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4 Euler Parameters (Quaternions)

4.1 Kinematical Relationships

Euler’s Theorem: The most general motion of a rigid body with one point
fixed is a rotation (φ) about an axis a = [a1 a2 a3]

T (aTa = 1) through that
point.

Recall that the rotation matrix corresponding to this situation is

C(a, φ) = cos φ1 + (1− cos φ)aaT − sin φa× (1)

Therefore, C can be parametrized by the four quantities {a, φ}.
Consider the rotation matrix corresponding to two consecutive roations:

C(a3, φ3) = C(a2, φ2)C(a1, φ1)

Expanding the product eventually leads to
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This suggests that the combinations
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are useful. Note that
εTε + η2 = 1

The quantities {ε, η} are called Euler parameters.

From (1),
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Given C we can extract the Euler parameters using the following relations:

C11 + C22 + C33 = 3− 4(ε2
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3)

= 3− 4(1− η2)

= −1 + 4η2

Therefore,
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 (η 6= 0)

Taking the positive root in the first of these corresponds to 0 ≤ φ ≤ π. If
η = 0,
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Hence,

εi = ±
√

1
2(Cii + 1), i = 1, 2, 3

and the signs are resolved by considering the off-diagonal terms in (6).

From (2) and (3),
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These can be written in two different ways: ε3
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Rate Kinematics

Using,
ω× = −ĊCT

in conjunction with (1) for C(a, φ) leads to

ω = φ̇a− (1− cos φ)a×ȧ + sin φȧ

If a is constant, this reduces to ω = φ̇a as expected. It can also be shown
that

φ̇ = aTω

ȧ = 1
2 [a

× − cot
φ

2
a×a×]ω

Using these results in conjunction with (4) leads to ε̇

η̇

 = 1
2
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  ε

η

 (9)

4.2 Quaternion-Based Attitude Control

Let C(a, φ) denote the true attitude, C(ad, φd) denote the desired attitude,
and C(ae, φe) denote the “error” attitude. Therefore,

C(a, φ) = C(ae, φe)C(ad, φd)

or

C(ae, φe) = C(a, φ)CT (ad, φd)

= C(a, φ)C(ad,−φd)

In terms of quaternions, we have εe

ηe

 = Q̄(−εd, ηd)
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η


Note that if ε = εd and η = ηd, then

εe = 0, ηe = 1
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The motion equations governing the system are

Iω̇ + ω×Iω = u

ε̇ = −1
2ω

×ε + 1
2ηω

η̇ = −1
2ω

Tε

We propose the following controller:

u(t) = −Kdω(t)− kεe(t), Kd = KT
d , k > 0 (10)

Claim: The equilibrium ω = 0, εe = 0, and ηe = 1 is globally asymptotically
stable.

Proof: For simplicity consider εd = 0, ηd = 1, i.e., φd = 0. Therefore, εe = ε

and ηe = η. For a Lyapunov function, we adopt

V (t) = 1
2ω

T Iω + k[εT
e εe + (ηe − 1)2]

which is strictly positive unless ω = 0, εe = 0, ηe = 1. Therefore

V̇ = ωT Iω̇ + 2k[εT ε̇ + (η − 1)η̇]

= ωT (−ω×Iω + u) + 2k[εT (−1
2ω

×ε + 1
2ηω) + (η − 1)(−1

2ω
Tε)]

= −ωT (Kdω + kε) + k[εTε×ω + ηεTω − ηεTω + ωTε]

= −ωTKdω ≤ 0

Applying LaSalle’s theorem:

V̇ = 0 ⇒ ω = 0⇒ ω̇ = 0

Hence,
u = −Kdω − kεe = 0

Therefore εe = 0 which implies that η2
e = 1. Therefore, ηe = ±1 which

corresponds to the same attitude since cos(φ/2) = ±1 implies that φ = 0 or
φ = 2π.


