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Abstract
The problem of actuator/sensor location is examined for the inclusion of
piezoelectric smart structural elements in box-type structures. The box is
modeled as a system of joined plates in which both extensional and bending
deflections are incorporated. A location criterion is developed which is
based on the damping injected into the first few modes by a simple constant
gain feedback. It is found that the central regions of each face which avoid
the edges and corners offer the most promising sites for collocating
piezo-actuators and sensors.

1. Introduction

The application of layers of piezoelectric materials to thin-
walled elastic structures offers the ability to introduce active
damping in a distributed fashion [1]. By physically collocating
such ‘smart’ materials configured as dual sensors and actuators
the problem of spillover, the major problem in active vibration
control, can be circumvented. However, the price paid
for robustness is the potential loss of damping performance
relative to the noncollocated situation. Hence, proper location
of the collocated actuator/sensor site is important. Collocation
has been exploited in controller design for smart structures by
Pota et al [2].

Small satellites have been increasing in importance given
the need to reduce spacecraft design costs. Reduction in
size and mass while continuing to require tight performance
objectives leads to active vibration control as a possible design
alternative. Microspacecraft structures are typically simplistic
in design and consist of homogeneous materials arranged in
simple geometries. A box or stack of trays are common
approaches.

Although many authors have looked at the control and/or
location of smart structural elements in beam [3, 4] and
plate structures [5–9], the box and tray-stack architectures
have escaped notice. In addition to the small satellite
application, this is a relatively simple structure with interesting
but nontrivial vibration mode shapes. This article examines

Figure 1. Box structure schematic.

the optimal location of a collocated piezo-actuator/sensor
combination in box-type structures.

2. Motion equations

A schematic of a box structure is shown in figure 1 along
with the global axes {X, Y, Z} and corresponding deflections
{U, V, W } and rotations {�x ,�y,�z}. Each side of the box is
modeled as a thin plate. We will also consider the inclusion of
the dashed plate which we will term the tray-stack architecture.
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Figure 2. Sensor/actuator locations.

Figure 3. Box mode shapes.

A local coordinate frame is selected such that (x, y)

lies in the plane of the plate and z is aligned with the
surface normal. The x- and y-axes are parallel to the
sides of the plate. The corresponding extensional deflections
are [u0(x, y, t), v0(x, y, t)] and the normal deflection is
w(x, y, t). For a homogeneous isotropic box of mass
density ρ and panel thickness h, thin-plate theory gives the
corresponding kinetic and potential energies for each plate as
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where E is Young’s modulus, ν is Poisson’s ratio, D =
Eh3/[12(1−ν2)] is the bending rigidity and C = Eh/(1−ν2)

is the extensional rigidity.
For spatial discretization, rectangular finite elements are

used with the following expansions within each element:

u0(x̂ , ŷ, t) = [ 1 x̂ ŷ x̂ ŷ ]Auqu(t) (3)

v0(x̂, ŷ, t) = [ 1 x̂ ŷ x̂ ŷ ]Avqv(t) (4)

w(x̂ , ŷ, t) = [ 1 x̂ ŷ x̂2 x̂ ŷ ŷ2 x̂3 x̂2 ŷ

x̂ ŷ2 ŷ3 x̂3 ŷ x̂ ŷ3 ]Awqw(t). (5)

Here, (x̂ , ŷ) ∈ [0, 1] × [0, 1] are nondimensionalized local
coordinates and Au , Av and Aw are constant matrices
evaluated so that qu , qv and qw contain prescribed nodal
degrees of freedom at the element corners. In the case
of qu and qv these are simply the four corresponding
displacements, and in the case of qw they are the corner
values of {w, ∂w/∂x, ∂w/∂y}. The global vector of degrees
of freedom, q, contains the assembly of nodal degrees of
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Figure 4. Tray-stack mode shapes.

Figure 5. Box modal performance.

freedom which are the three displacements and rotations
{U, V, W,�x ,�y,�z} and is readily constructed from simple
transformations of qu , qv and qw. With the above expansions,
the energies take on the familiar forms T = (1/2)q̇TMq̇ and
V = (1/2)qTKq with symmetric matrices M and K.

We assume that a single piezoelectric sensor is located
on the structure whose area coincides with a single finite
element. The locations to be considered are shown in figure 2
where symmetry has been exploited in reducing the number
of possible locations. The corresponding piezo-actuator is
collocated with it. It is assumed that the sensor and actuator are

mounted on the same side of the plate and contribute negligible
mass and stiffness.

Following [10], the current created by the piezo-sensor is
y(t) = dqs/dt where the sensor charge is

qs =
∫ ∫

S
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where e0
31 and e0

32 are the piezoelectric charge constants,
F(x, y) = 1 if (x, y) contains sensor electrodes and vanishes
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Figure 6. Tray-stack modal performance.

otherwise and P0(x, y) expresses the polarization profile which
is taken to be identically unity here. The height of the
layer above the plate’s neutral axis is z0

k = h/2. Assuming
uniform polarization within a rectangular patch area Sp =
[x1, x2] × [y1, y2], we have

F P0(x, y) = [H(x−x1)−H(x−x2)][H(y−y1)−H(y−y2)]

where H(x) is the Heaviside step function. Substituting the
expansions in equations (3)–(5) into (6) leads to the output
equation

y(t) = cTq̇

where c is a constant column vector.
The virtual work stemming from a collocated actuator is

readily constructed from [10] as
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where ha is the thickness of the actuator patch, u(t) is
the applied voltage and δep = 1 if the electric field and
poling direction point in the same direction. Substituting the
expansion equations (3)–(5) into the above and recognizing the
duality between equations (6) and (7) leads to δWe = δqTbu(t)
where b = hac. Applying Hamilton’s principle to the energy
and work expressions leads to the standard motion equations

Mq̈ + Kq = bu(t). (8)

It is readily apparent that the collocated rate feedback u(t) =
−ky(t) leads to the introduction of a symmetric damping term
khaccTq̇.

3. Modal analysis

The eigenproblem corresponding to (8) is

−ω2
αMqα + Kqα = 0, α = 1, 2, 3, . . .

where ωα are the undamped vibration frequencies with
corresponding eigenvectors qα normalized so that qT

αMqβ =
δαβ . There are also zero-frequency rigid-body modes which
are neglected in the subsequent analysis. Note that they are
uncontrollable and unobservable given our choice of actuator
and sensor. The modal expansion q(t) = ∑

α qαηα(t)
introduced into (8) leads to uncoupled motion equations of
the form

η̈α + ω2
αηα = bαu(t), bα = qT

αb, α = 1, 2, 3, . . . (9)

with output y(t) = ∑
α cαη̇α where cα = h−1

a bα . For small
k, the output feedback leads to the introduction of a small
damping term 2ζαωαη̇α on the left-hand side of each modal
equation where the damping ratios are given by

ζα = kha

2

c2
α

ωα

.

This expression clearly shows that the problem of
actuator/sensor location resides in maximizing |cα | for as many
modes as possible.
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Figure 7. Box response to an impulsive force.

Figure 8. Tray-stack response to an impulsive force.

Before proceeding with this analysis, we illustrate the
first eight vibration mode shapes (neglecting the six rigid-
body modes) in figure 3 for a box with dimensions a × b × c
with b/a = 1.25 and c/a = 1.5. The vibration frequencies
are also given with nondimensionalization ω̂2

α = ω2
αρha4/D.

The numbers of finite elements in the X , Y and Z directions
are four, five and six, respectively, which leads to square
elements of identical size. The symmetries of the modes show
good agreement with [11]. The experimentally determined
frequencies of Dickinson and Warburton [12] for a steel box
with the same aspect ratios as our example are also given in
figure 3 (the bracketed quantities) and exhibit good agreement.
The lack of complete localization of the mode shapes suggests
that control authority over all displayed modes should be
possible with a single actuator/sensor combination. The modes
and frequencies for the tray-stack architecture (the interior
plate shown in figure 1 is included) are shown in figure 4.

4. Optimal location analysis

Based on the previous section, the following performance
measure is adopted for location optimization:

SN =
N∑

α=1

Jα, Jα = ĉ2
α

ω̂α

,

ĉα = cαa2/[(e0
31 + e0

32)
√

m]

(10)

where m is the mass of the structure. We take e0
31 = e0

32 in
the present study but the ratio of the two is fodder for further
optimization studies. It is assumed that the actuator/sensor
patch has dimensions a/4 × a/4 and coincides with the
domain of a finite element. This represents an obvious loss
in generality but greatly simplifies the calculation of the cα

quantities and reduces the problem of optimal location to a
discrete enumeration of a relatively small number of quantities.
Given the symmetry of the structure, we only consider the
locations explicitly numbered in figure 2.

The values of Jα as a function of actuator/sensor location
are shown for the first eight modes in figure 5 for the box
structure. Location 9 maximizes this quantity for the first two
modes and would clearly be the best choice if one wanted to
damp only these two modes. Location 12 maximizes Jα for
modes 7 and 8 and location 20 maximizes this quantity for
modes 3, 5 and 6. As an overall measure, we have selected
S8, which is also depicted in figure 5 as a function of location.
Locations 9, 12 and 20 yield similar values of this measure but
12 is best. It is interesting to note that each of these locations
avoids the edges and corners of the constituent plates.

The corresponding results for the tray-stack architecture
are given in figure 6. Location 26 located on the interior tray
optimizes modes 1 and 3. Location 12 optimizes modes 4
and 6 and location 3 is best for modes 5 and 6. The value of S8

is very similar for these three locations as well as locations 18
and 20 but location 12 is again the best overall location. As
with the box, all of these favorable sites avoid the edges and
corners.
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In an effort to illustrate the performance achieved using
the optimal location, we consider an aluminum box (E =
68 GPa, ρ = 2712 kg m−3, ν = 0.33) with dimensions
a × b × c = 1 m × 1.25 m × 1.5 m and a thickness of
t = 2 mm. The properties of the piezoelectric material are
e0

31 = e0
32 = 0.06 N m−1 V−1 and ha = 30 × 10−6 m. For the

closed-loop case, the feedback gain is set at 8 × 1014 V A−1.
The box is initially quiescent and subject to an impulsive

force located at the node shared by elements 18, 19, 20 and 21
in figure 2. The magnitude of the force is 1 N and it is directed
in the positive Z direction. This is equivalent to a distribution
of initial conditions for the modal coordinate rates, η̇α(0). The
corresponding deflection of the box (neglecting the ensuing
rigid-body motion) in the same direction at the same location
is denoted by W . Both the open- and closed-loop responses
are illustrated in figure 7 for the box and in figure 8 for the
tray-stack. The damping injected by the feedback controller is
clearly in evidence in both cases.

5. Concluding remarks

We have developed a finite element model of a box-type
structure and used it to develop the modal properties and input–
output characteristics for a collocated piezo-actuator/sensor
combination. A measure of the damping injected into each
mode by a simple constant gain feedback was used as a basis for
optimizing the sensor/actuator location. It was found that good
locations avoided the edges and corners of the box. Simulation
results demonstrated the efficacy of the optimal location.
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