4 Euler Parameters (Quaternions)

4.1 Kinematical Relationships

Euler's Theorem: The most general motion of a rigid body with one point fixed is a rotation (ϕ) about an axis $\mathbf{a}=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3}\end{array}\right]^{T}\left(\mathbf{a}^{T} \mathbf{a}=1\right)$ through that point.
Recall that the rotation matrix corresponding to this situation is

$$
\begin{equation*}
\mathbf{C}(\mathbf{a}, \phi)=\cos \phi \mathbf{1}+(1-\cos \phi) \mathbf{a} \mathbf{a}^{T}-\sin \phi \mathbf{a}^{\times} \tag{1}
\end{equation*}
$$

Therefore, \mathbf{C} can be parametrized by the four quantities $\{\mathbf{a}, \phi\}$.
Consider the rotation matrix corresponding to two consecutive roations:

$$
\mathbf{C}\left(\mathbf{a}_{3}, \phi_{3}\right)=\mathbf{C}\left(\mathbf{a}_{2}, \phi_{2}\right) \mathbf{C}\left(\mathbf{a}_{1}, \phi_{1}\right)
$$

Expanding the product eventually leads to

$$
\begin{align*}
\cos \frac{\phi_{3}}{2} & =\cos \frac{\phi_{1}}{2} \cos \frac{\phi_{2}}{2}-\sin \frac{\phi_{1}}{2} \sin \frac{\phi_{2}}{2} \mathbf{a}_{1}^{T} \mathbf{a}_{2} \tag{2}\\
\sin \frac{\phi_{3}}{2} \mathbf{a}_{3} & =\mathbf{a}_{1} \sin \frac{\phi_{1}}{2} \cos \frac{\phi_{2}}{2}+\mathbf{a}_{2} \cos \frac{\phi_{1}}{2} \sin \frac{\phi_{2}}{2}+\mathbf{a}_{1}^{\times} \mathbf{a}_{2} \sin \frac{\phi_{1}}{2} \sin \frac{\phi_{2}}{2} \tag{3}
\end{align*}
$$

This suggests that the combinations

$$
\begin{equation*}
\boldsymbol{\varepsilon}=\mathbf{a} \sin \frac{\phi}{2}, \quad \eta=\varepsilon_{4}=\cos \frac{\phi}{2} \tag{4}
\end{equation*}
$$

are useful. Note that

$$
\varepsilon^{T} \varepsilon+\eta^{2}=1
$$

The quantities $\{\varepsilon, \eta\}$ are called Euler parameters.
From (1),

$$
\begin{align*}
\mathbf{C} & =\left(2 \cos ^{2} \frac{\phi}{2}-1\right) \mathbf{1}+2 \sin ^{2} \frac{\phi}{2} \mathbf{a a}^{T}-2 \cos \frac{\phi}{2} \sin \frac{\phi}{2} \mathbf{a}^{\times} \\
& =\left(1-2 \varepsilon^{T} \boldsymbol{\varepsilon}\right) \mathbf{1}+2 \boldsymbol{\varepsilon} \varepsilon^{T}-2 \eta \varepsilon^{\times} \\
& =\left[\begin{array}{ccc}
1-2\left(\varepsilon_{2}^{2}+\varepsilon_{3}^{2}\right) & 2\left(\varepsilon_{1} \varepsilon_{2}+\varepsilon_{3} \eta\right) & 2\left(\varepsilon_{1} \varepsilon_{3}-\varepsilon_{2} \eta\right) \\
2\left(\varepsilon_{1} \varepsilon_{2}-\varepsilon_{3} \eta\right) & 1-2\left(\varepsilon_{1}^{2}+\varepsilon_{3}^{2}\right) & 2\left(\varepsilon_{2} \varepsilon_{3}+\varepsilon_{1} \eta\right) \\
2\left(\varepsilon_{1} \varepsilon_{3}+\varepsilon_{2} \eta\right) & 2\left(\varepsilon_{2} \varepsilon_{3}-\varepsilon_{1} \eta\right) & 1-2\left(\varepsilon_{1}^{2}+\varepsilon_{2}^{2}\right)
\end{array}\right] \tag{5}
\end{align*}
$$

Given \mathbf{C} we can extract the Euler parameters using the following relations:

$$
\begin{aligned}
C_{11}+C_{22}+C_{33} & =3-4\left(\varepsilon_{1}^{2}+\varepsilon_{2}^{2}+\varepsilon_{3}^{2}\right) \\
& =3-4\left(1-\eta^{2}\right) \\
& =-1+4 \eta^{2}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \eta= \pm \frac{1}{2} \sqrt{1+C_{11}+C_{22}+C_{33}} \\
& \varepsilon=\frac{1}{4 \eta}\left[\begin{array}{l}
C_{23}-C_{32} \\
C_{31}-C_{13} \\
C_{12}-C_{21}
\end{array}\right] \quad(\eta \neq 0)
\end{aligned}
$$

Taking the positive root in the first of these corresponds to $0 \leq \phi \leq \pi$. If $\eta=0$,

$$
\begin{align*}
\mathbf{C} & =-\mathbf{1}+2 \varepsilon \varepsilon^{T} \\
& =\left[\begin{array}{ccc}
2 \varepsilon_{1}^{2}-1 & 2 \varepsilon_{1} \varepsilon_{2} & 2 \varepsilon_{1} \varepsilon_{3} \\
2 \varepsilon_{1} \varepsilon_{2} & 2 \varepsilon_{2}^{2}-1 & 2 \varepsilon_{2} \varepsilon_{3} \\
2 \varepsilon_{1} \varepsilon_{3} & \varepsilon_{2} \varepsilon_{3} & 2 \varepsilon_{3}^{2}-1
\end{array}\right] \tag{6}
\end{align*}
$$

Hence,

$$
\varepsilon_{i}= \pm \sqrt{\frac{1}{2}\left(C_{i i}+1\right)}, \quad i=1,2,3
$$

and the signs are resolved by considering the off-diagonal terms in (6). From (2) and (3),

$$
\begin{align*}
& \eta_{3}=\eta_{1} \eta_{2}-\varepsilon_{1}^{T} \varepsilon_{2} \tag{7}\\
& \varepsilon_{3}=\eta_{2} \varepsilon_{1}+\eta_{1} \varepsilon_{2}+\varepsilon_{1}^{\times} \varepsilon_{2} \tag{8}
\end{align*}
$$

These can be written in two different ways:

$$
\begin{aligned}
{\left[\begin{array}{l}
\boldsymbol{\varepsilon}_{3} \\
\eta_{3}
\end{array}\right] } & =\underbrace{\left[\begin{array}{cc}
\eta_{2} \mathbf{1}-\boldsymbol{\varepsilon}_{2}^{\times} & \varepsilon_{2} \\
-\varepsilon_{2}^{T} & \eta_{2}
\end{array}\right]}_{\mathbf{Q}\left(\varepsilon_{2}, \eta_{2}\right)}\left[\begin{array}{l}
\varepsilon_{1} \\
\eta_{1}
\end{array}\right] \\
& =\underbrace{\left[\begin{array}{cc}
\eta_{1} \mathbf{1}+\boldsymbol{\varepsilon}_{1}^{\times} & \varepsilon_{1} \\
-\boldsymbol{\varepsilon}_{1}^{T} & \eta_{1}
\end{array}\right]}_{\overline{\mathbf{Q}}\left(\varepsilon_{1}, \eta_{1}\right)}\left[\begin{array}{c}
\varepsilon_{2} \\
\eta_{2}
\end{array}\right]
\end{aligned}
$$

Rate Kinematics

Using,

$$
\boldsymbol{\omega}^{\times}=-\dot{\mathbf{C}} \mathbf{C}^{T}
$$

in conjunction with (1) for $\mathbf{C}(\mathbf{a}, \phi)$ leads to

$$
\boldsymbol{\omega}=\dot{\phi} \mathbf{a}-(1-\cos \phi) \mathbf{a}^{\times} \dot{\mathbf{a}}+\sin \phi \dot{\mathbf{a}}
$$

If \mathbf{a} is constant, this reduces to $\boldsymbol{\omega}=\dot{\phi} \mathbf{a}$ as expected. It can also be shown that

$$
\begin{aligned}
\dot{\phi} & =\mathbf{a}^{T} \boldsymbol{\omega} \\
\dot{\mathbf{a}} & =\frac{1}{2}\left[\mathbf{a}^{\times}-\cot \frac{\phi}{2} \mathbf{a}^{\times} \mathbf{a}^{\times}\right] \boldsymbol{\omega}
\end{aligned}
$$

Using these results in conjunction with (4) leads to

$$
\left[\begin{array}{c}
\dot{\varepsilon} \tag{9}\\
\dot{\eta}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{ll}
-\boldsymbol{\omega}^{\times} & \boldsymbol{\omega} \\
-\boldsymbol{\omega}^{T} & 0
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{\varepsilon} \\
\eta
\end{array}\right]
$$

4.2 Quaternion-Based Attitude Control

Let $\mathbf{C}(\mathbf{a}, \phi)$ denote the true attitude, $\mathbf{C}\left(\mathbf{a}_{d}, \phi_{d}\right)$ denote the desired attitude, and $\mathbf{C}\left(\mathbf{a}_{e}, \phi_{e}\right)$ denote the "error" attitude. Therefore,

$$
\mathbf{C}(\mathbf{a}, \phi)=\mathbf{C}\left(\mathbf{a}_{e}, \phi_{e}\right) \mathbf{C}\left(\mathbf{a}_{d}, \phi_{d}\right)
$$

or

$$
\begin{aligned}
\mathbf{C}\left(\mathbf{a}_{e}, \phi_{e}\right) & =\mathbf{C}(\mathbf{a}, \phi) \mathbf{C}^{T}\left(\mathbf{a}_{d}, \phi_{d}\right) \\
& =\mathbf{C}(\mathbf{a}, \phi) \mathbf{C}\left(\mathbf{a}_{d},-\phi_{d}\right)
\end{aligned}
$$

In terms of quaternions, we have

$$
\left[\begin{array}{c}
\varepsilon_{e} \\
\eta_{e}
\end{array}\right]=\overline{\mathbf{Q}}\left(-\varepsilon_{d}, \eta_{d}\right)\left[\begin{array}{l}
\varepsilon \\
\eta
\end{array}\right]=\left[\begin{array}{cc}
\eta_{d} \mathbf{1}-\varepsilon_{d}^{\times} & -\boldsymbol{\varepsilon}_{d} \\
\varepsilon_{d}^{T} & \eta_{d}
\end{array}\right]\left[\begin{array}{l}
\varepsilon \\
\eta
\end{array}\right]
$$

Note that if $\boldsymbol{\varepsilon}=\boldsymbol{\varepsilon}_{d}$ and $\eta=\eta_{d}$, then

$$
\varepsilon_{e}=\mathbf{0}, \quad \eta_{e}=1
$$

The motion equations governing the system are

$$
\begin{aligned}
\mathbf{I} \dot{\boldsymbol{\omega}} & +\boldsymbol{\omega}^{\times} \mathbf{I} \boldsymbol{\omega}=\mathbf{u} \\
\dot{\boldsymbol{\varepsilon}} & =-\frac{1}{2} \boldsymbol{\omega}^{\times} \boldsymbol{\varepsilon}+\frac{1}{2} \eta \boldsymbol{\omega} \\
\dot{\eta} & =-\frac{1}{2} \boldsymbol{\omega}^{T} \boldsymbol{\varepsilon}
\end{aligned}
$$

We propose the following controller:

$$
\begin{equation*}
\mathbf{u}(t)=-\mathbf{K}_{d} \boldsymbol{\omega}(t)-k \boldsymbol{\varepsilon}_{e}(t), \quad \mathbf{K}_{d}=\mathbf{K}_{d}^{T}, k>0 \tag{10}
\end{equation*}
$$

 stable.
Proof: For simplicity consider $\boldsymbol{\varepsilon}_{d}=\mathbf{0}, \eta_{d}=1$, i.e., $\phi_{d}=0$. Therefore, $\boldsymbol{\varepsilon}_{e}=\boldsymbol{\varepsilon}$ and $\eta_{e}=\eta$. For a Lyapunov function, we adopt

$$
V(t)=\frac{1}{2} \boldsymbol{\omega}^{T} \mathbf{I} \boldsymbol{\omega}+k\left[\boldsymbol{\varepsilon}_{e}^{T} \boldsymbol{\varepsilon}_{e}+\left(\eta_{e}-1\right)^{2}\right]
$$

which is strictly positive unless $\boldsymbol{\omega}=\mathbf{0}, \boldsymbol{\varepsilon}_{e}=\mathbf{0}, \eta_{e}=1$. Therefore

$$
\begin{aligned}
\dot{V} & =\boldsymbol{\omega}^{T} \mathbf{I} \dot{\boldsymbol{\omega}}+2 k\left[\varepsilon^{T} \dot{\boldsymbol{\varepsilon}}+(\eta-1) \dot{\eta}\right] \\
& =\boldsymbol{\omega}^{T}\left(-\boldsymbol{\omega}^{\times} \mathbf{I} \boldsymbol{\omega}+\mathbf{u}\right)+2 k\left[\varepsilon^{T}\left(-\frac{1}{2} \boldsymbol{\omega}^{\times} \boldsymbol{\varepsilon}+\frac{1}{2} \eta \boldsymbol{\omega}\right)+(\eta-1)\left(-\frac{1}{2} \boldsymbol{\omega}^{T} \boldsymbol{\varepsilon}\right)\right] \\
& =-\boldsymbol{\omega}^{T}\left(\mathbf{K}_{d} \boldsymbol{\omega}+k \boldsymbol{\varepsilon}\right)+k\left[\boldsymbol{\varepsilon}^{T} \boldsymbol{\varepsilon}^{\times} \boldsymbol{\omega}+\eta \boldsymbol{\varepsilon}^{T} \boldsymbol{\omega}-\eta \boldsymbol{\varepsilon}^{T} \boldsymbol{\omega}+\boldsymbol{\omega}^{T} \boldsymbol{\varepsilon}\right] \\
& =-\boldsymbol{\omega}^{T} \mathbf{K}_{d} \boldsymbol{\omega} \leq 0
\end{aligned}
$$

Applying LaSalle's theorem:

$$
\dot{V}=0 \Rightarrow \boldsymbol{\omega}=\mathbf{0} \Rightarrow \dot{\boldsymbol{\omega}}=\mathbf{0}
$$

Hence,

$$
\mathbf{u}=-\mathbf{K}_{d} \boldsymbol{\omega}-k \varepsilon_{e}=\mathbf{0}
$$

Therefore $\boldsymbol{\varepsilon}_{e}=\mathbf{0}$ which implies that $\eta_{e}^{2}=1$. Therefore, $\eta_{e}= \pm 1$ which corresponds to the same attitude since $\cos (\phi / 2)= \pm 1$ implies that $\phi=0$ or $\phi=2 \pi$.

