5 Linear Systems

5.1 State-Space Equations

Consider a system with m inputs, $u_{1}(t), \ldots, u_{m}(t)$, and p outputs $y_{1}(t), \ldots, y_{p}(t)$. If the system is linear and time invariant (LTI) (and proper as well as finite dimensional), then $\mathbf{y} \in \Re^{p}$ can be related to $\mathbf{u} \in \Re^{m}$ by the state-space equations

$$
\begin{align*}
\dot{\mathbf{x}} & =\mathbf{A x}+\mathbf{B u}, \quad \mathbf{x}(0)=\mathbf{x}_{0} \tag{1}\\
\mathbf{y} & =\mathbf{C x}+\mathbf{D u}
\end{align*}
$$

where $\mathbf{x} \in \Re^{n}$ is the state vector. Note that

$$
\mathbf{A} \in \Re^{n \times n}, \quad \mathbf{B} \in \Re^{n \times m}, \quad \mathbf{C} \in \Re^{p \times n}, \quad \mathbf{D} \in \Re^{p \times m}
$$

are constant matrices. If $m=p=1$, it is a single-input/single-output (SISO) system. Otherwise it is a multi-input/multi-output (MIMO) system.
The solution of (1) is

$$
\begin{equation*}
\mathbf{x}(t)=e^{\mathbf{A} t} \mathbf{x}_{0}+\int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau \tag{2}
\end{equation*}
$$

where

$$
e^{\mathbf{A} t}=\sum_{k=0}^{\infty} \mathbf{A}^{k} t^{k} / k!
$$

Therefore,

$$
\begin{equation*}
\mathbf{y}(t)=\mathbf{C} e^{\mathbf{A} t} \mathbf{x}_{0}+\mathbf{C} \int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau+\mathbf{D u}(t) \tag{3}
\end{equation*}
$$

Let

$$
\hat{\mathbf{x}}(s)=\mathcal{L}\{\mathbf{x}(t)\}=\int_{0}^{\infty} e^{-s t} \mathbf{x}(t) d t
$$

denote the Laplace transform (L.T.). Taking L.T.'s in (1) gives

$$
s \hat{\mathbf{x}}(s)-\mathbf{x}_{0}=\mathbf{A} \hat{\mathbf{x}}(s)+\mathbf{B} \hat{\mathbf{u}}(s)
$$

and hence

$$
\begin{equation*}
\hat{\mathbf{x}}(s)=(s \mathbf{1}-\mathbf{A})^{-1} \mathbf{x}_{0}+(s \mathbf{1}-\mathbf{A})^{-1} \mathbf{B} \hat{\mathbf{u}}(s) \tag{4}
\end{equation*}
$$

Comparing (2) with (4), we see that

$$
\begin{aligned}
\mathcal{L}\left\{e^{\mathbf{A} t} \mathbf{x}_{0}\right\} & =(s \mathbf{1}-\mathbf{A})^{-1} \mathbf{x}_{0} \\
\mathcal{L}\left\{e^{\mathbf{A} t} * \mathbf{B u}(t)\right\} & =(s \mathbf{1}-\mathbf{A})^{-1} \mathbf{B} \hat{\mathbf{u}}(s)
\end{aligned}
$$

where $(*)$ denotes temporal convolution. We conclude that

$$
\begin{equation*}
\mathcal{L}\left\{e^{\mathbf{A} t}\right\}=(s \mathbf{1}-\mathbf{A})^{-1} \tag{5}
\end{equation*}
$$

Setting $\mathbf{x}_{0}=\mathbf{0}$ gives

$$
\begin{align*}
\hat{\mathbf{y}}(s) & =\mathbf{C} \hat{\mathbf{x}}(s)+\mathbf{D} \hat{\mathbf{u}}(s) \\
& =\underbrace{\left[\mathbf{C}(s \mathbf{1}-\mathbf{A})^{-1} \mathbf{B}+\mathbf{D}\right]}_{\hat{\mathbf{G}}(s) \hat{\mathbf{u}}(s)} \hat{\mathbf{u}}(s) \\
& =\underbrace{2} \tag{6}
\end{align*}
$$

$\hat{\mathbf{G}}(s)$ is called the transfer matrix (or transfer function in the SISO case). Writing

$$
\mathbf{C}=\left[\begin{array}{c}
\mathbf{c}_{1} \\
\vdots \\
\mathbf{c}_{p}
\end{array}\right], \quad \mathbf{B}=\left[\mathbf{b}_{1} \cdots \mathbf{b}_{m}\right], \quad \mathbf{D}=\operatorname{matrix}\left\{D_{i j}\right\}
$$

it follows that

$$
\begin{equation*}
\hat{\mathbf{G}}(s)=\operatorname{matrix}\left\{\hat{G}_{i j}(s)\right\}, \quad \hat{G}_{i j}(s)=\mathbf{c}_{i}(s \mathbf{1}-\mathbf{A})^{-1} \mathbf{b}_{j}+D_{i j} \tag{7}
\end{equation*}
$$

We also define

$$
\left[\begin{array}{c|c}
\mathbf{A} & \mathbf{B} \\
\hline \mathbf{C} & \mathbf{D}
\end{array}\right]=\mathbf{C}(s \mathbf{1}-\mathbf{A})^{-1} \mathbf{B}+\mathbf{D}
$$

Physical Significance of $\hat{\mathbf{G}}(s)$

Let us explicitly exhibit the magnitude and phase of $\hat{G}_{i j}(j \omega)$:

$$
\hat{G}_{i j}(j \omega)=\left|\hat{G}_{i j}(j \omega)\right| e^{j \phi_{i j}(\omega)}, \quad \phi_{i j}(\omega)=\arg \left\{\hat{G}_{i j}(j \omega)\right\}
$$

Let

$$
u_{j}(t)=\sin \omega t, \quad u_{i}=0, i \neq j
$$

Then as $t \rightarrow \infty$,

$$
y_{i}(t)=\left|\hat{G}_{i j}(j \omega)\right| \sin \left(\omega t+\phi_{i j}\right)
$$

Hence, $\hat{G}_{i j}(j \omega)$ contains the frequency response between the j th input and the i th output.
Also the inverse Laplace transform of $\hat{\mathbf{G}}(s)$ is given by

$$
\mathbf{G}(t)=\mathcal{L}^{-1}\{\hat{\mathbf{G}}(s)\}=\mathbf{C} e^{\mathbf{A} t} \mathbf{B}+\mathbf{D} \delta(t)
$$

which is the impulse response, i.e., $y_{i}(t)=G_{i j}(t)$ when $u_{j}(t)=\delta(t), u_{i}=$ $0, i \neq j$. Using (6), we have

$$
\begin{aligned}
\mathbf{y}(t) & =\mathcal{L}^{-1}\{\hat{\mathbf{G}}(s) \hat{\mathbf{u}}(s)\} \\
& =\mathbf{G}(t) * \mathbf{u}(t) \\
& =\int_{0}^{t}\left[\mathbf{C} e^{\mathbf{A}(t-\tau)} \mathbf{B}+\mathbf{D} \delta(t-\tau)\right] \mathbf{u}(\tau) d \tau \\
& =\mathbf{C} \int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau+\mathbf{D u}(t)
\end{aligned}
$$

which agrees with (3) when $\mathbf{x}_{0}=\mathbf{0}$.

Stability

Assume that the eigenvalues of \mathbf{A}, λ_{i}, are distinct with corresponding eigenvectors \mathbf{e}_{i}. Define

$$
\boldsymbol{\Lambda}=\operatorname{diag}\left\{\lambda_{i}\right\}, \quad \mathbf{E}=\operatorname{row}\left\{\mathbf{e}_{i}\right\}
$$

Recall that

$$
\begin{align*}
\mathbf{A} & =\mathbf{E} \boldsymbol{\Lambda} \mathbf{E}^{-1} \\
e^{\mathbf{A} t} & =\mathbf{E} e^{\boldsymbol{\Lambda} t} \mathbf{E}^{-1} \tag{8}\\
e^{\boldsymbol{\Lambda} t} & =\operatorname{diag}\left\{e^{\lambda_{i} t}\right\}
\end{align*}
$$

The system in (1) with $\mathbf{u}(t)=\mathbf{0}$ is aymptotically stable if the eigenvalues of A have negative real parts. In this case, Eqs. (2) and (8) imply that $\mathbf{x}(t) \rightarrow \mathbf{0}$ as $t \rightarrow \infty$ for any \mathbf{x}_{0}.
Also, note that

$$
\begin{align*}
(s \mathbf{1}-\mathbf{A})^{-1} & =\left(s \mathbf{E} \mathbf{E}^{-1}-\mathbf{E} \boldsymbol{\Lambda} \mathbf{E}^{-1}\right)^{-1} \\
& =\left[\mathbf{E}(s \mathbf{1}-\boldsymbol{\Lambda}) \mathbf{E}^{-1}\right]^{-1} \\
& =\mathbf{E}(s \mathbf{1}-\boldsymbol{\Lambda})^{-1} \mathbf{E}^{-1} \tag{9}
\end{align*}
$$

where

$$
(s \mathbf{1}-\boldsymbol{\Lambda})^{-1}=\operatorname{diag}\left\{\frac{1}{s-\lambda_{i}}\right\}
$$

Hence, combining (7) and (9) gives

$$
\hat{G}_{i j}(s)=\mathbf{c}_{i} \mathbf{E}(s \mathbf{1}-\boldsymbol{\Lambda})^{-1} \mathbf{E}^{-1} \mathbf{b}_{j}+D_{i j}
$$

It is clear then that the eigenvalues of \mathbf{A} are the poles of each $\hat{G}_{i j}(s)$.

Controllability

The system in Eq. (1) is controllable if for any initial state $\mathbf{x}(0)=\mathbf{x}_{0}, t_{1}>0$, and final state \mathbf{x}_{1}, there exists a control \mathbf{u} so that the solution of (1) satisfies $\mathbf{x}\left(t_{1}\right)=\mathbf{x}_{1}$. If (1) is controllable we say that (\mathbf{A}, \mathbf{B}) is controllable.
The following are equivalent:
(i) (\mathbf{A}, \mathbf{B}) is controllable;
(ii) $\operatorname{rank}\left[\mathbf{B} \quad \mathbf{A B} \quad \mathbf{A}^{2} \mathbf{B} \cdots \mathbf{A}^{n-1} \mathbf{B}\right]=n$;
(iii) The eigenvalues of ($\mathbf{A}+\mathbf{B F}$) can arbitrarily assigned (with complex eigenvalues in complex-conjugate pairs) through proper choice of \mathbf{F}.
Item (iii) provides an easy way to stabilize (control) a controllable system. Consider the state feedback

$$
\begin{equation*}
\mathbf{u}(t)=\mathbf{F x}(t), \quad \mathbf{F} \in \Re^{m \times n} \tag{10}
\end{equation*}
$$

Then, (1) becomes

$$
\dot{\mathrm{x}}=(\mathrm{A}+\mathbf{B F}) \mathrm{x}
$$

which is asymptotically stable if the eigenvalues of $\mathbf{A}+\mathbf{B F}$ have negative real parts.

Observability

The system in (1) is observable if for any $t_{1}>0$, the initial state \mathbf{x}_{0} can be determined from the time histories of $\mathbf{u}(t)$ and $\mathbf{y}(t)$ on $\left[0, t_{1}\right]$. If (1) is observable we say that (\mathbf{C}, \mathbf{A}) is observable.

The following are equivalent:
(i) (\mathbf{C}, \mathbf{A}) is observable;
(ii) $\operatorname{rank}\left[\begin{array}{l}\mathbf{C} \\ \mathbf{C A} \\ \vdots \\ \mathbf{C A}^{n-1}\end{array}\right]=n$;
(iii) $\left(\mathbf{A}^{T}, \mathbf{C}^{T}\right)$ is controllable;
(iv) The eigenvalues of ($\mathbf{A}+\mathbf{L C}$) can arbitrarily assigned (with complex eigenvalues in complex-conjugate pairs) through proper choice of \mathbf{L}.

5.2 Observers

In order to implement the state feedback in (10) we require measurements of the states $\mathbf{x}(t)$. What if we only have access to the output $\mathbf{y}(t)$? An observer is a model of the system which uses knowledge of $\mathbf{y}(t)$ and $\mathbf{u}(t)$ to generate an estimate of the state, $\hat{\mathbf{x}}(t)$, which has the property that

$$
\begin{equation*}
\lim _{t \rightarrow \infty}[\mathbf{x}(t)-\hat{\mathbf{x}}(t)]=\mathbf{0} \tag{11}
\end{equation*}
$$

Consider (1) with $\mathbf{D}=\mathbf{O}$ (this is not essential but simplifies things somewhat). An observer is a model of (1) that takes the form

$$
\begin{equation*}
\dot{\hat{\mathbf{x}}}=\mathbf{A} \hat{\mathbf{x}}+\mathbf{B u}+\mathbf{L}(\mathbf{C} \hat{\mathbf{x}}-\mathbf{y}) \tag{12}
\end{equation*}
$$

where \mathbf{L} is selected so that the eigenvalues of $(\mathbf{A}+\mathbf{L C})$ have negative real parts. Define the estimation error by $\mathbf{e}(t)=\mathbf{x}(t)-\hat{\mathbf{x}}(t)$. Subtracting Eq. (12) from Eq. (1) gives

$$
\dot{\mathbf{x}}-\dot{\hat{\mathbf{x}}}=\dot{\mathbf{e}}=(\mathbf{A}+\mathbf{L C})(\mathbf{x}-\hat{\mathbf{x}})=(\mathbf{A}+\mathbf{L C}) \mathbf{e}
$$

Therefore, if \mathbf{L} is selected as above, $\mathbf{e}(t) \rightarrow \mathbf{0}$ as $t \rightarrow \infty$.

Observer-Based Controller

Assuming that the states $\mathbf{x}(t)$ are unavailable for feedback in (10), we can use the estimate from (12) in place of \mathbf{x} :

$$
\begin{align*}
\mathbf{u} & =\mathbf{F} \hat{\mathbf{x}} \tag{13}\\
\dot{\hat{\mathbf{x}}} & =(\mathbf{A}+\mathbf{B F}+\mathbf{L C}) \hat{\mathbf{x}}-\mathbf{L y} \tag{14}
\end{align*}
$$

This is a dynamical system of the form of Eq. (1) but the state vector is $\hat{\mathbf{x}}$, the "input" is \mathbf{y} and the "output" is \mathbf{u}. Taking Laplace transforms we have

$$
\begin{aligned}
\hat{\mathbf{u}}(s) & =\hat{\mathbf{K}}(s) \hat{\mathbf{y}}(s), \\
\hat{\mathbf{K}}(s) & =\left[\begin{array}{c|c}
\mathbf{A}+\mathbf{B F}+\mathbf{L C} & -\mathbf{L} \\
\hline \mathbf{F} & \mathbf{O}
\end{array}\right]
\end{aligned}
$$

The closed-loop system can be represented by the above block diagram.

Combining Eqs. (1) and (14) gives

$$
\left[\begin{array}{l}
\dot{\mathrm{x}} \tag{15}\\
\dot{\hat{\mathrm{x}}}
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{A} & \mathrm{BF} \\
-\mathbf{L C} & \mathbf{A}+\mathbf{B F}+\mathbf{L C}
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\hat{\mathrm{x}}
\end{array}\right]
$$

The stability of the closed-loop system is governed by the eigenvalues of the system matrix given here. Let us consider a transformation of the state vector:

$$
\left[\begin{array}{l}
\mathrm{x} \\
\hat{\mathrm{x}}
\end{array}\right]=\left[\begin{array}{cc}
1 & \mathrm{O} \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{e}
\end{array}\right]
$$

This leads to

$$
\left[\begin{array}{l}
\dot{\mathrm{x}} \tag{16}\\
\dot{\mathrm{e}}
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{A}+\mathrm{BF} & -\mathrm{BF} \\
\mathrm{O} & \mathrm{~A}+\mathrm{LC}
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{e}
\end{array}\right]
$$

Given the zero partition, the eigenvalues of this matrix satisfy

$$
\lambda\{\mathbf{A}+\mathbf{B F}\} \cup \lambda\{\mathbf{A}+\mathbf{L C}\}
$$

Therefore, if (\mathbf{A}, \mathbf{B}) is controllable and (\mathbf{C}, \mathbf{A}) is observable, we can can choose \mathbf{F} and \mathbf{L} so that $(\mathbf{A}+\mathbf{B F})$ and $(\mathbf{A}+\mathbf{L C})$ (and hence the entire system) are stable.
We say that the observer-based controller has a separation structure.

