
m

10-3

10-2

10-1

Couette Solution L1-norm
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10 -1-210
½

(b)

Figure 1. Laminar Couette Flow: (a) u-velocity profile (1 block and 3200 cells), (b) L1- and L2-norms of the
solution error.
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B. Laminar Flat Plate Boundary Layer Flow

The computation of laminar flow over a flat plate at zero incidence is considered to further demonstrate
the accuracy of the viscous spatial discretization procedure. The free-stream Mach number and Reynolds
number, based on the length of the plate, for the case considered are M = 0.2 and of Re = 10, 000, respectively.
The exact solution of the incompressible boundary layer equations first obtained by Blasius is given by
Schlichting.31 The calculated boundary layer solution is shown in Figure 2. The mesh consisting of 92
blocks and 70,656 cells is shown in Figure 2(a) for the leading edge region of the plate. Note the anisotropic
non-uniform mesh spacing for this case. The first node normal to the plate is located at a distance of
approximately 3 × 10−5m. The prediction of the non-dimensional x-direction velocity component and the
skin friction coefficient are shown in Figures 2(b) and 2(c). The x-direction velocity component is plotted at
Rex = 8000. It can be seen that the x-direction velocity component and the skin friction coefficient are in
excellent agreement with the Blasius solution, providing further validation of the schemes accuracy.
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Figure 2. Laminar flat plate boundary layer: (a) Body-fitted mesh at the leading edge (92 blocks and 70,656
cells), (b) Non-dimensional velocity components at Rex = 8000, and (c) Estimation of the skin friction coefficient.
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C. Premixed Laminar Flame

Validation of the proposed parallel AMR scheme for laminar reacting flows is carried out by considering the
numerical predictions of planar one-dimensional premixed methane-air flames for a range of equivalence ratios
and comparing the predictions to those obtained using the CHEMKIN program PREMIX. The six-species,
two-step, reduced kinetic scheme for the oxidation of methane described above is used in all cases. CHEMKIN
is a commercial software tool available from Reaction Design for solving complex chemical kinetics problems
and PREMIX is a utility that can be used for predicting one-dimensional premixed flames. A detailed
17-species, 58-reaction kinetic scheme is used in the PREMIX calculations to represent the oxidation of
methane. These comparisons provide a check of the algorithms ability to predict two key features of laminar
flames: the flame temperature and laminar flame speed.

For the premixed flame predictions, a fixed (non-adapted) one-dimensional mesh with 100 non-uniformly
space computational cells is used. The steady state or time-invariant structure of the flame is then ob-
tained by starting with uniform fresh and burnt gas solution states at atmospheric and the adiabatic flame
temperatures, respectively, and iterating until a steady-state solution is achieved with a stationary flame
structure. The upstream and downstream boundary velocity and pressure are adjusted such that the mass
flux is constant throughout the domain.

The numerical results for the premixed laminar flame are summarized in Figures 3(a), 3(b), 3(c) and Table 1.
The table gives predictions of both the equilibrium temperature of the products, T , and the laminar flame
velocity, sL, as a function of the equivalence ratio (φ = 0.6, 0.8, 1.0, and 1.2 are considered). The overall
agreement between the two sets of results is very good, especially considering that the six-species two-step
chemical kinetics scheme used by the parallel solver is greatly simplified in comparison to the 17-species,
58-reaction scheme used in the CHEMKIN calculations. This provides strong support for the validity of the
proposed reactive flow solver. The two figures provide further evidence. They depict the predicted flame
structure for φ = 1 and show variation of the velocity, temperature, and mass fraction through the flame.
The predicted laminar flames speed is sL = 40.6 cm/s in this case and the temperature of the products
(flame temperature) is T = 2256. Both of these values are in good agreement with the predicted values of
CHEMKIN. Note that for a stoichiometric mixture with φ = 1, the mass fractions of the fresh gas mixture
are: cCH4

= 0.0551, cO2
= 0.2202, cN2

= 0.7247, cCO2
= 0, cCO = 0, and cH2O = 0).

It should be noted that the flow Mach numbers for the premixed laminar flames are very small (M ≈
0.001− 0.003) and the low-Mach-number preconditioning is absolutely necessary for these cases in order to
get accurate predictions of the flame structure with the proposed compressible finite-volume formulation.
Moreover, the preconditioning compressible equations permit an accurate calculation of the pressure jump
across the flame, which was found to be about 1.24 Pa, as shown in Figure 3(c), for the φ = 1 case.

Solution Equivalence Ratio, φ

Method 0.6 0.8 1.0 1.2

T (K) PREMIX 1656 1993 2234 2143

Current 1650 1995 2256 2221

sL (cm/s) PREMIX 12.15 29.1 41.0 38.6

Current 13.3 29.4 40.6 38.5

Table 1. Comparison of the predictions of the parallel AMR algorithm using the two-step methane reduced
mechanism to those of the CHEMKIN PREMIX program with detailed chemistry for various equivalence
ratios. Predictions of both the equilibrium temperature of the products, T , and the laminar flame velocity, sL,
are shown for φ = 0.6, 0.8, 1.0, and 1.2.
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Figure 3. Solution of steady one-dimensional premixed methane-air flame structure for φ = 1.

10 of 15

American Institute of Aeronautics and Astronautics



3 Levels of Refinement
195 Blocks (4x8)
6240 Cells

Inititial Level
96 Blocks (4x8)
3072 Cells

r (m)

z
(m

)

-0.01 0 0.01
0

0.02

0.04

2200
2160
2120
2080
2040
2000
1960
1920
1880
1840
1800
1760
1720
1680
1640
1600
1560
1520
1480
1440
1400
1360
1320
1280
1240
1200
1160
1120
1080
1040
1000
960
920
880
840
800
760
720
680
640
600
560
520
480
440
400
360
320

T (K)

5 Levels of Refinement
396 Blocks (4x8)
12672 Cells

4 Levels of Refinement
327 Blocks (4x8)
10464 Cells

2 Levels of Refinement
126 Blocks (4x8)
4032 Cells

Figure 4. Solution of methane-air axisymmetric laminar diffusion flame showing the computed isotherms and
flame structure obtained for a 396 block mesh with 12,672 cells and five levels of refinement. The sequence of
adaptively refined grids, showing both the solution blocks and computational cells, is also shown in the figure.

V. Numerical Results

Numerical results are now described for a non-premixed methane-air laminar co-flow axisymmetric diffusion
flame. The diffusion flame calculations were carried out on a Beowulf-class parallel computing cluster
consisting of 26 4-way Hewlett-Packard Alpha ES40 and ES45 SMP servers with 104 processors and 126
Gbytes of distributed memory. A low-latency Myrinet network and switch is used to interconnect the cluster
servers. The six-species, two-step, reduced kinetic scheme for the oxidation of methane is again used for the
diffusion flame calculations.

A. Non-Premixed Laminar Diffusion Flame

The parallel AMR method is applied to the solution of an axisymmetric co-flow methane-air diffusion flame.
In particular, a solution of the steady laminar flame studied by Mohammed et al.

32 and Day and Bell12 is
considered. The flame boundary and initial conditions are the same as those used in the previous studies.
The computational domain is rectangular in shape with dimensions of 10 cm by 5 cm. The axis of symmetry
is aligned with the left boundary of the domain and the right far-field boundary is taken to be a free-slip
boundary along which inviscid reflection boundary data is specified. The top or outlet of the flow domain
is open to a stagnant reservoir at atmospheric pressure and temperature and Neumann-type boundary
conditions are applied to all properties except pressure which is held constant. The bottom or inlet is

11 of 15

American Institute of Aeronautics and Astronautics



r (m)

z
(m

)

0 0.01
0

0.02

0.04

Initial Level - 96 Blocks(4x8)
3072 Cells

r (m)

z
(m

)

0 0.01
0

0.02

0.04

3rd Level - 195 Blocks (4x8)
6240 Cells

r (m)

z
(m

)

0 0.01
0

0.02

0.04
2200
2160
2120
2080
2040
2000
1960
1920
1880
1840
1800
1760
1720
1680
1640
1600
1560
1520
1480
1440
1400
1360
1320
1280
1240
1200
1160
1120
1080
1040
1000
960
920
880
840
800
760
720
680
640
600
560
520
480
440
400
360
320

T (K)

5th Level - 396 Blocks (4x8)
12672 Cells

Figure 5. Predicted laminar diffusion flame temperature (K) comparison for 3 different levels of mesh refine-
ment.

subdivided into four regions. The innermost region (r ≤ 2 mm) is the fuel inlet, which injects a nitrogen
diluted methane fuel mixture (cCH4

= 0.5149, cN2
= 0.4851, cO2

= 0, cCO2
= 0, cCO = 0, and cH2O = 0) at 298

K with a parabolic velocity profile having a maximum velocity of 0.7 m/s. The next region (2 mm < r ≤ 2.38
mm) is a small gap associated with the annular wall separating the fuel and oxidizer. The third region (2.38
mm < r ≤ 2.50 cm) is the co-flowing oxidizer, in this case air at 298K (cO2

= 0.232, cN2
= 0.768, cCH4

= 0,
cCO2

= 0, cCO = 0, and cH2O = 0), with a uniform velocity profile of 0.35 m/s. The final outer region of the
lower boundary (2.5 cm < r ≤ 5 cm) is again a far-field boundary along which free-slip boundary conditions
are applied. The solution domain is initialized with a uniform solution state corresponding to quiescent air
at 298K, except for a thin region across the fuel and oxidizer inlets, which is taken to be air at 1500 K so as
to ignite the flame. Note that the Mach and Reynolds number based on the fixed diluted methane flow in
the fuel inlet are M = 0.0016 and Re = 169. Additional details concerning the setup for this diffusion flame
can be found in the papers by Mohammed et al.

32 and Day and Bell.12

The predicted solution for the laminar diffusion flame obtained using the parallel AMR method is shown in
Figure 4. The figure shows the computed isotherms and flame structure obtained using a 396 block mesh
with 12,672 cells and five levels of refinement. The sequence of adaptively refined grids, showing both the
solution blocks and computational cells, is also shown in Figure 5. The effect of the finer resolution can be
clearly seen, as the flame structure becomes much sharpened and more resolved. Finally, Figure 6 shows the
mass fractions of the combustion products.

A comparison of the results of Figures 4–6 with those given in the previous studies12, 32 reveals, that in spite
of the inherent simplifications used in the two-step reaction mechanism, the predicted flame structure agrees
very well with the previous work. The “wishbone” structure of the high-temperature region is present and
the computed lift-off and flame heights are 0.05 cm and 3.3 cm, respectively, with a maximum centre-line
temperature of 2080 K. All of these values agree reasonably well with the previously published results. The
predicted value of the carbon monoxide, CO, mass fraction concentration at z = 3 cm along the centerline is
cCO = 0.026 and, considering the limitations of the reduced chemistry mechanism being used, is in reasonable

12 of 15

American Institute of Aeronautics and Astronautics



r (m)

z
(m

)

0 0.01 0.02
0

0.02

0.04

0.1090

0.1060

0.1030

0.1000

0.0970

0.0940

0.0910

0.0880

0.0850

0.0820

0.0790

0.0760

0.0730

0.0700

0.0670

0.0640

0.0610

0.0580

0.0550

0.0520

0.0490

0.0460

0.0430

0.0400

0.0370

0.0340

0.0310

0.0280

0.0250

0.0220

0.0190

0.0160

0.0130

0.0100

0.0070

0.0040

0.0010

H O2

r (m)

z
(m

)

0 0.01 0.02
0

0.02

0.04

0.0236
0.0230
0.0224
0.0218
0.0212
0.0206
0.0200
0.0194
0.0188
0.0182
0.0176
0.0170
0.0164
0.0158
0.0152
0.0146
0.0140
0.0134
0.0128
0.0122
0.0116
0.0110
0.0104
0.0098
0.0092
0.0086
0.0080
0.0074
0.0068
0.0062
0.0056
0.0050
0.0044
0.0038
0.0032
0.0026
0.0020
0.0014
0.0008
0.0002

CO

r (m)

z
(m

)

0 0.01 0.02
0

0.02

0.04

0.1420

0.1380

0.1340

0.1300

0.1260

0.1220

0.1180

0.1140

0.1100

0.1060

0.1020

0.0980

0.0940

0.0900

0.0860

0.0820

0.0780

0.0740

0.0700

0.0660

0.0620

0.0580

0.0540

0.0500

0.0460

0.0420

0.0380

0.0340

0.0300

0.0260

0.0220

0.0180

0.0140

0.0100

0.0060

0.0020

CO2

Figure 6. Predicted mass fractions of products CO2, H2O, and CO for laminar diffusion flames.

agreement with those of Mohammed et al.,32 who report a mass fraction of cCO = 0.03 at the same location.

B. Parallel Performance

Estimates of the parallel performance and scalability of the proposed solution-adaptive method on the Alpha
Beowulf cluster are shown in Figure 7 for a fixed size diffusion flame problem involving 3,200 computational
cells (10×10 blocks) and 2,048 cells (8×8 blocks) with 32 solution blocks using up to 32 processors. The figure
illustrates both the scaled parallel speed-up, Sp = (t1/tp)p, and the scaled parallel efficiency, Ep = (Sp/p),
for the problem as a function of the number of processors, p, where tp is the total processor time required
to solve the problem using p processors and t1 is the processor time required to solve the problem using a
single processor. It can be seen that the parallel speed-up of the block-based AMR scheme is linear and is
90% efficient for up to 32 processors using the larger (10×10) solution blocks. For the smaller (8×8) blocks,
the efficiency drops slightly down to 80% efficient.

VI. Concluding Remarks

A parallel AMR scheme has been described for solving laminar combusting flows. The combination of finite-
volume discretization procedure parallel block-based AMR strategy, and low-Mach-number preconditioning
has resulted in a powerful computational tool for predicting a wide range of laminar reactive flows, from com-
pressible to nearly incompressible low-Mach-number regimes. The validity and performance of the method
has been demonstrated for both premixed and non-premixed flames. Future work will include the inves-
tigation of Newton-Krylov-Schwarz strategies in an effort to improve the efficiency of the time integration
procedure while maintaining high parallel efficiency.
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