6 Flexible Spacecraft Dynamics

6.1 Summary of Classical Linear Elasticity
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We consider a contrained elastic body with volume V. Impressed on V' is a
body force distribution (per unit volume)

fo(p) = Fpfe, fo=1f1 fo fs]" (1)
The deformation experienced at p = .’EbT p, p = |1 19 23] is
Ue = :EbTue(P)a u, = [ug up US]T

The surface of the body is decomposed as S = S; U Sy with S1 NSy = 0. On
S1, we assume that u, = 0 and on Sy there is a surface distribution of forces

(per unit surface)
F,=F/F, F,=[FF R’ (2)

It is assumed that u, is small.



Stress Tensor

The application of f. and F, creates a state of stress in V:
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The notation o;;(p), 4, = 1,2, 3 denotes the stress tensor. oy, 092, and o33
are normal stresses and 7;; = 0y, ¢ # j, are shear stresses. It can be shown
that Oij = 0jij-

The interpretation of the stress tensor is best seen by dividing V' into V, and

Vi. Let n(p) = Fin, n = [ny ny ng]’, denote the outward normal to V, along

the dividing surface.
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The effect of V; on V, is a force distribution (per unit surface) Fy,, = Fi [Fu1 Fuo Fus]*

where ;
Foi=)_ oijn; = oijn;
j=1
where we have used the summation convention (sum over repeated indices).

Hence on Sy we have
O'ijnj = E



Strain Tensor

The strain tensor is defined by

Ou;  Ouj

2 8a:j 8%
The diagonal entries €;; = Qu;/0x;, i = 1,2, 3, are normal strains and
€ij = %%’j,i #J
are shearing strains.

Hooke’s Law

Assuming an elastic body, we write

Oij = ijkl(P)Ekl (3)
where Ejji; is the tensor of elastic moduli. It possesses the symmetries
Eijti = Ejirg = Eijir = Erj
It is possible to write (3) using a contracted notation. Define
o = [011 022 033 T23 T31 712]T
e(u.) = [e11 €22 €33 Y23 V31 712]T

Then
o=Ee, E=E'
where E = matrix{£;;}, i,7 = 1,...,6 contains the E,j.

For a homogeneous body, Ejju(p) = Eiju (i-e., Ejji is independent of posi-
tion) and for an isotropic body, Ejjj; is independent of the choice of Fy, (i.e.,
arbitrary orientation). In this case, it can be shown that the 21 independent
constants in Eijkl degenerate to two:

Eijri = A0ii6m + p(6ixdj1 + didjx)

where
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and A, u are the Lamé parameters. They may be expressed in terms of the
more familiar Young’s modulus F and Poisson’s ratio v using
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In this case, we have
(1—v v v 0
v 1—v v 0
v 1—v 0

1%

O 0 O 1;21/
0 0 0 0 iz
0

1—2v
o o0 0 0 2

Note that G = E/[2(1 + v)] is the shear modulus.

Equilibrium Equation

(14+v)(1—2v)
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Initially, we assume the body to be in static equilibrium. Consider a portion
of V, say AV, with boundary AS:

The balance of volume and surface forces yields

/AV deV = — /AS az-jnde, 1= 1, 2, 3 (4)

Recall Gauss’s Law:
ﬁ ‘I Ed el QS - —



or

OF,
/AV Oz v = /AS Fyn; d3

Applying this to the right side of (4) gives

Joij :
Lo fidv=—[ o, WV i=1,2,3
Since AV is arbitrary, we conclude that

Joi; :
- — Jiy = 17 27 3
ij f !
Introducing Hooke’s Law gives
adij aEijklé?kl 0 [ 8uk
8xj 8J:j &rj Ikl 835; f ( )
We can write this symbolically as
Ku. = f.(p) (6)

where 5 ()
Kie(+) = _(‘37:6]- {Eijklaxl]

is the (3 x 3) stiffness operator. In the homogeneous isotropic case, we can
write

Ku, = -(\+20)VVTu, 4+ pV*V*u,
where V' = [0/0x; 0/0x5 0/0x3). In general, (6) is subject to the boundary

conditions

v = 0, i=1,2,3, on Sy (7)
Oipny = E, i:1,2,3, on SQ (8)

where o;; is given by (3).

6.2 Variational Formulation

Gauss’s theorem can be applied to the product of a scalar field ¢(p) and a
vector one 1(p) to give

J, V! (ow)dv = [ o nds



or

' Vodv =~ [ (V'§)odV + [ op nds

where n = [n; ng n3]! is the outward normal to S. Expressing the above in
component form gives

A%i?W:_AgQMV+LWWMS (9)

Now, define the strain energy associated with a distribution of strain by
U = 3 ciBinendV =3 [ oje;dV (10)
= 1/ e"BedV, E=E' (11)

Consider a small change in the configuration of the system in the form of
a kinematically admissible virtual displacement (u, = 0 on Sp), given by
du, = [dug dusg dus]?. The corresponding variation of U is

oUu = 5/V[55ijEijkl5kzl+5ijEijk155kl] av
- /‘/Oijégijdv

ou;  Ou;
— S ¢ J
~ [ o 2(5(%*@@))] av

81/@
= VO'Z'j(S (8_1:]) dV

Now apply the form of Gauss’s law given above in (9) to the last form of U

to get:
80’2']'

5U:_Aa%wwv+é%mmms (12)

Using the equilibrium equation in (5) and the boundary conditions (7) and
(8) gives
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Oijn; = E on SQ

= f;, ou; =0on .Sy



With these in hand, (12) can be written as
6U = [, fidusdV + [, Fidu;ds

This can be written as

SU = 5W, (13)

where the virtual work performed by the external forces is
_ T T
W, = [ flou.dv + [ Flou.ds (14)

Hence, the first variation of the strain energy equals the virtual work of the
external influences. If we interpret U as a type of potential energy, Eq. (13)
is entirely consistent with Hamilton’s (extended) principle:

tg t2
5/t1 Ldt+/tl SW.dt =0 (15)

where L = T'— U is the Lagrangian and T’ is the kinetic energy. Since we are
dealing with statics, 7' = 0 and the temporal integration is irrelevant. Eq.
(15) then reduces to Eq. (13).

6.3 Dynamics

We can readily extend the treatment to the dynamic case by using Eq. (15) in
conjunction with 6W, in (14), U in (11), and introducing the kinetic energy

T=1 /V o dV (16)

where o(p) is the mass density (per unit volume). Alternatively, the equilib-
rium equation in Eq. (6) becomes

Klue =f + f[, fr = —ou,

where using d’Alembert’s principle, we have introduced the inertial force
distribution f;. Hence the equation of motion becomes

ou, + ]Clle(p7 t) - fe(pv t) (17)



6.4 The Rayleigh-Ritz Method

Consider the statics problem

u. =0on S
Oijn; = F} on SQ

Ku, = £, {

As an alternative to solving this PDE we can use 6U = 0W, or
(U —-W,) =0
which is called the principle of minimum total potential energy. Here,
U = /V el(u.)Ee(u,)dV
We = [ fludv + [ Flu.ds

It is understood that the minimization is respect to those u, satisfying u, = 0
on S;. However, if Fy = 0, we need not explicitly enforce o;;n; = 0 on Ss.

In the Rayleigh-Ritz method, we assume a solution of the form
u.(p) = Zl Yi(p)qi (18)

where 1;(p) = 0 on S; and the v, are independent. The ¢; are determined
by minimizing U — W,. Let us take Fy = 0 and note that

e(u) = 3 e()a;

i=1

since € is linear in u,.. Therefore,

U = %/VETEedV

= XX [, @) Be() dVa,
1=1 7=
= 34 Kq

where

Kij = /V e(y;) Ee(ep;)dV



Here, K = K” > O is the stiffness matrix. Also,
W, = /X 7w, dV
= X ), EwidVa
= Fla, Fu= [ fly;dv
where F, is the generalized force vector. Hence,
U-W.=3q"Kq-F/q

Minimizing U — W, 1.e.,

OU =Wo) _ i F _o
dq

leads to
Kq — Fe

This determines q, hence u.(p) using (18).

Example. Longitudinal Extension of a Rod
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6.5 Rayleigh-Ritz in Dynamics Problems

Now we let

Yi(p)ai(t)

1
) are time varying and introduce the

ue(p7 t) =

V-

7

where the generalized coordinates ¢;(t
kinetic energy

T = 1| wao(p)dv

where
My = [ i o dV (19)

Here, M = M” > O is the mass matrix.

Recall that
U=1q"Kq, §W.=F!iq

Lagrange’s equations corresponding to the variational principle in (15) are

given by
d (0L oL
—\|==)|—=—=F,, L=T-U 20
dt (8(1) oq (20)

Using the energy expressions above in these equations leads to
Mq + Kq = F.(?) (21)

This is the discrete parameter form of the PDE

ou, + Ku, = f.(p, 1)

6.6 Constrained Modal Analysis

Let us begin with the discrete-parameter motion equation for a constrained
elastic body, Eq. (21). Initially, we look for solutions of the form

a(t) = Re{gae™'}
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Substituting this into the homogeneous form of Eq. (21) gives

MMgq, +Kq, =0, a=1,2,3,... (22)
Premultiplying by q = [q}]T gives
K
A2 —qﬁ‘j ELA)
Ao Mda

Hence \, = +jw, where w, > 0 are the vibration frequencies. We can,
without loss in generality take the eigencolumn q, to be real. The vibration
frequencies can be determined from the characteristic equation

det [—wiM + K} =0
which yields n values for w, assuming M and K are n X n.
Now, Eq. (22) can be written as

~wMq, + Kq, =0
Premultiplying by qg gives

—w?qiMa, + g Kq, = 0 (23)
Interchanging o and 3 and rewriting produces
—wia,Mas + q,Kqs = 0 (24)

Subtracting (24) from (23) and noting the symmetry of M and K gives

(wa — wh)deMas = 0
For w, # ws, we must have
d,Mqs = 0 (25)
and hence
q,Kqs = (26)
When a = 3, we can set
a‘Mq, = 1 (27
A Kq, = ? (28)
Combining Eqs. (25)-(28) yields
doMds = dap (29)
d.Kas = widas (30)

If the frequencies are not distinct, we can still write these relations because
the eigencolumns can be orthogonalized using a Gram-Schmidt procedure.
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6.7 Approximate Mode Shapes

Since the assumed expansion using the Rayleigh-Ritz procedure is
uc(p,t) = _Zl%(p)qz—(t) = W(p)a(?)
where ¥, = row{),}, the approximate mode shape corresponding to w,, is

uea(p) = \Ile(p)qa
The mode is described by

u.(p,t) = Re{uc(p) exp(Aat) } = Ueq cOsSw,t

6.8 Modal Equations of Motion

The N eigenvectors q, are orthogonal with respect to M and K and hence
constitute a basis for RY. Let us represent the solution of (21) by

qlt) = B% Qs () (31)

where the np are modal coordinates. Substituting this expansion into (21)
and premultiplying by ql gives

N N
q,M BZ asiis(t) + qL K 52 asns(t) = gL F.

Using the orthonormality relations in (29)-(30) gives
flo +wana = fa =q.Fe, a=1,...,N (32)

which represents N decoupled equations for the modal coordinates. Collec-
tively they can be written as

n+n=f (33)

where
n = col{n,}, f=col{f.}, Q= diag{w,}
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Integration of the modal equations for the 7,(t) allows us to express the
motion of the body as

ue(pa t) = \Ile(p)q(t) - JXV: ‘Peqana(t) - ii:l uea(p)na(t) (34)

a=1

Also note that the modal forces can be expressed as

folt) = aiFe = af [ Wl (p)i(p.t)dV = [ ul (p)f(p, 1)V (35)

6.9 Sensors and Actuators

Let us assume that there are m rate measurements, y;, in the direction a;

(ala; = 1) at the location p = p,;. Therefore
Yi = azrue(pia t)
N .

- Zl a; uea(pi)na(t)

= ¢/ n(t)
where

C; = CO]a{azTuea(pi)}
If we define
y(t) = col{y;}, C= col{éiT}

then

y =Cn (36)

Now, assume that there are m force actuators with applied force u;(t) in the

direction a; (é;réj = 1) at the location p = p;. Therefore the force per unit
volume distribution can be written as
m

fe(p,t) = > u;(t)a;o(p — py) (37)

j=1
where 6(p — p;) is the Dirac delta function located at p = p;. Therefore,
using (35)

fo = [, ul(p) X ui(hai(p — p;)dv

J:

—_

- iuza@,-)ajuj(t)
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Forming f = col{ f,}, we have

f = Zl Bjuj(t)
j:

where
b; = col,{al u..(p;)}
If we define N R
u(t) = col{u;}, B =row{b,}
then

7"7+Q277:f:]/3\u (38)

It p, = p; and a; = a;, we say that the y; and the u; are collocated. In this
case ¢; = b;, so that B = CT.

Claim. If u and y correspond to collocated force actuators and rate sensors,
then the mapping relating u to y is passive.

Proof. Consider the energy of the system in modal coordinates:
H(t) =300+ ym" @°n >0
Taking its time derivative, we have

H = 7" (i) + Q%)
= 7'Bu
— uTET,';’

= uTéh =uly
Integrating both sides with respect to time and taking n(0) = 1(0) = 0 gives
T
| y"wdt = H(T) = H(0) = H(T) > 0

which establishes the claim. O



