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6.10 Unconstrained Elastic Bodies

Consider the following free elastic body: '
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Let F b be a body-fixed frame attached to the body at O. The absolute
velocity and angular velocity of F b with respect to an inertial frame F i are
given by

ṙ
~

= v
~

= F
~
T
b v

ω
~

= F
~
T
b ω

The undeformed position of the mass element dm and its deformation are
described by

ρ
~

= F
~
T
b ρ

u
~
e = F

~
T
b ue(ρ, t)

The absolute position of dm is

R
~

(ρ
~
, t) = r

~
(t) + ρ

~
(t) + u

~
e(ρ, t) (1)

where we take as boundary conditions

u
~
e(0, t) = 0

~
(2)

∇
~
× u
~
e(0, t) = 0

~
(3)
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The velocity of dm is

V
~

= Ṙ
~

= ṙ
~

+ ρ̇
~

+ u̇
~
e

= v
~

+ (
◦
ρ
~

+ω
~
× ρ
~

) + (
◦
u
~
e +ω

~
× u
~
e)

Note that
◦
ρ
~

= 0
~

. Writing V
~

= F
~
T
b V and expressing each term in F b gives

V = v(t)− ρ×ω(t) + u̇e(ρ, t)− u×e ω(t) (4)

For small elastic deformations and small angular velocities, it is defensable
to neglect the last term. This will not substantially alter the form of the
equations. We assume a Ritz expansion for the elastic deformation field as

ue(ρ, t) =
Ne∑
α=1

ψeα(ρ)qeα(t) (5)

where each basis function ψeα satisfies the boundary conditions in (2) and
(3). We call this a constrained modal expansion and a suitable choice for the
ψeα are the constrained mode shapes. With this expansion and the neglect
of the indicated term the velocity field can be written as

V(ρ, t) = [1 − ρ×]

 v
ω

 + u̇e(ρ, t)

= Ψrν(t) +
Ne∑
α=1

ψeα(ρ)q̇eα(t)

where
Ψr = [1 − ρ×], ν = col{v,ω} (6)

Using this expression for the velocity of dm = σ(ρ)dV , the total kinetic
energy can be written as

T = 1
2

∫
V

V
~
·V
~
dm

= 1
2

∫
V

VTV σ(ρ) dV

= 1
2

∫
V

[νTΨT
r +

Ne∑
α=1

ψT
eαq̇eα][Ψrν +

Ne∑
β=1

ψeβ q̇eβ] dm

= 1
2

νT
∫
V

 1 −ρ×
ρ× −ρ×ρ×

 dmν
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+ νT
Ne∑
α=1

∫
V

 1
ρ×

ψeα dmq̇eα

+
Ne∑
α=1

q̇eα
∫
V
ψT
eα[1 − ρ×] dmν

+
Ne∑
α=1

Ne∑
β=1

∫
V
ψT
eαψeβ dmq̇eαq̇eβ


We can simplify the appearance of this expression by defining the following
matrices:

Mrr =

 m1 −c×

c× J

 (7)

is the rigid mass matrix and

m =
∫
V
dm

c =
∫
V
ρ dm

J = −
∫
V
ρ×ρ× dm

The elastic mass matrix is

Mee = matrix{
∫
V
ψT
eαψeβ dm} (8)

and we define the rigid-elastic coupling matrix by

Mre =

 row{Pα}
row{Hα}

 (9)

where
Pα =

∫
V
ψeα dm

are the modal momentum coefficients and

Hα =
∫
V
ρ×ψeα dm

are the modal angular momentum coefficients. With these definitions, the
kinetic energy becomes

T = 1
2 [νT q̇Te ]

 Mrr Mre

MT
re Mee

  ν
q̇e
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where qe = col{qeα}. Clearly, the mass matrix

M =

 Mrr Mre

MT
re Mee

 (10)

is symmetric and it is positive definite since T > 0 provided that ν and q̇e
are not both identically zero.

Strain Energy

Recall that the strain energy of an elastic body is given by

U = 1
2

∫
V
εTEε dV

Using the expansion in (5), the strains can be written as

ε(ue) = ε(
∑
α
ψeαqeα) =

∑
α
ε(ψeα)qeα

Inserting this into the strain energy yields

U = 1
2

∑
α

∑
β

∫
V
ε(ψeα)Eε(ψeβ) dV︸ ︷︷ ︸ qeαqeβ

= 1
2q

T
e Keeqe Kee,αβ

Consistent with the definition of the mass matrix in (10) we define

K =

 O O
O Kee

 = KT ≥ O (11)

Equations of Motion

Note that νT = [vT ωT ] are not integrable coordinates. However, writing

r
~

= F
~
T
i r

and establishing an Euler sequence θ which parametrizes Cbi(θ) yields the
rigid coordinates

qr = col{r,θ}
with

ν =

 v
ω

 =

 Cbi(θ) O
O S(θ)

  ṙ

θ̇
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The generalized coordinates for the entire system become

q = col{qr,qe}

In order to simplify things, let us assume that {ṙ, θ̇,θ} are small and hence
so are v and ω. This allows us to make the following approximations:

Cbi
.= 1− θ×, ω = θ̇

ν .=

 ṙ

θ̇

 = q̇r

Therefore, the above equations allow us to write the energies as

T = 1
2q̇

TMq̇ (12)

U = 1
2q

TKq (13)

The position of the mass element dm is

R
~

= r
~

+ ρ
~

+ u
~
e

= F
~
T
i [r + CT

bi(ρ+ ue)]

.= F
~
T
i [r + (1 + θ×)(ρ+ ue)]

.= F
~
T
i [ρ+ r− ρ×θ + ue]

where ue =
∑
αψeαqeα(t). Hence, a virtual displacment of dm is given by

δR
~

= F
~
T
i [δr− ρ×δθ +

∑
α
ψeαδqeα]

The virtual work performed by f
~
e(ρ
~
, t) = F

~
T
b fe is

δWe =
∫
V

f
~
e · δR

~
dV

=
∫
V

fTe [δr− ρ×δθ +
∑
α
ψeαδqeα] dV

= δrT
∫
V

fe dV + δθT
∫
V
ρ×fe dV +

∑
α
δqeα

∫
V
ψT
eαfe dV

= [δrT δθT δqTe ]


F
G

f̂e


= δqT f̂ (14)
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Here,
f̂ = col{F,G, f̂e}, f̂e = col{f̂eα}

where

F =
∫
V

fe dV = total force on B

G =
∫
V
ρ×fe dV = total torque on B (about O)

f̂eα =
∫
V
ψT
eαfe dV

Applying Lagrange’s equations to the energy expressions in Eqs. (12), (13),
and (14) yields the motion equations

Mq̈ + Kq = f̂ (15)

or  Mrr Mre

MT
re Mee

  q̈r
q̈e

 +

 O O
O Kee

  qr
qe

 =

 f̂r
f̂e

 , f̂r =

 F
G

 (16)

6.11 Unconstrained Modes

Consider the eigenproblem corresponding to (15):

−ω2
αMqα + Kqα = 0 (17)

Corresponding to nonzero ωα are a series of orthonormal eigenvectors as be-
fore:

qTαMqβ = δαβ (18)

qTαKqβ = ω2
αδαβ (19)

where α, β = 1 · · ·Ne.

Since K is merely positive-semidefinite, there are zero-frequency (rigid body)
modes satisfying:

KQr = O (20)

Given the form of K, Qr has the form

Qr =

 16×6
O
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corresponding to three translational and three rotational rigid-body modes.

Using (20) in conjunction with the eigenproblem in (17) yields

qTαKQr = O, α = 1, 2, 3, · · · (21)

qTαMQr = O, α = 1, 2, 3, · · · (22)

QT
r MQr = Mrr (23)

Let us expand the solution of (15) in terms of the rigid and vibration modes:

q(t) = Qrηr(t) +
Ne∑
α=1

qαηα(t), ηr(t)col{r0,θ0}

⇒


r(t)
θ(t)
qe(t)

 =


r0(t)
θ0(t)

0

 +
Ne∑
α=1


rα
θα
q̂eα

 ηα(t)

Substituting this into (15) and premultiplying by QT
r and qTα gives the un-

constrained modal equations

Mrrη̈r = f̂r (24)

η̈α + ω2
αηα = qTα f̂ , α = 1, 2, 3, . . . (25)

Note that the first of these would yield the body’s motion if it were rigid.
For a flexible body, we see that the vibration modes contribute to the “rigid”
coordinates qr(t).

Example. Longitudinal Vibrations of an Elastic Rod


