4 FEuler Parameters (Quaternions)

4.1 Kinematical Relationships

Euler’s Theorem: The most general motion of a rigid body with one point

fixed is a rotation (¢) about an axis a = [a; as a3]’ (ala = 1) through that

point.

Recall that the rotation matrix corresponding to this situation is
C(a, ¢) = cos ¢l + (1 — cos ¢)aa’ — sin ¢a*

Therefore, C can be parametrized by the four quantities {a, ¢}.

Consider the rotation matrix corresponding to two consecutive roations:

C(as, ¢3) = C(az, ¢2)C(ay, ¢1)

Expanding the product eventually leads to
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This suggests that the combinations
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are useful. Note that

ele + 772 =1
The quantities {e,n} are called Euler parameters.
From (1),
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Given C we can extract the Euler parameters using the following relations:
Cii+Co+Css = 3—4(e] +e5+¢3)
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Therefore,
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Taking the positive root in the first of these corresponds to 0 < ¢ < 7. If
n=70,
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Hence,

gi==+/5(Ci +1), i=1,2,3

and the signs are resolved by considering the off-diagonal terms in (6).

From (2) and (3),
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€3 = 12€1 +MEs+ EfEQ (8)

These can be written in two different ways:
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Rate Kinematics

Using, .
w*=-CC

in conjunction with (1) for C(a, ¢) leads to
w = da — (1 — cos p)a*a + sin pa

If a is constant, this reduces to w = d}a as expected. It can also be shown
that

b = alw

Q

a = ;[a” —cot Q;axax]w

DO

Using these results in conjunction with (4) leads to
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4.2 Quaternion-Based Attitude Control

Let C(a, ¢) denote the true attitude, C(ay, ¢4) denote the desired attitude,
and C(a,, ¢.) denote the “error” attitude. Therefore,

C(a, ¢) = C(a., ¢.)C(ag, ¢q)

or

C(ac, ¢.) = C(a, ¢)CT(ad; bd)
- C<a7¢)c(ad> _¢d)

In terms of quaternions, we have
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Note that if € = €; and 1 = 74, then

eEc=0, n.=1



The motion equations governing the system are
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We propose the following controller:

u(t) = —Kyw(t) — keo(t), Ki=KZI, k>0 (10)

Claim: The equilibrium w = 0, ¢, = 0, and 7, = 1 is globally asymptotically
stable.

Proof: For simplicity consider e, = 0, g = 1, i.e., ¢4 = 0. Therefore, e, = €
and 7, = 7. For a Lyapunov function, we adopt
V(t) = tw'lw + ke e. + (n. — 1)7]
which is strictly positive unless w = 0, €. = 0, . = 1. Therefore
V = W'l +2k[eTe + (n — 1)7)]

= wl(—wIw +u) + 2k[5T(—%wx€ + 3nw) + (n — 1)(—%wTs)]

= —wI(Kyw + ke) + k[eTe *w + ne’w — nel w + wle]

= —w'K,w<0

Applying LaSalle’s theorem:

V=>0=w=0=>w=0

Hence,
u=-Kjw—ke.=0

Therefore €, = 0 which implies that 7> = 1. Therefore, 7. = +1 which
corresponds to the same attitude since cos(¢/2) = £1 implies that ¢ = 0 or
¢ = 2m.



