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5 Linear Systems

5.1 State-Space Equations

Consider a system withm inputs, u1(t), . . . , um(t), and p outputs y1(t), . . . , yp(t).
If the system is linear and time invariant (LTI) (and proper as well as finite
dimensional), then y ∈ <p can be related to u ∈ <m by the state-space
equations

ẋ = Ax + Bu, x(0) = x0 (1)

y = Cx + Du

where x ∈ <n is the state vector. Note that

A ∈ <n×n, B ∈ <n×m, C ∈ <p×n, D ∈ <p×m

are constant matrices. If m = p = 1, it is a single-input/single-output (SISO)
system. Otherwise it is a multi-input/multi-output (MIMO) system.

The solution of (1) is

x(t) = eAtx0 +
∫ t

0
eA(t−τ)Bu(τ) dτ (2)

where

eAt =
∞∑
k=0

Aktk/k!

Therefore,

y(t) = CeAtx0 + C
∫ t

0
eA(t−τ)Bu(τ) dτ + Du(t) (3)

Let
x̂(s) = L{x(t)} =

∫ ∞
0
e−stx(t) dt

denote the Laplace transform (L.T.). Taking L.T.’s in (1) gives

sx̂(s)− x0 = Ax̂(s) + Bû(s)

and hence
x̂(s) = (s1−A)−1x0 + (s1−A)−1Bû(s) (4)
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Comparing (2) with (4), we see that

L{eAtx0} = (s1−A)−1x0

L{eAt ∗Bu(t)} = (s1−A)−1Bû(s)

where (∗) denotes temporal convolution. We conclude that

L{eAt} = (s1−A)−1 (5)

Setting x0 = 0 gives

ŷ(s) = Cx̂(s) + Dû(s)

= [C(s1−A)−1B + D]︸ ︷︷ ︸ û(s)

= Ĝ(s)û(s) (6)

Ĝ(s) is called the transfer matrix (or transfer function in the SISO case).

Writing

C =


c1
...
cp

 , B = [b1 · · ·bm], D = matrix{Dij}

it follows that

Ĝ(s) = matrix{Ĝij(s)}, Ĝij(s) = ci(s1−A)−1bj +Dij (7)

We also define  A B

C D

 = C(s1−A)−1B + D

Physical Significance of Ĝ(s)

Let us explicitly exhibit the magnitude and phase of Ĝij(jω):

Ĝij(jω) = |Ĝij(jω)|ejφij(ω), φij(ω) = arg{Ĝij(jω)}

Let
uj(t) = sinωt, ui = 0, i 6= j

Then as t→∞,
yi(t) = |Ĝij(jω)| sin(ωt+ φij)
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Hence, Ĝij(jω) contains the frequency response between the jth input and
the ith output.

Also the inverse Laplace transform of Ĝ(s) is given by

G(t) = L−1{Ĝ(s)} = CeAtB + Dδ(t)

which is the impulse response, i.e., yi(t) = Gij(t) when uj(t) = δ(t), ui =
0, i 6= j. Using (6), we have

y(t) = L−1{Ĝ(s)û(s)}
= G(t) ∗ u(t)

=
∫ t

0
[CeA(t−τ)B + Dδ(t− τ)]u(τ) dτ

= C
∫ t

0
eA(t−τ)Bu(τ) dτ + Du(t)

which agrees with (3) when x0 = 0.

Stability

Assume that the eigenvalues of A, λi, are distinct with corresponding eigen-
vectors ei. Define

Λ = diag{λi}, E = row{ei}
Recall that

A = EΛE−1

eAt = EeΛtE−1 (8)

eΛt = diag{eλit}

The system in (1) with u(t) = 0 is aymptotically stable if the eigenvalues of
A have negative real parts. In this case, Eqs. (2) and (8) imply that x(t)→ 0
as t→∞ for any x0.

Also, note that

(s1−A)−1 = (sEE−1 − EΛE−1)−1

= [E(s1−Λ)E−1]−1

= E(s1−Λ)−1E−1 (9)
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where

(s1−Λ)−1 = diag

{
1

s− λi

}

Hence, combining (7) and (9) gives

Ĝij(s) = ciE(s1−Λ)−1E−1bj +Dij

It is clear then that the eigenvalues of A are the poles of each Ĝij(s).

Controllability

The system in Eq. (1) is controllable if for any initial state x(0) = x0, t1 > 0,
and final state x1, there exists a control u so that the solution of (1) satisfies
x(t1) = x1. If (1) is controllable we say that (A,B) is controllable.

The following are equivalent:

(i) (A,B) is controllable;

(ii) rank [B AB A2B · · ·An−1B] = n;

(iii) The eigenvalues of (A + BF) can arbitrarily assigned (with complex
eigenvalues in complex-conjugate pairs) through proper choice of F.

Item (iii) provides an easy way to stabilize (control) a controllable system.
Consider the state feedback

u(t) = Fx(t), F ∈ <m×n (10)

Then, (1) becomes
ẋ = (A + BF)x

which is asymptotically stable if the eigenvalues of A + BF have negative
real parts.

—————————–

Observability

The system in (1) is observable if for any t1 > 0, the initial state x0 can
be determined from the time histories of u(t) and y(t) on [0, t1]. If (1) is
observable we say that (C,A) is observable.
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The following are equivalent:

(i) (C,A) is observable;

(ii) rank


C
CA
...
CAn−1

 = n;

(iii) (AT ,CT ) is controllable;

(iv) The eigenvalues of (A + LC) can arbitrarily assigned (with complex
eigenvalues in complex-conjugate pairs) through proper choice of L.

5.2 Observers

In order to implement the state feedback in (10) we require measurements of
the states x(t). What if we only have access to the output y(t)? An observer
is a model of the system which uses knowledge of y(t) and u(t) to generate
an estimate of the state, x̂(t), which has the property that

lim
t→∞

[x(t)− x̂(t)] = 0 (11)

Consider (1) with D = O (this is not essential but simplifies things some-
what). An observer is a model of (1) that takes the form

˙̂x = Ax̂ + Bu + L(Cx̂− y) (12)

where L is selected so that the eigenvalues of (A + LC) have negative real
parts. Define the estimation error by e(t) = x(t) − x̂(t). Subtracting Eq.
(12) from Eq. (1) gives

ẋ− ˙̂x = ė = (A + LC)(x− x̂) = (A + LC)e

Therefore, if L is selected as above, e(t)→ 0 as t→∞.

Observer-Based Controller

Assuming that the states x(t) are unavailable for feedback in (10), we can
use the estimate from (12) in place of x:

u = Fx̂ (13)
˙̂x = (A + BF + LC)x̂− Ly (14)
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This is a dynamical system of the form of Eq. (1) but the state vector is x̂,
the “input” is y and the “output” is u. Taking Laplace transforms we have

û(s) = K̂(s)ŷ(s),

K̂(s) =

 A + BF + LC −L

F O


The closed-loop system can be represented by the above block diagram.

- - -u yK̂(s) Ĝ(s)

Combining Eqs. (1) and (14) gives ẋ
˙̂x

 =

 A BF
−LC A + BF + LC

  x
x̂

 (15)

The stability of the closed-loop system is governed by the eigenvalues of the
system matrix given here. Let us consider a transformation of the state
vector:  x

x̂

 =

 1 O
1 −1

  x
e


This leads to  ẋ

ė

 =

 A + BF −BF
O A + LC

  x
e

 (16)

Given the zero partition, the eigenvalues of this matrix satisfy

λ{A + BF} ∪ λ{A + LC}

Therefore, if (A,B) is controllable and (C,A) is observable, we can can
choose F and L so that (A + BF) and (A + LC) (and hence the entire
system) are stable.

We say that the observer-based controller has a separation structure.


