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6 Flexible Spacecraft Dynamics

6.1 Summary of Classical Linear Elasticity

Setting
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We consider a contrained elastic body with volume V . Impressed on V is a
body force distribution (per unit volume)

f
~
e(ρ
~

) = F
~
T
b fe, fe = [f1 f2 f3]

T (1)

The deformation experienced at ρ
~

= F
~
T
b ρ, ρ = [x1 x2 x3]

T is

u
~
e = F

~
T
b ue(ρ), ue = [u1 u2 u3]

T

The surface of the body is decomposed as S = S1 ∪ S2 with S1 ∩ S2 = ∅. On
S1, we assume that ue = 0 and on S2 there is a surface distribution of forces
(per unit surface)

F
~
s = F

~
T
b Fs, Fs = [F1 F2 F3]

T (2)

It is assumed that ue is small.
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Stress Tensor

The application of f
~
e and F

~
s creates a state of stress in V :
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The notation σij(ρ), i, j = 1, 2, 3 denotes the stress tensor. σ11, σ22, and σ33

are normal stresses and τij = σij, i 6= j, are shear stresses. It can be shown
that σij = σji.

The interpretation of the stress tensor is best seen by dividing V into Va and
Vb. Let n

~
(ρ
~

) = F
~
T
b n, n = [n1 n2 n3]

T , denote the outward normal to Va along

the dividing surface.
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Va Vb

The effect of Vb on Va is a force distribution (per unit surface) F
~
ba = F

~
T
b [Fa1 Fa2 Fa3]

T

where

Fai =
3∑
j=1

σijnj = σijnj

where we have used the summation convention (sum over repeated indices).
Hence on S2 we have

σijnj = Fi
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Strain Tensor

The strain tensor is defined by

εij(ue) = 1
2

∂ui
∂xj

+
∂uj
∂xi

 = εji

The diagonal entries εii = ∂ui/∂xi, i = 1, 2, 3, are normal strains and

εij = 1
2γij, i 6= j

are shearing strains.

Hooke’s Law

Assuming an elastic body, we write

σij = Eijkl(ρ)εkl (3)

where Eijkl is the tensor of elastic moduli. It possesses the symmetries

Eijkl = Ejikl = Eijlk = Eklij

It is possible to write (3) using a contracted notation. Define

σ = [σ11 σ22 σ33 τ23 τ31 τ12]
T

ε(ue) = [ε11 ε22 ε33 γ23 γ31 γ12]
T

Then
σ = Eε, E = ET

where E = matrix{Eij}, i, j = 1, . . . , 6 contains the Eijkl.

For a homogeneous body, Eijkl(ρ) ≡ Eijkl (i.e., Eijkl is independent of posi-
tion) and for an isotropic body, Eijkl is independent of the choice of F b (i.e.,
arbitrary orientation). In this case, it can be shown that the 21 independent
constants in Eijkl degenerate to two:

Eijkl = λδijδkl + µ(δikδjl + δilδjk)

where

δij =

 1, i = j
0, i 6= j
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and λ, µ are the Lamé parameters. They may be expressed in terms of the
more familiar Young’s modulus E and Poisson’s ratio ν using

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)

In this case, we have

E =



1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2


E

(1 + ν)(1− 2ν)

Note that G = E/[2(1 + ν)] is the shear modulus.

Equilibrium Equation

Initially, we assume the body to be in static equilibrium. Consider a portion
of V , say ∆V , with boundary ∆S:
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The balance of volume and surface forces yields∫
∆V

fidV = −
∫

∆S
σijnjdS, i = 1, 2, 3 (4)

Recall Gauss’s Law: ∫
∆V

∇
~
· F
~
dV =

∫
∆S

F
~
· n
~
dS
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or ∫
∆V

∂Fj
∂xj

dV =
∫

∆S
Fjnj dS

Applying this to the right side of (4) gives

∫
∆V

fi dV = −
∫

∆V

∂σij
∂xj

dV, i = 1, 2, 3

Since ∆V is arbitrary, we conclude that

−∂σij
∂xj

= fi, i = 1, 2, 3

Introducing Hooke’s Law gives

−∂σij
∂xj

= −∂Eijklεkl
∂xj

= − ∂

∂xj

[
Eijkl

∂uk
∂xl

]
= fi (5)

We can write this symbolically as

Kue = fe(ρ) (6)

where

Kik( · ) = − ∂

∂xj

Eijkl
( · )
∂xl


is the (3 × 3) stiffness operator. In the homogeneous isotropic case, we can
write

Kue = −(λ+ 2µ)∇∇Tue + µ∇×∇×ue

where ∇T = [∂/∂x1 ∂/∂x2 ∂/∂x3]. In general, (6) is subject to the boundary
conditions

ui = 0, i = 1, 2, 3, on S1 (7)

σijnj = Fi, i = 1, 2, 3, on S2 (8)

where σij is given by (3).

6.2 Variational Formulation

Gauss’s theorem can be applied to the product of a scalar field φ(ρ) and a
vector one ψ(ρ) to give∫

V
∇T (φψ) dV =

∫
S
φψTn dS
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or ∫
V
ψT∇φ dV = −

∫
V

(∇Tψ)φ dV +
∫
S
φψTn dS

where n = [n1 n2 n3]
T is the outward normal to S. Expressing the above in

component form gives

∫
V
ψj
∂φ

∂xj
dV = −

∫
V

∂ψj
∂xj

φ dV +
∫
S
φψjnj dS (9)

Now, define the strain energy associated with a distribution of strain by

U = 1
2

∫
V
εijEijklεkl dV = 1

2

∫
V
σijεij dV (10)

= 1
2

∫
V
εTEε dV, E = ET (11)

Consider a small change in the configuration of the system in the form of
a kinematically admissible virtual displacement (ue = 0 on S1), given by
δue = [δu1 δu2 δu3]

T . The corresponding variation of U is

δU = 1
2

∫
V

[δεijEijklεkl + εijEijklδεkl] dV

=
∫
V
σijδεij dV

=
∫
V
σij

1
2

δ
∂ui
∂xj

+
∂uj
∂xi

 dV
=

∫
V
σijδ

∂ui
∂xj

 dV

=
∫
V
σij
∂(δui)

∂xj
dV

Now apply the form of Gauss’s law given above in (9) to the last form of δU
to get:

δU = −
∫
V

∂σij
∂xj

δui dV +
∫
S
σijnjδui dS (12)

Using the equilibrium equation in (5) and the boundary conditions (7) and
(8) gives

−∂σij
∂xj

= fi, δui = 0 on S1

σijnj = Fi on S2
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With these in hand, (12) can be written as

δU =
∫
V
fiδui dV +

∫
S2

Fiδui dS

This can be written as
δU = δWe (13)

where the virtual work performed by the external forces is

δWe =
∫
V

fTe δue dV +
∫
S2

FT
s δue dS (14)

Hence, the first variation of the strain energy equals the virtual work of the
external influences. If we interpret U as a type of potential energy, Eq. (13)
is entirely consistent with Hamilton’s (extended) principle:

δ
∫ t2
t1
Ldt+

∫ t2
t1
δWe dt = 0 (15)

where L = T −U is the Lagrangian and T is the kinetic energy. Since we are
dealing with statics, T = 0 and the temporal integration is irrelevant. Eq.
(15) then reduces to Eq. (13).

6.3 Dynamics

We can readily extend the treatment to the dynamic case by using Eq. (15) in
conjunction with δWe in (14), U in (11), and introducing the kinetic energy

T = 1
2

∫
V

u̇Te u̇eσ dV (16)

where σ(ρ) is the mass density (per unit volume). Alternatively, the equilib-
rium equation in Eq. (6) becomes

Kue = fe + fI , fI = −σüe

where using d’Alembert’s principle, we have introduced the inertial force
distribution fI . Hence the equation of motion becomes

σüe + Kue(ρ, t) = fe(ρ, t) (17)
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6.4 The Rayleigh-Ritz Method

Consider the statics problem

Kue = fe,

 ue = 0 on S1

σijnj = Fj on S2

As an alternative to solving this pde we can use δU = δWe or

δ(U −We) = 0

which is called the principle of minimum total potential energy. Here,

U =
∫
V
εT (ue)Eε(ue) dV

We =
∫
V

fTe ue dV +
∫
S2

FT
s ue dS

It is understood that the minimization is respect to those ue satisfying ue = 0
on S1. However, if Fs = 0, we need not explicitly enforce σijnj = 0 on S2.

In the Rayleigh-Ritz method, we assume a solution of the form

ue(ρ) =
n∑
i=1

ψi(ρ)qi (18)

where ψi(ρ) = 0 on S1 and the ψi are independent. The qi are determined
by minimizing U −We. Let us take Fs = 0 and note that

ε(ue) =
n∑
i=1

ε(ψi)qi

since ε is linear in ue. Therefore,

U = 1
2

∫
V
εTEε dV

= 1
2

n∑
i=1

n∑
j=1

∫
V
ε(ψi)

TEε(ψj) dV qiqj

= 1
2q

TKq

where
Kij =

∫
V
ε(ψi)

TEε(ψj) dV
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Here, K = KT > O is the stiffness matrix. Also,

We =
∫
V

fTe ue dV

=
n∑
i=1

∫
V

fTe ψi dV qi

= FT
e q, Fei =

∫
V

fTe ψi dV

where Fe is the generalized force vector. Hence,

U −We = 1
2q

TKq− FT
e q

Minimizing U −We, i.e.,

∂(U −We)

∂q
= Kq− Fe = 0

leads to
Kq = Fe

This determines q, hence ue(ρ) using (18).

Example. Longitudinal Extension of a Rod
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6.5 Rayleigh-Ritz in Dynamics Problems

Now we let

ue(ρ, t) =
n∑
i=1

ψi(ρ)qi(t)

where the generalized coordinates qi(t) are time varying and introduce the
kinetic energy

T = 1
2

∫
V

u̇Te u̇eσ(ρ) dV

= 1
2

n∑
i=1

n∑
j=1

∫
V
ψT
i ψjσ dV q̇iq̇j

= 1
2q̇

TMq̇

where
Mij =

∫
V
ψT
i ψjσ dV (19)

Here, M = MT > O is the mass matrix.

Recall that
U = 1

2q
TKq, δWe = FT

e δq

Lagrange’s equations corresponding to the variational principle in (15) are
given by

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= Fe, L = T − U (20)

Using the energy expressions above in these equations leads to

Mq̈ + Kq = Fe(t) (21)

This is the discrete parameter form of the pde

σüe + Kue = fe(ρ, t)

6.6 Constrained Modal Analysis

Let us begin with the discrete-parameter motion equation for a constrained
elastic body, Eq. (21). Initially, we look for solutions of the form

q(t) = <e{qαeλαt}
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Substituting this into the homogeneous form of Eq. (21) gives

λ2
αMqα + Kqα = 0, α = 1, 2, 3, . . . (22)

Premultiplying by qHα = [q∗α]T gives

λ2
α = −qHα Kqα

qHα Mqα
< 0

Hence λα = ±jωα where ωα > 0 are the vibration frequencies. We can,
without loss in generality take the eigencolumn qα to be real. The vibration
frequencies can be determined from the characteristic equation

det
[
−ω2

αM + K
]

= 0

which yields n values for ωα assuming M and K are n× n.

Now, Eq. (22) can be written as

−ω2
αMqα + Kqα = 0

Premultiplying by qTβ gives

−ω2
αq

T
βMqα + qTβKqα = 0 (23)

Interchanging α and β and rewriting produces

−ω2
βq

T
αMqβ + qTαKqβ = 0 (24)

Subtracting (24) from (23) and noting the symmetry of M and K gives

(ω2
α − ω2

β)qTαMqβ = 0

For ωα 6= ωβ, we must have
qTαMqβ = 0 (25)

and hence
qTαKqβ = 0 (26)

When α = β, we can set

qTαMqα = 1 (27)

qTαKqα = ω2
α (28)

Combining Eqs. (25)-(28) yields

qTαMqβ = δαβ (29)

qTαKqβ = ω2
αδαβ (30)

If the frequencies are not distinct, we can still write these relations because
the eigencolumns can be orthogonalized using a Gram-Schmidt procedure.
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6.7 Approximate Mode Shapes

Since the assumed expansion using the Rayleigh-Ritz procedure is

ue(ρ, t) =
n∑
i=1

ψi(ρ)qi(t) = Ψe(ρ)q(t)

where Ψe = row{ψi}, the approximate mode shape corresponding to ωα is

ueα(ρ) = Ψe(ρ)qα

The mode is described by

ue(ρ, t) = <e{ueα(ρ) exp(λαt)} = ueα cosωαt

6.8 Modal Equations of Motion

The N eigenvectors qα are orthogonal with respect to M and K and hence
constitute a basis for <N . Let us represent the solution of (21) by

q(t) =
N∑
β=1

qβηβ(t) (31)

where the ηβ are modal coordinates. Substituting this expansion into (21)
and premultiplying by qTα gives

qTαM
N∑
β=1

qβη̈β(t) + qTαK
N∑
β=1

qβηβ(t) = qTαFe

Using the orthonormality relations in (29)-(30) gives

η̈α + ω2
αηα = f̂α = qTαFe, α = 1, . . . , N (32)

which represents N decoupled equations for the modal coordinates. Collec-
tively they can be written as

η̈ + Ω2η = f̂ (33)

where
η = col{ηα}, f̂ = col{f̂α}, Ω = diag{ωα}
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Integration of the modal equations for the ηα(t) allows us to express the
motion of the body as

ue(ρ, t) = Ψe(ρ)q(t) =
N∑
α=1

Ψeqαηα(t) =
N∑
α=1

ueα(ρ)ηα(t) (34)

Also note that the modal forces can be expressed as

f̂α(t) = qTαFe = qTα

∫
V

ΨT
e (ρ)fe(ρ, t) dV =

∫
V

uTeα(ρ)fe(ρ, t) dV (35)

6.9 Sensors and Actuators

Let us assume that there are m rate measurements, yi, in the direction ai
(aTi ai = 1) at the location ρ = ρi. Therefore

yi = aTi u̇e(ρi, t)

=
N∑
α=1

aTi ueα(ρi)η̇α(t)

= ĉTi η̇(t)

where
ĉi = colα{aTi ueα(ρi)}

If we define
y(t) = col{yi}, Ĉ = col{ĉTi }

then
y = Ĉη̇ (36)

Now, assume that there are m force actuators with applied force uj(t) in the
direction āj (āTj āj = 1) at the location ρ = ρ̄j. Therefore the force per unit
volume distribution can be written as

fe(ρ, t) =
m∑
j=1

uj(t)ājδ(ρ− ρ̄j) (37)

where δ(ρ − ρ̄j) is the Dirac delta function located at ρ = ρ̄j. Therefore,
using (35)

f̂α =
∫
V

uTeα(ρ)
m∑
j=1

uj(t)ājδ(ρ− ρ̄j) dV

=
m∑
j=1

uTeα(ρ̄j)ājuj(t)
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Forming f̂ = col{f̂α}, we have

f̂ =
m∑
j=1

b̂juj(t)

where
b̂j = colα{āTj ueα(ρ̄j)}

If we define
u(t) = col{uj}, B̂ = row{b̂j}

then
η̈ + Ω2η = f̂ = B̂u (38)

If ρi = ρ̄i and ai = āi, we say that the yi and the ui are collocated. In this
case ĉi = b̂i, so that B̂ = ĈT .

Claim. If u and y correspond to collocated force actuators and rate sensors,
then the mapping relating u to y is passive.

Proof. Consider the energy of the system in modal coordinates:

H(t) = 1
2η̇

T η̇ + 1
2η

TΩ2η ≥ 0

Taking its time derivative, we have

Ḣ = η̇T (η̈ + Ω2η)

= η̇T B̂u

= uT B̂T η̇

= uT Ĉη̇ = uTy

Integrating both sides with respect to time and taking η(0) = η̇(0) = 0 gives

∫ T
0

yTu dt = H(T )−H(0) = H(T ) ≥ 0

which establishes the claim. 2


