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9 Controller Discretization

In most applications, a control system is implemented in a digital fashion
on a computer. This implies that the measurements that are supplied to
the control system must be sampled. If the sampler has period T , then the
sampled value of the measurements are denoted by

yk = y(tk), tk = kT, k = 0, 1, 2, 3, · · · (1)

The output from the controller will take on discrete values which we denote
by uk. The actual input to the plant be controlled is usually obtained by
passing the sequence uk through a zero-order hold (ZOH). The output of the
ZOH is given by

u(t) = uk, tk ≤ t < tk+1

In this section we would like to determine mathematical models for the rela-
tionship between uk and yk and establish a technique for digital implemen-
tation of a controller design.

9.1 Discrete-Time Plant Model

Assume that the plant to be controlled is described by a state-space model
of the form

ẋ = Ax + Bu, y = Cx (2)

Let us first of all note that the sampled value of the output y satisfies

yk = y(tk) = Cx(tk) = Cxk

Given the plant model in (2), the solution is

x(t) = eA(t−t0)x(t0) +
∫ t

t0
eA(t−τ)Bu(τ) dτ

Let t0 = tk, t = tk+1, and tk+1 − tk = T . Therefore,

xk+1 = eATxk +
∫ tk+1

tk
eA(tk+1−τ)Bu(τ) dτ

= eATxk +
∫ tk+1

tk
eA(tk+1−τ)B dτuk
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Letting, τ ′ = tk+1 − τ , we have∫ tk+1

tk
eA(tk+1−τ)B dτ =

∫ 0

T
eAτ ′

(−dτ ′)B =
∫ T

0
eAτdτB

Therefore,

xk+1 = Adxk + Bduk (3)

yk = Cdxk

where

Cd = C

Ad = eAT

Bd =
∫ T

0
eAτ dτB

This is termed the ZOH equivalent of the state-space system.

9.2 Stability of LTI Discrete-Time Systems

Consider
xk+1 = Adxk, x0 given

It is readily verified that the solution is

xk = Ak
dx0

For simplicity, assume that Ad has distinct eigenvalues and permits the eigen-
decomposition

Ad = EΛE−1

Therefore,

Ak
d = (EΛE−1)(EΛE−1) · · · (EΛE−1)

= EΛkE−1

and
xk = EΛkE−1x0

Letting x̂k = E−1xk, it follows that

x̂k = Λkx̂0
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where Λk = diag{λk
i }. If

|λi| < 1, i = 1, · · · , n (4)

then

⇒ λk
i → 0 as k →∞

⇒ Λk → O as k →∞
⇒ xk = Ex̂k → 0 as k →∞

If |λi| > 1 for some i, then

⇒ λk
i →∞ as k →∞

⇒ ||xk|| → ∞ as k →∞

Theorem 1. If the eigenvalues of Ad lie within the open unit disk of the
complex plane, the discrete-time system is asymptotically stable.

Theorem 2. If any of the eigenvalues of Ad lie outside the unit disk of the
complex plane, then the discrete-time system is unstable.

Consider the ZOH equivalent in (3) and assume that A has distinct eigen-
values. If A has the eigendecomposition

A = EΛE−1, Λ = diag{λi}, λi = σi ± jωi

then
Ad = eAT = EeΛTE−1

Therefore
λ{Ad} = eλiT = eσiTejωiT

Now, |eλiT | = |eσiT |. Hence if σi < 0, then |eλiT | < 1. Therefore, the
ZOH equivalent of an asymptotically stable continuous-time system is also
asymptotically stable.

9.3 Digital Control Design

There are two broad approaches to digital control design:

(i) direct discrete design using the ZOH equivalent as a model;
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(ii) discretization of a continuous-time design based on the continuous-time
plant model.

Initially we consider (ii) using the bilinear transformation (also called Tustin’s
rule or the trapezoidal rule).

Assume that we have a continuous-time controller with the following model:

ẋ = Ax + Bu,y = Cx (5)

We want to replace this with difference equations that relate the sampled
values yk and uk. Since y(tk) = Cx(tk) we have

yk = Cxk

Since ẋ = Ax + Bu, it follows that

xk+1 − xk =
∫ tk+1

tk
ẋ dt = A

∫ tk+1

tk
x dt + B

∫ tk+1

tk
u dt

Now, approximate the integrals on the right-hand side using the trapezoidal
rule: ∫ tk+1

tk
x dt =

T

2
(xk+1 + xk)∫ tk+1

tk
u dt =

T

2
(uk+1 + uk)

Therefore,

xk+1 − xk = A
T

2
[xk+1 + xk] + B

T

2
[uk+1 + uk]

⇒ [1−A
T

2
]xk+1 = [1 + A

T

2
]xk + B

T

2
[uk+1 + uk]

⇒ xk+1 = [1−A
T

2
]−1[1 + A

T

2
]︸ ︷︷ ︸ xk + [1−A

T

2
]−1B

T

2︸ ︷︷ ︸[uk+1 + uk]

Âd B̂d

Consider the difference equations

zk+1 = Âdzk + B̂duk

zk+2 = Âdzk+1 + B̂duk+1
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Note that setting xk = zk + zk+1 and adding the two equations gives the
desired one for xk. Hence

yk = Cxk = C(zk + zk+1)

= Czk + C(Âdzk + B̂duk)

= C(1 + Âd)︸ ︷︷ ︸ zk + CB̂d︸ ︷︷ ︸ uk

Ĉd D̂d

Hence the discrete equivalent of the state-space model in Eq. (5) is

zk+1 = Âdzk + B̂duk (6)

yk = Ĉdzk + D̂duk (7)

where Âd, B̂d, Ĉd, and D̂d are defined as above.

9.4 Closed-Loop Discrete-Time Stability Analysis

Assume the plant is described by its ZOH equivalent:

xk+1 = Adxk + Bduk

yk = Cdxk

Assume that the controller is described by a discrete equivalent of the form

zk+1 = Âdzk + B̂dyk

−uk = Ĉdzk + D̂dyk

Closing the loop gives:

xk+1 = Adxk −BdĈdzk −BdD̂dyk

= (Ad −BdD̂dCd)xk −BdĈdzk

Also,
zk+1 = Âdzk + B̂dCdxk

Combining these two gives xk+1

zk+1

 =

 Ad −BdD̂dCd −BdĈd

B̂dCd Âd


︸ ︷︷ ︸

 xk

zk


Acomp

For stability λ{Acomp} must lie within the unit disc.
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9.5 Discrete-Time Optimal Control

Assume that the system to be controlled is described by difference equations
of the form

xk+1 = Axk + Buk, x0 = c (8)

Consider a performance index of the form

J = 1
2x

T
NSxN + 1

2

N−1∑
k=0

xT
k Qxk + uT

k Ruk (9)

where
R = RT > O, Q = QT ≥ O, S = ST ≥ O,

We would like to determine uk, k = 0, 1, 2, · · · , N − 1 to minimize J .

The state equation is treated as a constraint which we rewrite as

Axk + Buk − xk+1 = 0 (10)

Let us adjoin (10) to (9) using Lagrange multipliers λk, k = 1, · · · , N :

L = J +
N−1∑
k=0

λT
k+1(Axk + Buk − xk+1) (11)

Necessary conditions for optimality are

∂L

∂xk
= 0, k = 1, · · · , N

∂L

∂uk
= 0, k = 1, · · · , N − 1

∂L

∂λk
= 0, k = 1, · · · , N

We have

L = 1
2x

T
NSxN +

N−1∑
k=0

[12x
T
k Qxk + 1

2u
T
k Ruk + λT

k+1(Axk + Buk − xk+1)]

Hence the optimality conditions become

∂L

∂xN
= SxN − λN = 0

∂L

∂xk
= Qxk + ATλk+1 − λk = 0, k = 1, · · · , N − 1



7

∂L

∂uk
= Ruk + BTλk+1 = 0, k = 1, · · · , N − 1

∂L

∂λk
= Axk−1 + Buk−1 − xk = 0, k = 1, · · · , N

We can rewrite these as

xk+1 = Axk + Buk, x0 = c (12)

λk = ATλk+1 + Qxk, λN = SxN (13)

uk = −R−1BTλk+1 (14)

Substituting (14) into (12) leads to

xk+1 = Axk −BR−1BTλk+1, x0 = c

λk = ATλk+1 + Qxk, λN = SxN (15)

This is a discrete two-point boundary value problem. Since λN = SxN , let
us assume

λk = Pkxk, k = 1, · · · , N (16)

with PN = S. Substituting (16) into (14) gives:

uk = −R−1BTPk+1xk+1

= −R−1BTPk+1(Axk + Buk)

⇒ (R + BTPk+1B)uk = −BTPk+1Axk

⇒ uk = −R̂−1
k+1B

TPk+1Axk

= Fkxk, Fk = −R̂−1
k+1B

TPk+1A

where
R̂k+1 = R + BTPk+1B

Hence, the optimal control is state feedback.

In order to determine Pk, let us substitute (16) into (15):

Pkxk = ATPk+1xk+1 + Qxk

= ATPk+1(Axk + Buk) + Qxk

= ATPk+1Axk −ATPk+1BR̂−1
k+1B

TPk+1Axk + Qxk

Since this must hold for all xk, the coefficient matrix on each side must match.
Therefore,

Pk = AT (Pk+1 −Pk+1BR̂−1
k+1B

TPk+1)A + Q (17)
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This is called the discrete-time Riccati equation. It can be solved backwards
given the terminal condition PN = S. When Pk, k = N, N − 1, · · · , 0 is
known, the optimal feedback gains Fk can be determined.


