6.10 Unconstrained Elastic Bodies

Consider the following free elastic body:

Let \mathcal{F}_{b} be a body-fixed frame attached to the body at O. The absolute velocity and angular velocity of \mathcal{F}_{b} with respect to an inertial frame \mathcal{F}_{i} are given by

$$
\begin{aligned}
\underline{\underline{\mathbf{r}}}=\underset{\overrightarrow{\mathbf{v}}}{ } & =\mathcal{F}_{b}^{T} \mathbf{v} \\
\underline{\boldsymbol{\omega}} & =\mathcal{F}_{b b}^{T} \boldsymbol{\omega}
\end{aligned}
$$

The undeformed position of the mass element $d m$ and its deformation are described by

$$
\begin{aligned}
\boldsymbol{\rho} & =\mathcal{F}_{\vec{b}}^{T} \boldsymbol{\rho} \\
\underline{\mathbf{u}}_{e} & =\boldsymbol{\mathcal { F }}_{b}^{T} \mathbf{u}_{e}(\boldsymbol{\rho}, t)
\end{aligned}
$$

The absolute position of $d m$ is

$$
\begin{equation*}
\underline{\mathbf{R}}(\boldsymbol{\rho}, t)=\underset{\sim}{\mathbf{r}}(t)+\boldsymbol{\rho}(t)+\underline{\mathbf{u}}_{e}(\boldsymbol{\rho}, t) \tag{1}
\end{equation*}
$$

where we take as boundary conditions

$$
\begin{align*}
\underline{\mathbf{u}}_{e}(\mathbf{0}, t) & =\underline{\mathbf{0}} \tag{2}\\
\underline{\boldsymbol{\nabla}} \times \underline{\mathbf{u}}_{e}(\mathbf{0}, t) & =\underline{\mathbf{0}} \tag{3}
\end{align*}
$$

The velocity of $d m$ is

$$
\begin{aligned}
\underline{\mathbf{V}}=\dot{\underline{\mathbf{R}}} & =\dot{\underline{\mathbf{r}}}+\dot{\boldsymbol{\rho}}+\dot{\underline{\mathbf{u}}}_{e} \\
& =\underline{\mathbf{v}}+(\stackrel{\circ}{\boldsymbol{\rho}}+\boldsymbol{\omega} \times \boldsymbol{\rho})+\left(\underline{\circ}_{e}+\boldsymbol{\omega} \times \underline{\mathbf{u}}_{e}\right)
\end{aligned}
$$

Note that $\stackrel{\circ}{\rho}=\underset{\sim}{\mathbf{0}}$. Writing $\underset{\sim}{\mathbf{V}}=\mathcal{F}_{\vec{b}}^{T} \mathbf{V}$ and expressing each term in \mathcal{F}_{b} gives

$$
\begin{equation*}
\mathbf{V}=\mathbf{v}(t)-\boldsymbol{\rho}^{\times} \boldsymbol{\omega}(t)+\dot{\mathbf{u}}_{e}(\boldsymbol{\rho}, t)-\mathbf{u}_{e}^{\times} \boldsymbol{\omega}(t) \tag{4}
\end{equation*}
$$

For small elastic deformations and small angular velocities, it is defensable to neglect the last term. This will not substantially alter the form of the equations. We assume a Ritz expansion for the elastic deformation field as

$$
\begin{equation*}
\mathbf{u}_{e}(\boldsymbol{\rho}, t)=\sum_{\alpha=1}^{N_{e}} \boldsymbol{\psi}_{e \alpha}(\boldsymbol{\rho}) q_{e \alpha}(t) \tag{5}
\end{equation*}
$$

where each basis function $\boldsymbol{\psi}_{e \alpha}$ satisfies the boundary conditions in (2) and (3). We call this a constrained modal expansion and a suitable choice for the $\boldsymbol{\psi}_{e \alpha}$ are the constrained mode shapes. With this expansion and the neglect of the indicated term the velocity field can be written as

$$
\begin{aligned}
\mathbf{V}(\boldsymbol{\rho}, t) & =\left[\mathbf{1}-\boldsymbol{\rho}^{\times}\right]\left[\begin{array}{c}
\mathbf{v} \\
\boldsymbol{\omega}
\end{array}\right]+\dot{\mathbf{u}}_{e}(\boldsymbol{\rho}, t) \\
& =\boldsymbol{\Psi}_{r} \boldsymbol{\nu}(t)+\sum_{\alpha=1}^{N_{e}} \boldsymbol{\psi}_{e \alpha}(\boldsymbol{\rho}) \dot{q}_{e \alpha}(t)
\end{aligned}
$$

where

$$
\begin{equation*}
\boldsymbol{\Psi}_{r}=\left[\mathbf{1}-\boldsymbol{\rho}^{\times}\right], \quad \boldsymbol{\nu}=\operatorname{col}\{\mathbf{v}, \boldsymbol{\omega}\} \tag{6}
\end{equation*}
$$

Using this expression for the velocity of $d m=\sigma(\boldsymbol{\rho}) d V$, the total kinetic energy can be written as

$$
\begin{aligned}
T & =\frac{1}{2} \int_{V} \mathbf{V} \cdot \mathbf{V} d m \\
& =\frac{1}{2} \int_{V} \mathbf{V}^{T} \mathbf{V} \sigma(\boldsymbol{\rho}) d V \\
& =\frac{1}{2} \int_{V}\left[\boldsymbol{\nu}^{T} \boldsymbol{\Psi}_{r}^{T}+\sum_{\alpha=1}^{N_{e}} \boldsymbol{\psi}_{e \alpha}^{T} \dot{q}_{e \alpha}\right]\left[\mathbf{\Psi}_{r} \boldsymbol{\nu}+\sum_{\beta=1}^{N_{e}} \boldsymbol{\psi}_{e \beta} \dot{q}_{e \beta}\right] d m \\
& =\frac{1}{2}\left\{\boldsymbol{\nu}^{T} \int_{V}\left[\begin{array}{cc}
\mathbf{1} & -\boldsymbol{\rho}^{\times} \\
\boldsymbol{\rho}^{\times} & -\boldsymbol{\rho}^{\times} \boldsymbol{\rho}^{\times}
\end{array}\right] d m \boldsymbol{\nu}\right.
\end{aligned}
$$

$$
\begin{aligned}
& +\boldsymbol{\nu}^{T} \sum_{\alpha=1}^{N_{e}} \int_{V}\left[\begin{array}{c}
\mathbf{1} \\
\boldsymbol{\rho}^{\times}
\end{array}\right] \boldsymbol{\psi}_{e \alpha} d m \dot{q}_{e \alpha} \\
& +\sum_{\alpha=1}^{N_{e}} \dot{q}_{e \alpha} \int_{V} \boldsymbol{\psi}_{e \alpha}^{T}\left[\mathbf{1}-\boldsymbol{\rho}^{\times}\right] d m \boldsymbol{\nu} \\
& \left.+\sum_{\alpha=1}^{N_{e}} \sum_{\beta=1}^{N_{e}} \int_{V} \boldsymbol{\psi}_{e \alpha}^{T} \boldsymbol{\psi}_{e \beta} d m \dot{q}_{e \alpha} \dot{q}_{e \beta}\right\}
\end{aligned}
$$

We can simplify the appearance of this expression by defining the following matrices:

$$
\mathbf{M}_{r r}=\left[\begin{array}{cc}
m \mathbf{1} & -\mathbf{c}^{\times} \tag{7}\\
\mathbf{c}^{\times} & \mathbf{J}
\end{array}\right]
$$

is the rigid mass matrix and

$$
\begin{aligned}
m & =\int_{V} d m \\
\mathbf{c} & =\int_{V} \boldsymbol{\rho} d m \\
\mathbf{J} & =-\int_{V} \boldsymbol{\rho}^{\times} \boldsymbol{\rho}^{\times} d m
\end{aligned}
$$

The elastic mass matrix is

$$
\begin{equation*}
\mathbf{M}_{e e}=\operatorname{matrix}\left\{\int_{V} \boldsymbol{\psi}_{e \alpha}^{T} \boldsymbol{\psi}_{e \beta} d m\right\} \tag{8}
\end{equation*}
$$

and we define the rigid-elastic coupling matrix by

$$
\mathbf{M}_{r e}=\left[\begin{array}{c}
\operatorname{row}\left\{\mathbf{P}_{\alpha}\right\} \tag{9}\\
\operatorname{row}\left\{\mathbf{H}_{\alpha}\right\}
\end{array}\right]
$$

where

$$
\mathbf{P}_{\alpha}=\int_{V} \boldsymbol{\psi}_{e \alpha} d m
$$

are the modal momentum coefficients and

$$
\mathbf{H}_{\alpha}=\int_{V} \boldsymbol{\rho}^{\times} \boldsymbol{\psi}_{e \alpha} d m
$$

are the modal angular momentum coefficients. With these definitions, the kinetic energy becomes

$$
T=\frac{1}{2}\left[\boldsymbol{\nu}^{T} \dot{\mathbf{q}}_{e}^{T}\right]\left[\begin{array}{ll}
\mathbf{M}_{r r} & \mathbf{M}_{r e} \\
\mathbf{M}_{r e}^{T} & \mathbf{M}_{e e}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{\nu} \\
\dot{\mathbf{q}}_{e}
\end{array}\right]
$$

where $\mathbf{q}_{e}=\operatorname{col}\left\{q_{e \alpha}\right\}$. Clearly, the mass matrix

$$
\mathbf{M}=\left[\begin{array}{ll}
\mathbf{M}_{r r} & \mathbf{M}_{r e} \tag{10}\\
\mathbf{M}_{r e}^{T} & \mathbf{M}_{e e}
\end{array}\right]
$$

is symmetric and it is positive definite since $T>0$ provided that $\boldsymbol{\nu}$ and $\dot{\mathbf{q}}_{e}$ are not both identically zero.

Strain Energy

Recall that the strain energy of an elastic body is given by

$$
U=\frac{1}{2} \int_{\mathcal{V}} \varepsilon^{T} \mathbf{E} \varepsilon d V
$$

Using the expansion in (5), the strains can be written as

$$
\boldsymbol{\varepsilon}\left(\mathbf{u}_{e}\right)=\boldsymbol{\varepsilon}\left(\sum_{\alpha} \boldsymbol{\psi}_{e \alpha} q_{e \alpha}\right)=\sum_{\alpha} \boldsymbol{\varepsilon}\left(\boldsymbol{\psi}_{e \alpha}\right) q_{e \alpha}
$$

Inserting this into the strain energy yields

$$
\begin{aligned}
U & =\frac{1}{2} \sum_{\alpha} \sum_{\beta} \underbrace{\int_{V} \varepsilon\left(\boldsymbol{\psi}_{e \alpha}\right) \mathbf{E} \boldsymbol{\varepsilon}\left(\boldsymbol{\psi}_{e \beta}\right) d V}_{K_{e e, \alpha \beta}} q_{e \alpha} q_{e \beta} \\
& =\frac{1}{2} \mathbf{q}_{e}^{T} \mathbf{K}_{e e} \mathbf{q}_{e}
\end{aligned}
$$

Consistent with the definition of the mass matrix in (10) we define

$$
\mathbf{K}=\left[\begin{array}{cc}
\mathbf{O} & \mathbf{O} \tag{11}\\
\mathbf{O} & \mathbf{K}_{e e}
\end{array}\right]=\mathbf{K}^{T} \geq \mathbf{O}
$$

Equations of Motion

Note that $\boldsymbol{\nu}^{T}=\left[\mathbf{v}^{T} \boldsymbol{\omega}^{T}\right]$ are not integrable coordinates. However, writing

$$
\underset{\underline{\mathbf{r}}}{ }=\mathcal{F}_{\rightarrow i}^{T} \mathbf{r}
$$

and establishing an Euler sequence $\boldsymbol{\theta}$ which parametrizes $\mathbf{C}_{b i}(\boldsymbol{\theta})$ yields the rigid coordinates

$$
\mathbf{q}_{r}=\operatorname{col}\{\mathbf{r}, \boldsymbol{\theta}\}
$$

with

$$
\boldsymbol{\nu}=\left[\begin{array}{c}
\mathbf{v} \\
\boldsymbol{\omega}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{C}_{b i}(\boldsymbol{\theta}) & \mathbf{O} \\
\mathbf{O} & \mathbf{S}(\boldsymbol{\theta})
\end{array}\right]\left[\begin{array}{c}
\dot{\mathbf{r}} \\
\dot{\boldsymbol{\theta}}
\end{array}\right]
$$

The generalized coordinates for the entire system become

$$
\mathbf{q}=\operatorname{col}\left\{\mathbf{q}_{r}, \mathbf{q}_{e}\right\}
$$

In order to simplify things, let us assume that $\{\dot{\mathbf{r}}, \dot{\boldsymbol{\theta}}, \boldsymbol{\theta}\}$ are small and hence so are \mathbf{v} and $\boldsymbol{\omega}$. This allows us to make the following approximations:

$$
\begin{aligned}
\mathbf{C}_{b i} & \doteq \mathbf{1}-\boldsymbol{\theta}^{\times}, \quad \boldsymbol{\omega}=\dot{\boldsymbol{\theta}} \\
\boldsymbol{\nu} & \doteq\left[\begin{array}{c}
\dot{\mathbf{r}} \\
\dot{\boldsymbol{\theta}}
\end{array}\right]=\dot{\mathbf{q}}_{r}
\end{aligned}
$$

Therefore, the above equations allow us to write the energies as

$$
\begin{align*}
T & =\frac{1}{2} \dot{\mathbf{q}}^{T} \mathbf{M} \dot{\mathbf{q}} \tag{12}\\
U & =\frac{1}{2} \mathbf{q}^{T} \mathbf{K q} \tag{13}
\end{align*}
$$

The position of the mass element $d m$ is

$$
\begin{aligned}
\mathbf{R}_{\rightarrow}^{\mathbf{R}} & =\underset{\vec{r}}{ }+\boldsymbol{\rho}+\underline{u}_{e} \\
& =\boldsymbol{\mathcal { F }}_{\rightarrow i}^{T}\left[\mathbf{r}+\mathbf{C}_{b i}^{T}\left(\boldsymbol{\rho}+\mathbf{u}_{e}\right)\right] \\
& \doteq \boldsymbol{\mathcal { F }}_{\rightarrow i}^{T}\left[\mathbf{r}+\left(\mathbf{1}+\boldsymbol{\theta}^{\times}\right)\left(\boldsymbol{\rho}+\mathbf{u}_{e}\right)\right] \\
& \doteq \boldsymbol{\mathcal { F }}_{\rightarrow i}^{T}\left[\boldsymbol{\rho}+\mathbf{r}-\boldsymbol{\rho}^{\times} \boldsymbol{\theta}+\mathbf{u}_{e}\right]
\end{aligned}
$$

where $\mathbf{u}_{e}=\sum_{\alpha} \boldsymbol{\psi}_{e \alpha} q_{e \alpha}(t)$. Hence, a virtual displacment of $d m$ is given by

$$
\delta \underline{\rightarrow}=\mathcal{F}_{\rightarrow i}^{T}\left[\delta \mathbf{r}-\boldsymbol{\rho}^{\times} \delta \boldsymbol{\theta}+\sum_{\alpha} \boldsymbol{\psi}_{e \alpha} \delta q_{e \alpha}\right]
$$

The virtual work performed by $\mathbf{f}_{e}(\boldsymbol{\rho}, t)=\mathcal{F}_{\rightarrow b}^{T} \mathbf{f}_{e}$ is

$$
\begin{align*}
\delta W_{e} & =\int_{V} \mathbf{f}_{e} \cdot \delta \mathbf{r} d V \\
& =\int_{V} \mathbf{f}_{e}^{T}\left[\delta \mathbf{r}-\boldsymbol{\rho}^{\times} \delta \boldsymbol{\theta}+\sum_{\alpha} \boldsymbol{\psi}_{e \alpha} \delta q_{e \alpha}\right] d V \\
& =\delta \mathbf{r}^{T} \int_{V} \mathbf{f}_{e} d V+\delta \boldsymbol{\theta}^{T} \int_{V} \boldsymbol{\rho}^{\times} \mathbf{f}_{e} d V+\sum_{\alpha} \delta q_{e \alpha} \int_{V} \boldsymbol{\psi}_{e \alpha}^{T} \mathbf{f}_{e} d V \\
& =\left[\delta \mathbf{r}^{T} \delta \boldsymbol{\theta}^{T} \delta \mathbf{q}_{e}^{T}\right]\left[\begin{array}{c}
\mathbf{F} \\
\mathbf{G} \\
\widehat{\mathbf{f}}_{e}
\end{array}\right] \\
& =\delta \mathbf{q}^{T} \widehat{\mathbf{f}} \tag{14}
\end{align*}
$$

Here,

$$
\widehat{\mathbf{f}}=\operatorname{col}\left\{\mathbf{F}, \mathbf{G}, \hat{\mathbf{f}}_{e}\right\}, \widehat{\mathbf{f}}_{e}=\operatorname{col}\left\{\widehat{f}_{e \alpha}\right\}
$$

where

$$
\begin{aligned}
\mathbf{F} & =\int_{V} \mathbf{f}_{e} d V=\text { total force on } \mathcal{B} \\
\mathbf{G} & =\int_{V} \boldsymbol{\rho}^{\times} \mathbf{f}_{e} d V=\text { total torque on } \mathcal{B} \text { (about } O \text {) } \\
\hat{f}_{e \alpha} & =\int_{V} \boldsymbol{\psi}_{e \alpha}^{T} \mathbf{f}_{e} d V
\end{aligned}
$$

Applying Lagrange's equations to the energy expressions in Eqs. (12), (13), and (14) yields the motion equations

$$
\begin{equation*}
\mathbf{M} \ddot{\mathbf{q}}+\mathbf{K q}=\hat{\mathbf{f}} \tag{15}
\end{equation*}
$$

or

$$
\left[\begin{array}{ll}
\mathbf{M}_{r r} & \mathbf{M}_{r e} \tag{16}\\
\mathbf{M}_{r e}^{T} & \mathbf{M}_{e e}
\end{array}\right]\left[\begin{array}{c}
\ddot{\mathbf{q}}_{r} \\
\ddot{\mathbf{q}}_{e}
\end{array}\right]+\left[\begin{array}{cc}
\mathbf{O} & \mathbf{O} \\
\mathbf{O} & \mathbf{K}_{e e}
\end{array}\right]\left[\begin{array}{l}
\mathbf{q}_{r} \\
\mathbf{q}_{e}
\end{array}\right]=\left[\begin{array}{c}
\hat{\mathbf{f}}_{r} \\
\hat{\mathbf{f}}_{e}
\end{array}\right], \quad \hat{\mathbf{f}}_{r}=\left[\begin{array}{c}
\mathbf{F} \\
\mathbf{G}
\end{array}\right]
$$

6.11 Unconstrained Modes

Consider the eigenproblem corresponding to (15):

$$
\begin{equation*}
-\omega_{\alpha}^{2} \mathbf{M} \mathbf{q}_{\alpha}+\mathbf{K} \mathbf{q}_{\alpha}=\mathbf{0} \tag{17}
\end{equation*}
$$

Corresponding to nonzero ω_{α} are a series of orthonormal eigenvectors as before:

$$
\begin{align*}
\mathbf{q}_{\alpha}^{T} \mathbf{M} \mathbf{q}_{\beta} & =\delta_{\alpha \beta} \tag{18}\\
\mathbf{q}_{\alpha}^{T} \mathbf{K} \mathbf{q}_{\beta} & =\omega_{\alpha}^{2} \delta_{\alpha \beta} \tag{19}
\end{align*}
$$

where $\alpha, \beta=1 \cdots N_{e}$.
Since \mathbf{K} is merely positive-semidefinite, there are zero-frequency (rigid body) modes satisfying:

$$
\begin{equation*}
\mathbf{K Q}_{r}=\mathbf{O} \tag{20}
\end{equation*}
$$

Given the form of $\mathbf{K}, \mathbf{Q}_{r}$ has the form

$$
\mathbf{Q}_{r}=\left[\begin{array}{c}
\mathbf{1}_{6 \times 6} \\
\mathbf{O}
\end{array}\right]
$$

corresponding to three translational and three rotational rigid-body modes. Using (20) in conjunction with the eigenproblem in (17) yields

$$
\begin{align*}
\mathbf{q}_{\alpha}^{T} \mathbf{K} \mathbf{Q}_{r} & =\mathbf{O}, \quad \alpha=1,2,3, \cdots \tag{21}\\
\mathbf{q}_{\alpha}^{T} \mathbf{M} \mathbf{Q}_{r} & =\mathbf{O}, \quad \alpha=1,2,3, \cdots \tag{22}\\
\mathbf{Q}_{r}^{T} \mathbf{M Q}_{r} & =\mathbf{M}_{r r} \tag{23}
\end{align*}
$$

Let us expand the solution of (15) in terms of the rigid and vibration modes:

$$
\begin{aligned}
\mathbf{q}(t) & =\mathbf{Q}_{r} \boldsymbol{\eta}_{r}(t)+\sum_{\alpha=1}^{N_{e}} \mathbf{q}_{\alpha} \eta_{\alpha}(t), \quad \boldsymbol{\eta}_{r}(t) \operatorname{col}\left\{\mathbf{r}_{0}, \boldsymbol{\theta}_{0}\right\} \\
\Rightarrow\left[\begin{array}{c}
\mathbf{r}(t) \\
\boldsymbol{\theta}(t) \\
\mathbf{q}_{e}(t)
\end{array}\right] & =\left[\begin{array}{c}
\mathbf{r}_{0}(t) \\
\boldsymbol{\theta}_{0}(t) \\
\mathbf{0}
\end{array}\right]+\sum_{\alpha=1}^{N_{e}}\left[\begin{array}{c}
\mathbf{r}_{\alpha} \\
\boldsymbol{\theta}_{\alpha} \\
\hat{\mathbf{q}}_{e \alpha}
\end{array}\right] \eta_{\alpha}(t)
\end{aligned}
$$

Substituting this into (15) and premultiplying by \mathbf{Q}_{r}^{T} and \mathbf{q}_{α}^{T} gives the unconstrained modal equations

$$
\begin{align*}
\mathbf{M}_{r r} \ddot{\boldsymbol{\eta}}_{r} & =\widehat{\mathbf{f}}_{r} \tag{24}\\
\ddot{\eta}_{\alpha}+\omega_{\alpha}^{2} \eta_{\alpha} & =\mathbf{q}_{\alpha}^{T} \hat{\mathbf{f}}, \quad \alpha=1,2,3, \ldots \tag{25}
\end{align*}
$$

Note that the first of these would yield the body's motion if it were rigid. For a flexible body, we see that the vibration modes contribute to the "rigid" coordinates $\mathbf{q}_{r}(t)$.
Example. Longitudinal Vibrations of an Elastic Rod

