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1 Stability Theory

1.1 General Idea of a System

A system is a mathematical representation of the relationship between a
collection of inputs (“the causes”) and outputs (“the effects”). Typically the
inputs and outputs are functions of time and the relationship between them
is described by differential equations and static mappings. The most general
representation we shall require is given by:

ẋ = f(x,u, t), x(0) = x0 (1)

y = h(x,u, t) (2)

where

t ∈ <+ = [0,∞]

x : <+ → <n = state vector

u : <+ → <m = control or input vector

y : <+ → <p = output vector

f : <n ×<m ×<+ → <n

h : <n ×<m ×<+ → <p

Example

ẋ(t) = −2x(t) + u(t), x(0) = x0

y(t) = 4x(t) + 5u(t)

The solution of this system is given by

x(t) = exp(−2t)x0 +
∫ t

0
exp[−2(t− τ)]u(τ) dτ

y(t) = 4x(t) + 5u(t)

= 4 exp(−2t)x0 + 4
∫ t

0
exp[−2(t− τ)]u(τ) dτ + 5u(t)

It is clear that the output y is effected by the input u and the initial conditions
x0. There are two distinct notions of stability depending on which of these is
selected as the primary “cause” of the “effect”.
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In order to extend these ideas, we need to establish some ideas of “function
spaces,” i.e., the collection of objects which contain u and y.

Example: Euler’s Equation

Euler’s equation governing the evolution of a rigid body’s angular velocity
(of a body-fixed centre of mass frame) y(t) = ω(t) = [ω1 ω2 ω3]

T under the
action of an external torque u(t) = [u1 u2 u3]

T is given by

Iω̇ + ω×Iω = u (3)

where I = IT > O is the 3× 3 moment of inertia matrix with respect to the
centre of mass frame and

ω× =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


This can be rewritten as

ω̇ = −I−1ω×Iω + I−1u

which is of the form of Eq. (1) with state vector x = ω. The output equation
y(t) = ω(t) is of the form in Eq. (2).

1.2 Input-Output (I/O) Stability

We define the 2-norm of a (vector) function of time by

||u||2 =

√∫ ∞
0

uT (t)u(t) dt (4)

It is readily verified that this satisfies all of the properties of a norm including
the triangle inequality:

||u||2 ≥ 0

||u||2 = 0⇔ u = 0

||cu||2 = |c| · ||u||2, c ∈ <
||u1 + u2||2 ≤ ||u1||2 + ||u2||2

The L2-space is defined by

L2 = {u(t) | ||u||2 <∞}
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i.e., u is square-integrable. For example,

u(t) =


exp(at) ∈ L2, a < 0
exp(at) 6∈ L2, a > 0
1 6∈ L2

In general, if u ∈ L2 this does not imply that u(t) → 0 as t → ∞. An
example is given by u(t) = exp(−t4 sin2 t). However, if u ∈ L2 and u̇ ∈ L2,
then u(t)→ 0 as t→∞.

The truncation of a function is defined as

uT (t) =

 u(t), t ≤ T
0, t > T

The extended L2-space is defined by

L2e = {u(t) | uT (t) ∈ L2, 0 < T <∞}

i.e.,

u(t) =


1

exp(2t)
t

 ∈ L2e

but none of its elements belongs to L2.

A system is a mapping (or operator) G : L2e → L2e and we write y = Gu
indicating that the system can be thought of as an operator G which maps
the function u into a function y. In most cases the act of G operating on u
to produce y corresponds to solving Eq. (1) for x(t) (given u and x(0)) and
then substituting x(t), u(t), and t into Eq. (2) to produce y(t). The concise
notation y = Gu corresponds to these operations.

The operator notation is particularly appropriate when the initial conditions
are neglected. In this case, we draw:

- -u yG
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G is L2-stable if u ∈ L2 ⇒ y ∈ L2, i.e., “finite energy in implies finite energy
out.” The L2-gain of a system is related to the peak energy amplification by

||G|| = sup
06=u∈L2

||Gu||2
||u||2

= sup
06=u∈L2

||y||2
||u||2

If ||G|| <∞, then G is L2-stable since

||y||2 = ||Gu||2 ≤ ||G|| · ||u||2

Hence, ||u||2 <∞⇒ ||y||2 <∞ if ||G|| <∞.

Also, by considering an input uT , we have

||yT ||2 ≤ ||y||2 ≤ ||G|| · ||uT ||2

Another useful property that we shall need is the Cauchy-Schwarz inequality:

∫ T

0
uT
1 u2 dt ≤ ||u1T ||2 · ||u2T ||2, 0 ≤ T ≤ ∞

Example of L2-gain

Consider the single-input/single-output (SISO), linear time-invariant (LTI)
system:

y(t) =
∫ t

0
g(t− τ)u(τ) dτ = Gu

where g(t) is the impulse response, i.e., y(t) = g(t) when u(t) = δ(t). Taking
Laplace transforms, i.e.,

ĝ(s) =
∫ ∞
0
e−stg(t) dt

we have
ŷ(s) = ĝ(s)û(s)

where ĝ(s) is the transfer function.

This system, represented by the operator G, is L2-stable if

ĝ(s) ∈ H∞ = {ĝ(s) | ĝ(s) is analytic and bounded in <e{s} > 0}

The space of complex-valued functions H∞ contains all of the stable transfer
functions.
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If ĝ(s) ∈ H∞, we define the H∞ norm by

||ĝ(s)||∞ = sup
<e{s}>0

|ĝ(s)| = sup
ω∈R
|ĝ(jω)|

If ĝ(s) = n(s)/d(s) is real rational, i.e., n(s) and d(s) are polynomials with
real coefficients, then ĝ(s) ∈ H∞ if deg n(s) ≤ deg d(s) and d(s) has roots in
the open LHP, <e{s} < 0.

For s = jω, we have
ŷ(jω) = ĝ(jω)û(jω)

where
û(jω) =

∫ ∞
0
u(t)e−jωt dt

is the Fourier transform. Parseval’s theorem relates the time-domain L2-norm
to a calculation in the frequency domain:

∫ ∞
0
u2(t) dt =

1

2π

∫ ∞
−∞
|û(jω)|2 dω (5)

Therefore

||y||22 =
1

2π

∫ ∞
−∞
|ŷ(jω)|2 dω

=
1

2π

∫ ∞
−∞
|ĝ(jω)|2|û(jω)|2 dω

≤ sup
ω∈R
|ĝ(jω)|2 · 1

2π

∫ ∞
−∞
|û(jω)|2 dω

≤ ||ĝ(s)||2∞ · ||u||22

Therefore,
||y||2
||u||2

≤ ||ĝ(s)||∞

It can be shown that this bound can be reached arbitrarily closely for certain
choices of u ∈ L2. Hence for SISO LTI systems

||G|| = sup
0 6=u∈L2

||y||2
||u||2

= ||ĝ(s)||∞
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1.3 Stability of Feedback Systems

- h -u1(t)
e1

G
+
− y1(t)

?h� u2(t)e2

+ +
Hy2(t)

6

The feedback system shown below can be summarized by

y1 = Ge1

y2 = He2

e1 = u1 − y2

e2 = u2 + y1

Assume that

G : L2e → L2e

H : L2e → L2e

u1,u2 ∈ L2e ⇒ e1, e2 ∈ L2e

We say that the feedback system is L2-stable if

(a) u1,u2 ∈ L2 ⇒ y1,y2 ∈ L2

or

(b) u1,u2 ∈ L2 ⇒ e1, e2 ∈ L2

Claim: (a) ⇔ (b)

Proof: [(a) ⇒ (b)] Assume that (a) holds and u1,u2 ∈ L2 and y1,y2 ∈ L2.
Therefore, using the triangle inequality

e1 = u1 − y2 ⇒ ||e1||2 ≤ ||u1||2 + ||y2||2 <∞
e2 = u2 + y1 ⇒ ||e2||2 ≤ ||u2||2 + ||y1||2 <∞

[(b)⇒ (a)] Assume that (b) holds and u1,u2 ∈ L2 and e1, e2 ∈ L2. Therefore,

y1 = e2 − u2 ⇒ ||y1||2 ≤ ||e2||2 + ||u2||2 <∞
y2 = u1 − e1 ⇒ ||y2||2 ≤ ||u1||2 + ||e1||2 <∞

2
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Small Gain Theorem: Consider the feedback system and let γ1 = ||G||,
γ2 = ||H||. If γ1γ2 < 1, then the feedback system is L2-stable.

Proof: Consider

e1 = u1 − y2 = u1 −He2

e2 = u2 + y1 = u2 + Ge1

Taking truncations, we have

||e1T ||2 ≤ ||u1T ||2 + ||y2T ||2 ≤ ||u1T ||2 + γ2||e2T ||2
||e2T ||2 ≤ ||u2T ||2 + ||y1T ||2 ≤ ||u2T ||2 + γ1||e1T ||2

⇒ ||e1T ||2 ≤ ||u1T ||2 + γ2||u2T ||2 + γ1γ2||e1T ||2
||e2T ||2 ≤ ||u2T ||2 + γ1||u1T ||2 + γ1γ2||e2T ||2

⇒ (1− γ1γ2)||e1T ||2 ≤ ||u1T ||2 + γ2||u2T ||2
(1− γ1γ2)||e2T ||2 ≤ ||u2T ||2 + γ1||u1T ||2

Now assume that u1 ∈ L2, u2 ∈ L2, and let T →∞. Therefore

||e1||2 ≤ (1− γ1γ2)−1(||u1||2 + γ2||u2||2)
||e2||2 ≤ (1− γ1γ2)−1(||u2||2 + γ1||u1||2)

Hence, e1 ∈ L2, e2 ∈ L2, and the system is L2-stable. 2

Example. Consider the feedback interconnection of two single-input/single-

output, linear time-invariant systems and assume that ĝ(s), ĥ(s) ∈ H∞.

- h -û1(s) ĝ(s)
+
− ŷ1(s)

?h� û2(s)
+ +

ĥ(s)ŷ2(s)

6

Let

γ1 = sup
ω∈<
|ĝ(jω)|

γ2 = sup
ω∈<
|ĥ(jω)|
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If γ1γ2 < 1, then

sup
ω∈<
|ĝ(jω)ĥ(jω)| ≤ sup

ω∈<
|ĝ(jω)| · sup

ω∈<
|ĥ(jω)| < 1

Hence, |ĝ(jω)ĥ(jω)| < 1, ∀ω ∈ <.

6

- <e{ĝ(jω)ĥ(jω)}

=m{ĝ(jω)ĥ(jω)}

Therefore the Nyquist plot cannot possibly encircle the −1 point. This is
termed gain stabilization.

1.4 Passivity

Consider a square system y = Gu with u ∈ <m, y ∈ <m, and assume that
G : L2e → L2e. G is passive if

∫ T

0
uTGu dt =

∫ T

0
yT (t)u(t) dt ≥ 0, ∀u ∈ L2e,∀T ≥ 0 (6)

In the case where G corresponds to the system in Eqs. (1) and (2), it is
assumed that the initial conditions satisfy x(0) = x0 = 0 when performing
the calculation.
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Passive Circuit Motivation:

-

g

g
+

−
u(t)

y(t)

R

u = Ry

-

g

g
+

−
u(t)

y(t)

L

u = Ldy/dt

-

g

g
+

−
u(t)

y(t)

C

y = Cdu/dt

For the resistor (R), we have∫ T

0
y(t)u(t) dt =

∫ T

0

1

R
u2(t) dt ≥ 0 (7)

For the inductor (L) with y(0) = 0, we have

∫ T

0
y(t)u(t) dt =

∫ T

0
y(t)L

dy(t)

dt
dt = 1

2Ly
2(T ) ≥ 0 (8)

For the capacitor (C) with u(0) = 0, we have

∫ T

0
y(t)u(t) dt =

∫ T

0
u(t)C

du(t)

dt
dt = 1

2Cu
2(T ) ≥ 0 (9)

Hence, these three components correspond to passive systems. They corre-
spond to the mathematical relations of constant gain, temporal integration,
and temporal differentiation between input and output:

y(t) = Ku(t) (K = R−1 > 0)

y(t) = K
∫ t

0
u(τ) dτ (K = L−1 > 0)

y(t) = K
du(t)

dt
(K = C > 0)

It is trivial to show that the parallel connection of two passive systems (corre-
sponding to summing their outputs) is also passive. On this basis, the classic
proportional-integral-derivative (PID) controller is also passive:

y(t) = Kpu(t) +Ki

∫ t

0
u(τ) dτ +Kd

du(t)

dt
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with Kp > 0, Ki > 0, Kd > 0.

A square system y = Hu with H : L2e → L2e is strictly passive if there
exists ε > 0 such that∫ T

0
uTHu dt =

∫ T

0
yT (t)u(t) dt ≥ ε

∫ T

0
uT (t)u(t) dt, ∀u ∈ L2e,∀T ≥ 0 (10)

From (7), the resistor corresponds to a strictly passive system with ε = R−1.
It is easy to show that the parallel connection of a strictly passive and a
passive one is also strictly passive. Hence, the PID controller is strictly
passive and so is a PI one (Kd = 0) and a PD one (Ki = 0).

Example. The system y(t) = Ku(t) with K = KT > O is strictly passive.

Proof. Exhibit the eigendecomposition of K as K = EΛET , Λ = diag{λi}
with λi > 0. Defining û = ETu, we have ûT û = uTu since ET = E−1 and

yTu = uTEΛETu

= ûTΛû

=
n∑

i=1

û2iλi

≥
n∑

i=1

εû2i , ε = min
i
λi > 0

≥ ε
n∑

i=1

u2i = εuTu

After integrating both side of this inequality with respect to time, (10) is
satisfied.

Passivity Theorem: Consider the following feedback system:

- h -u1(t)
e1

G
+
−

t -y1(t)

Hy2(t)

6

If G is passive and H is strictly passive, then u1 ∈ L2 ⇒ y1 ∈ L2.
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Proof. Using the passivity of G, we have∫ T

0
yT
1 e1 dt =

∫ T

0
yT
1 (u1 − y2) dt ≥ 0 (11)

⇒
∫ T

0
yT
1 u1 dt −

∫ T

0
yT
1Hy1 dt ≥ 0

⇒
∫ T

0
yT
1 u1 dt ≥ ε

∫ T

0
yT
1 y1 dt (12)

Using the Cauchy-Schwarz inequality, we have

∫ T

0
yT
1 u1 dt ≤

[∫ T

0
yT
1 y1 dt

]1/2 [∫ T

0
uT
1 u1 dt

]1/2
(13)

Combining (12) and (13) gives

ε
∫ T

0
yT
1 y1 dt ≤

[∫ T

0
yT
1 y1 dt

]1/2 [∫ T

0
uT
1 u1 dt

]1/2

⇒
[∫ T

0
yT
1 y1 dt

]1/2
≤ ε−1

[∫ T

0
uT
1 u1 dt

]1/2

Assuming that u1 ∈ L2 and letting T →∞ gives

||y1||2 ≤ ε−1||u1||2

Therefore, u1 ∈ L2 ⇒ y1 ∈ L2. 2

Consider (11) in the above proof, and assume that G and H are passive.
Then ∫ T

0
yT
1 e1 dt =

∫ T

0
yT
1 (u1 − y2) dt

Hence, ∫ T

0
yT
1 u1 dt =

∫ T

0
yT
1 e1 dt+

∫ T

0
yT
1 y2 dt

=
∫ T

0
eT
1Ge1 +

∫ T

0
yT
1Hy1 dt

≥ 0

Hence, the negative feedback interconnection of two passive systems is also
passive.

Example: Fully Actuated Mechanical System

The motion equations are given as

y = q̇, Mq̈ + Kq = u(t), q̇(0) = q(0) = 0
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where M = MT > O and K = KT ≥ O.

Claim: The system mapping u to y is passive.

Proof: Consider the total energy (Hamiltonian),

H(t) = 1
2q̇

TMq̇ + 1
2q

TKq ≥ 0

Therefore
Ḣ = q̇T [Mq̈ + Kq] = yTu

Integrating both sides from t = 0 to t = T gives

∫ T

0
yTu dt =

∫ T

0
Ḣ dt = H(T )−H(0) = H(T ) ≥ 0

Stabilization
Now consider there to be two external inputs, controls u and disturbances d:

Mq̈ + Kq = e(t) = u(t) + d(t), y = q̇

Assuming a negative feedback controller u = −Hy, the situation can be
represented by the following block diagram:

- j -d
e

G
+

−
u -y = q̇

H−u

6

If we select H to be a strictly passive system such as

u = −Kdq̇, Kd = KT
d > O

then d ∈ L2 ⇒ q̇ ∈ L2 by the passivity theorem.

Example: Euler’s Equation

Consider a rigid body with external torque u about the mass centre and
output ω. The equation of motion is

Iω̇ + ω×Iω = u(t)
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where I = IT > O. Consider the kinetic energy, H(t) = 1
2ω

T Iω ≥ 0. Its time
derivative satisfies

Ḣ = ωT Iω̇

= ωT (−ω×Iω + u)

= ωTu

Integrating both sides gives∫ T

0
ωTu dt = H(T )−H(0) = H(T ) ≥ 0 (H(0) = 0)

Hence the mapping from u to ω is passive.

Example: SISO LTI systems

Consider the SISO LTI system in the frequency domain

ŷ(s) = ĝ(s)û(s)

Assume that ĝ(s) ∈ H∞ and let ε = infω∈<<e{ĝ(jω)}. A more general form
of Parseval’s relation is∫ ∞

0
y(t)u(t) dt =

1

2π
<e

{∫ ∞
−∞

ŷ∗(jω)û(jω) dω
}

Applying this we have∫ T

0
y(t)u(t) dt =

∫ ∞
0
yT (t)uT (t) dt

=
1

2π
<e

{∫ ∞
−∞

ŷT (jω)ûT
∗(jω) dω

}

=
1

2π
<e

{∫ ∞
−∞

ĝ(jω)ûT (jω)ûT
∗(jω) dω

}

=
1

2π

∫ ∞
−∞
<e {ĝ(jω)} ûT (jω)ûT

∗(jω) dω

≥ ε · 1

2π

∫ ∞
−∞

ûT (jω)ûT
∗(jω) dω

= ε||uT ||22
Hence, if ε ≥ 0, the system is passive. We say that ĝ(s) is positive real. If
ε > 0, the system is strictly passive and ĝ(s) is strictly positive real.

For ε > 0,

−π
2
< arg ĝ(jω) <

π

2
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For ε = 0,

−π
2
≤ arg ĝ(jω) ≤ π

2

Now consider the feedback system:

- h -û1(s)
ê1

ĝ(s)
+
− ŷ1(s)

ĥ(s)ŷ2(s)

6

Assume that ĝ(s), ĥ(s) ∈ H∞ and

<e{ĝ(jω)} ≥ 0, <e{ĥ(jω)} ≥ ε > 0

Since, arg{ĝ(jω)ĥ(jω)} = arg{ĝ(jω)}+ arg{ĥ(jω)}, we have

−π < arg{ĝ(jω)ĥ(jω)} < π

Therefore, the passivity theorem guarantees that the −1 point is not encircled
by the Nyquist plot. This is termed phase stabilization.
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6

- <e{ĝ(jω)ĥ(jω)}

=m{ĝ(jω)ĥ(jω)}


