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Abstract
This article proposes two novel passivity-based control design frameworks
for hybrid nonlinear dynamical systems involving an interacting mixture of
continuous-time and discrete-time dynamics whose dynamical properties evolve
periodically over time. By deriving the Kalman–Yakubovich–Popov (KYP) condi-
tions characterizing dissipativeness for hybrid nonlinear time-dependent dynam-
ical systems, a hybrid computational algorithm, which alternates between
continuous-time and discrete-time subsystems at an appropriate sequence of
time instants, is then proposed to solve the resultant equations in an interact-
ing manner. Two passivity-based control schemes are then developed by utilizing
the foregoing KYP conditions in tandem with the passivity theorem. The over-
all framework consists mainly of three steps. The hybrid output dynamics of
the plant are first determined judiciously to satisfy the passivity specifications.
A hybrid nonlinear controller is then designed to meet the input strict passiv-
ity requirements. The stability of the closed-loop system is finally established by
interconnecting the plant and the controller through negative feedback. Practical
considerations for appropriately implementing the derived hybrid algorithms are
then discussed in detail. The efficacy of the proposed control schemes is ultimately
assessed via a multi-dimensional system with a hybrid source of actuation.
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1 INTRODUCTION

Hybrid dynamical systems, as an emerging discipline within dynamical systems theory and control, comprise an inter-
acting collection of dynamical systems involving a mixture of continuous-time and discrete-time dynamics. Exhibiting
heterogeneous dynamics, the evolution of which occurs both continuously (flow) and discontinuously (jump) on appro-
priate manifolds, hybrid dynamical systems consist mainly of three elements: a continuous-time set of differential
equations, which characterizes the motion of the dynamical system between discrete-time events; a discrete-time set
of difference equations, which governs discontinuous changes in the system state; and a criterion to determine when
discrete-time dynamics are to be applied.1
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2 SHARIFI and DAMAREN

Hybrid dynamical systems can be categorized into four distinct groups. Some systems are intrinsically hybrid in
nature; bouncing balls and mechanical systems subject to unilateral constraints are examples of such systems.2 In the
next group, continuous-time dynamics are collaboratively augmented by discrete-time dynamics in order to, amongst
other objectives, improve the performance of the system. Modern spacecraft attitude control systems epitomize systems
of this nature where magnetic torquers are used in tandem with mechanical actuators (like reaction wheels and thrusters)
to resolve instantaneous underactuation pertinent inherently to the magnetic-based actuation, thereby improving the
system performance.3 Hybrid paradigms can also occur in a wide range of applications when a multi-modal control archi-
tecture is employed to regulate the behavior of a complex engineering system.4,5 A special class of this group emerges
when control frameworks involving logic, timers, clocks, and other digital devices are applied to continuous-time dynam-
ics; sample-and-hold control systems and control systems that involve hysteresis exemplify such systems.6 Also included
in this group are systems whose control algorithms encompass multiple continuous-time schemes which switch from one
to another, once a specific criterion is met, to achieve certain prescribed objectives.7,8 The next category, which introduces
a more complicated class of the preceding group, represents systems with hybrid paradigms in both dynamics (plant)
and control where dynamics with heterogeneous structures are regulated by hybrid controllers involving an interacting
pair of continuous-time and discrete-time control inputs which additionally, once a criterion is met, switch to logical
decision-making control laws.

Motivated by applications of systems with heterogeneous dynamics whose dynamical properties evolve over time
while simultaneously interacting with their surrounding environments, this article proposes two novel passivity-based
control design architectures for hybrid nonlinear time-dependent dynamical systems. Establishing a quantitative rela-
tionship between the energy injected into and dissipated by a system, the notion of passivity provides a fundamental
framework for the analysis and control design of dynamical systems via exerting a constraint on the amount of energy
they exchange through their input–output ports. The origin of this concept can be traced back to development in the lin-
ear passive network theory in the 1950s9 and, specifically, the stability analysis of feedback systems through positive real
matrices in the 1960s.10–13 Nevertheless, the first general input–output energy-based system description was proposed
by Willems via introducing the dissipativity theory for linear dynamical systems.14,15 This pioneering work was then fol-
lowed by characterizing dissipativeness in the input–output sense for a large class of nonlinear systems.16–18 Using the
notion of dissipativity, Reference 18 subsequently presented general stability criteria for the feedback interconnection of
autonomous nonlinear dynamical systems. Providing a generalized interpretation of energy balance in terms of the stored
energy and the dissipated energy over heterogeneous dynamics, the dissipativity theory was then generalized to hybrid
nonlinear dynamical systems with an interacting mixture of continuous-time and discrete-time dynamics.19 Building on
these results, stability criteria characterizing Lyapunov, asymptotic, and exponential properties for the feedback intercon-
nection of hybrid nonlinear dissipative dynamical systems were derived in Reference20. The notion of dissipativity has
also been extended to a different variety of dynamical systems, including discrete-time nonlinear systems for observer
design purposes,21–23 nonnegative and compartmental systems,24,25 large-scale systems,26,27 port-controlled Hamiltonian
systems,28,29 and stochastic systems30,31 to name but a few.

Although the control theory for hybrid nonlinear dissipative dynamical systems involving an interacting amalgam of
continuous-time and discrete-time dynamics is well-developed (see Haddad et al.1 and references therein), it has found
no practical applications due primarily to a lack of efficient numerical schemes for dealing effectively with such systems.
This article aims to bridge the gap between theory and practice by developing two passivity-based control design frame-
works for hybrid nonlinear dynamical systems whose dynamical properties evolve periodically over time. In this regard,
the Kalman–Yakubovich–Popov (KYP) conditions proposed in Reference19, which characterize dissipativity for hybrid
nonlinear time-invariant dynamical systems, are first extended to systems with time-variations. A hybrid computational
architecture, which alternates between continuous-time and discrete-time subsystems at an appropriate sequence of time
instants, is then proposed to solve the resultant equations in an interacting manner. Utilizing the derived time-varying
KYP (TV-KYP) conditions and the passivity theorem collaboratively, two passivity-based control schemes are ultimately
developed for nonlinear time-dependent dynamical systems with heterogeneous dynamics.

By employing the control schemes proposed in this research work, not only are interactions between continuous-time
and discrete-time dynamics allowed in accordance with the resetting criterion, but feedback controllers are also syn-
thesized by considering the full nonlinear dynamics of the system. As a consequence, in contrast to the traditional
approach in which the hybrid nature of systems is suppressed by converting them into either purely discrete-time or purely
continuous-time entities, the heterogeneous structure of the dynamical system to be controlled is effectively exploited over
the entire operating range of the system through a hybrid pair of control inputs which alternates between continuous-time
and discrete-time subsystems at an appropriate sequence of time instants. Moreover, since the stability of the closed-loop
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SHARIFI and DAMAREN 3

system is guaranteed in accordance with energy-based system properties, the proposed control schemes are expected to
exhibit enhanced robustness with respect to uncertainties and measurement noise effects.3,32

The remainder of this article is organized as follows. The preliminary definitions and main theorems associated with
dissipative dynamical systems are presented in Section 2. Two novel passivity-based control design frameworks are then
proposed for hybrid nonlinear time-dependent dynamical systems in Section 3. Section 4 describes practical considera-
tions for appropriately implementing the proposed hybrid algorithms. The functionally of the proposed hybrid controllers
is lastly evaluated via a multi-state hybrid system in Section 5.

2 HYBRID DISSIPATIVE TIME-VARYING DYNAMICAL SYSTEMS

This section aims to provide a sound base from which the desired passivity-based control design frameworks can be
developed for hybrid nonlinear dynamical systems. In what is to follow, the preliminary definitions pertaining to the
notion of dissipativity are first presented in Section 2.1. The hybrid nonlinear TV-KYP conditions, the significance of
which is to characterize dissipativeness in terms of system dynamics and a generalized energy function, are then derived
in Section 2.2. The results developed in Section 2.2 are then specialized to linear dynamical systems in Section 2.3. The
feedback interconnection of hybrid dissipative dynamical systems is lastly discussed in Section 2.4.

Consider a hybrid dynamical system modeled by nonlinear equations of the form:

ẋ(t) = fct(x, t) + gct(x, t)uct(t), x (t0) = x0, t ≠ tk, (1)

yct(t) = hct(x, t) + jct(x, t)uct(t), t ≠ tk, (2)

x+k = fds
(

x−k , t
)
+ gds

(
x−k , t

)
uds(t), t = tk, (3)

yds(t) = hds
(

x−k , t
)
+ jds

(
x−k , t

)
uds(t), t = tk, (4)

where t ≥ 0, x ∈  ⊆ R
n is the state vector, specifies an open set with 0 ∈  defined as the state space of interest, fct ∶

 × [0,∞)→ R
n is Lipschitz continuous on , gct ∶  × [0,∞)→ R

n×mct , uct ∈ Uct ⊆ R
mct denotes the control input in

the continuous-time subsystem, yct ∈ Yct ⊆ R
qct is the continuous-time output, hct ∶  × [0,∞) → R

qct , jct ∶  × [0,∞)→
R

qct×mct , and tk indicates the time instants at which impulses are applied with k ∈ Z(t0,tf) ≜ {k ∶ t0 < tk < tf}. Furthermore,
x−k ≜ x

(
t−k
)

and x+k ≜ x
(

t+k
)

denote, respectively, the state vector immediately before and after discrete-time dynamics are
triggered at t = tk, fds ∶  × [0,∞) → R

n is continuous on , gds ∶  × [0,∞)→ R
n×mds , uds ∈ Uds ⊆ R

mds specifies the
discrete-time control input, yds ∈ Yds ⊆ R

qds is the discrete-time output, hds ∶  × [0,∞) → R
qds , and jds ∶  × [0,∞)→

R
qds×mds . It is also assumed that (uct(⋅),uds(⋅)) is restricted to the class of admissible control inputs  ≜  ct × ds con-

sisting of measurable functions such that (uct,uds) ∈ Uct ×Uds for all t ≥ 0 and k ∈ Z(t0,tf), where the constraint set
U ≜ Uct ×Uds is given with (0, 0) ∈ Uct ×Uds. In addition, the required properties for the existence and uniqueness of
solutions for (1) are presupposed to be satisfied such that (1) has a unique solution for all t ∈ R.

2.1 Preliminary definitions

Presenting the key definitions relevant to dissipativeness, this section paves the way for developing the
TV-KYP conditions for hybrid nonlinear dynamical systems.

Definition 1. For the hybrid dynamical system  given by (1)–(4), a function
(

Sct
(

uct, yct
)
, Sds(uds, yds)

)
,

where Sct ∶ Uct × Yct → R and Sds ∶ Uds × Yds → R are such that Sct(0, 0) = 0 and Sds(0, 0) = 0, is called a
hybrid supply rate if, for all input–output pairs

(
uct, yct

)
∈ (Uct,Yct) and

(
uds, yds

)
∈ (Uds,Yds) satisfying (1)–(4)

and for k ∈ Z(𝜏1,𝜏2) ≜ {k ∶ 𝜏1 < tk < 𝜏2}, Sct
(

uct, yct
)

and Sds
(

uds, yds
)

benefit from the following properties:

∫

𝜏2

𝜏1

|||Sct
(

uct(t), yct(t)
)||| dt <∞ ∀𝜏1, 𝜏2 ≥ 0, (5)

∑

k∈Z(𝜏1 ,𝜏2)

|||Sds
(

uds (tk), yds (tk)
)||| < ∞, (6)
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4 SHARIFI and DAMAREN

Definition 2. The hybrid dynamical system  is dissipative with respect to the hybrid supply rate (Sct, Sds) if
the dissipation inequality of the following form is satisfied for all 𝜏 ≥ t0 and (uct(⋅),uds(⋅)) ∈  ct × ds with
x (t0) = 0:

∫

𝜏

t0

Sct
(

uct(t), yct(t)
)

dt +
∑

k∈Z(t0 ,𝜏)

Sds
(

uds (tk), yds (tk)
)
≥ 0, (7)

Definition 3. The hybrid dynamical system  with mct = qct, mds = qds, and x (t0) = 0 is passive if

∫

𝜏

t0

yT
ct(t)uct(t)dt +

∑

k∈Z(t0 ,𝜏)

yT
ds (tk)uds (tk) ≥ 0 (8)

for all 𝜏 ≥ t0 and (uct(⋅),uds(⋅)) ∈  ct × ds.

Equivalently, the hybrid dynamical system with mct = qct and mds = qds is passive if  is dissipative with
respect to a hybrid supply rate of the form

(
Sct
(

uct, yct
)
, Sds(uds, yds)

)
=
(
2yT

ctuct, 2yT
dsuds

)
.

Definition 4. The hybrid dynamical system with mct = qct, mds = qds, and x (t0) = 0 is input strictly passive
if there exist 𝜀ct > 0 and 𝜀ds > 0 such that

∫

𝜏

t0

yT
ct(t)uct(t)dt +

∑

k∈Z(t0 ,𝜏)

yT
ds (tk)uds (tk) ≥ 𝜀ct

∫

𝜏

t0

uT
ct(t)uct(t)dt + 𝜀ds

∑

k∈Z(t0 ,𝜏)

uT
ds (tk)uds (tk) (9)

for all 𝜏 ≥ t0 and (uct(⋅),uds(⋅)) ∈  ct × ds.

Equivalently, the hybrid dynamical system  with mct = qct and mds = qds is input strictly passive
if  is dissipative with respect to a hybrid supply rate of the form

(
Sct
(

uct, yct
)
, Sds(uds, yds)

)
=(

2yT
ctuct − 2𝜀ctuT

ctuct, 2yT
dsuds − 2𝜀dsuT

dsuds
)

where 𝜀ct > 0 and 𝜀ds > 0.

Definition 5. Consider the hybrid dynamical system  given by (1)–(4) with the hybrid supply rate (Sct, Sds).
A continuous positive semi-definite function V ∶  ×R → R satisfying V(0, t) = 0 for all t ∈ R and

∫

𝜏

t0

Sct
(

uct(t), yct(t)
)

dt +
∑

k∈Z(t0 ,𝜏)

Sds
(

uds (tk) , yds (tk)
)
≥ V(x(𝜏), 𝜏) − V (x ( t0) , t0) (10)

is called a storage function for , where x(t) for t ≥ t0 is a solution to (1)–(4) with (uct(⋅),uds(⋅)) ∈ Uct ×Uds.

Definition 6. The hybrid dynamical system  is completely reachable if, for all (x0, t0) ∈  ×R, there exist a
finite time ti ≤ t0, square integrable input uct(t) defined on [ti, t0], and input uds (tk) defined on k ∈ Z(ti,t0) such
that the state x(t) for t ≥ ti can be driven from x (ti) = 0 to x (t0) = x0.

With the key definitions thus in place, the notion of dissipativity for hybrid nonlinear dynamical systems
can, now, be characterized in terms of inequalities involving generalized system power inputs, namely supply
rates, and a generalized energy function, namely a storage function, as follows.

Theorem 1. Assume the hybrid dynamical system is completely reachable. is then dissipative with respect to
the hybrid supply rate (Sct, Sds) if and only if there exists a continuous positive semi-definite function V ∶  ×R →
R such that

V (x (𝜏2) , 𝜏2) − V (x (𝜏1) , 𝜏1) ≤
∫

𝜏2

𝜏1

Sct
(

uct(t), yct(t)
)

dt, tk < 𝜏1 ≤ 𝜏2 < tk+1, (11)

V
(

x+k , t+k
)
− V

(
x−k , t−k

)
≤ Sds

(
uds (tk) , yds (tk)

)
, k ∈ Z+, (12)

where Z+ indicates the set of nonnegative integers and V
(

x+k , t+k
)
= V

(
fds + gdsuds, t+k

)
.

Proof. Refer toHaddad et al.1, Chapter 3 or Haddad et al.19 ▪
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SHARIFI and DAMAREN 5

The preceding theorem, in fact, obtains the necessary and sufficient conditions for dissipativity over an interval
t ∈ (tk, tk+1) involving the consecutive impulsive instants tk and tk+1. Furthermore, the passive and input strictly passive
dynamical systems can also be characterized via this theorem as dissipative systems with hybrid supply rates of a specific
form.

The required tools are now in place to derive the TV-KYP conditions for hybrid nonlinear dynamical systems. This is
the main objective of the next section.

2.2 Hybrid nonlinear TV-KYP conditions

This section serves to characterize passivity and input strict passivity, as special cases of dissipativity, for  in
terms of the system functions and the storage function V(x, t) via the TV-KYP conditions.

Theorem 2. Consider the hybrid dynamical system  with mct = qct, mds = qds,  = R
n, Uct = R

mct , Yct =
R

qct , Uds = R
mds , and Yds = R

qds . Furthermore, assume that the dynamical properties of the system in ques-
tion evolve periodically over time. If there exist functions V ∶ R

n × [0,∞) → R, lct ∶ R
n × [0,∞) → R

pct , wct ∶
R

n × [0,∞) → R
pct×mct , lds ∶ R

n × [0,∞) → R
pds , and wds ∶ R

n ×R → R
pds×mds such that (I) V(x, t) is continu-

ously differentiable and positive definite, (II) V(0, t) = 0, (III) the storage function in the discrete-time subsystem
is structurally constrained to conform to

V
(

x+k , t+k
)
= V

(
fds + gdsuds, t+k

)

= V
(

fds, t+k
)
+′

uds (xk, tk)uds (tk) + uT
ds (tk)′′

uds (xk, tk)uds (tk) , (13)

where


′
uds (xk, tk) =

𝜕V
(

fds + gdsuds, t+k
)

𝜕uT
ds

|||||uds=0

=

(
𝜕V

(
fds, t+k

)

𝜕x

)T

gds, (14)


′′
uds (xk, tk) =

𝜕

2V
(

fds + gdsuds, t+k
)

𝜕uds𝜕uT
ds

|||||uds=0

= 1
2

gT
ds

𝜕

2V
(

fds, t+k
)

𝜕x𝜕xT gds (15)

for all x ∈ R
n and uds ∈ R

mds , and (IV) continuous-time and discrete-time sets of equations of the form

𝜕V(x, t)
𝜕t

+
(
𝜕V(x, t)

𝜕x

)T

fct(x, t) + lT
ct(x, t)lct(x, t) = 0, (16)

1
2

(
𝜕V(x, t)

𝜕x

)T

gct(x, t) − hT
ct(x, t) + lT

ct(x, t)wct(x, t) = 0, (17)

−2𝜀ct1mct×mct + jct(x, t) + jT
ct(x, t) −wT

ct(x, t)wct(x, t) = 0, (18)

V
(

fds, t+k
)
− V

(
x−k , t−k

)
+ lT

ds (xk, tk) lds (xk, tk) = 0, (19)

1
2

′
uds (xk, tk) − hT

ds (xk, tk) + lT
ds (xk, tk)wds (xk, tk) = 0, (20)

−2𝜀ds1mds×mds + jds (xk, tk) + jT
ds (xk, tk) −′′

uds (xk, tk) −wT
ds (xk, tk)wds (xk, tk) = 0, (21)

are fulfilled for 𝜀ct ≥ 0, 𝜀ds ≥ 0, and all x ∈ R
n; the hybrid dynamical system  is then passive if 𝜀ct = 𝜀ds ≡ 0,

and is input strictly passive if 𝜀ct > 0 and 𝜀ds > 0.

Proof. For any admissible control input uct(t), where 𝜏1, 𝜏2 ∈ [0,∞), tk < 𝜏1 ≤ 𝜏2 < tk+1, and k ∈ Z+, (16)–(18)
imply

V (x (𝜏2) , 𝜏2) − V (x (𝜏1) , 𝜏1) =
∫

𝜏2

𝜏1

̇V(x(t), t)dt

≤
∫

𝜏2

𝜏1

(
̇V(x, t) + (lct +wctuct)T (lct +wctuct)

)
dt
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6 SHARIFI and DAMAREN

=
∫

𝜏2

𝜏1

(
𝜕V∕𝜕t + (𝜕V∕𝜕x)Tẋ + lT

ctlct +uT
ctw

T
ctwctuct + 2lT

ctwctuct
)

dt

=
∫

𝜏2

𝜏1

(
𝜕V∕𝜕t + (𝜕V∕𝜕x)Tfct + (𝜕V∕𝜕x)Tgct

⎵⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎵

(16)

uct + lT
ctlct
⎵⎵

(15)

+ uT
ctw

T
ctwct

⎵⏞⏞⏞⎵

(17)

uct + 2lT
ctwctuct

)
dt

=
∫

𝜏2

𝜏1

(
���𝜕V∕𝜕t +���

���(𝜕V∕𝜕x)Tfct + 2hT
ctuct −���

��2lT
ctwctuct

−���𝜕V∕𝜕t −���
���(𝜕V∕𝜕x)Tfct − 2𝜀ctuT

ctuct + uT
ct jctuct + uT

ct jT
ctuct +���

��2lT
ctwctuct

)
dt

=
∫

𝜏2

𝜏1

(
2hT

ctuct+2uT
ct jT

ctuct − 2𝜀ctuT
ctuct

)
dt =

∫

𝜏2

𝜏1

(
2yT

ctuct − 2𝜀ctuT
ctuct

)
dt =

∫

𝜏2

𝜏1

Sct
(

uct, yct
)

dt,

(22)

where x( t), t ∈ (tk, tk+1), satisfies (1) and ̇V(⋅) denotes the total derivative of the storage function along the
trajectories x( t) of (1). Therefore: V (x (𝜏2) , 𝜏2) − V (x (𝜏1) , 𝜏1) ≤ ∫

𝜏2
𝜏1

Sct
(

uct, yct
)

dt. ▪

Next, for any admissible control input uds (tk), where tk ∈ R and k ∈ Z+, it follows from (13)–(15) along with (19)–(21)
that for all x ∈ R

n and uds ∈ R
mds :

ΔV (xk, tk) = V
(

x+k , t+k
)
− V

(
x−k , t−k

)

= V
(

fds + gdsuds, t+k
)

⎵⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎵

(12)−(14)

− V
(

x−k , t−k
)

= V
(

fds, t+k
)
− V

(
x−k , t−k

)

⎵⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎵

(18)

+′
uds

⎵⎵

(19)

uds + uT
ds

′′
uds

⎵⎵

(20)

uds

= −lT
dslds + 2hT

dsuds − 2lT
dswdsuds − 2𝜀dsuT

dsuds + uT
dsjdsuds + uT

dsj
T
dsuds − uT

dsw
T
dswdsuds

=
(
2hT

dsuds + 2uT
dsj

T
dsuds − 2𝜀dsuT

dsuds
)
−
(

lT
dslds + 2lT

dswdsuds + uT
dsw

T
dswdsuds

)

=
(
2yT

dsuds − 2𝜀dsuT
dsuds

)
− (lds +wdsuds)T (lds +wdsuds)

= Sds
(

uds, yds
)
− (lds +wdsuds)T (lds +wdsuds)

≤ Sds
(

uds, yds
)
, (23)

where ΔV(⋅) denotes the difference of the storage function at the impulsive instants tk of (3).
Since a hybrid supply rate of the form (Sct, Sds) =

(
2yT

ctuct − 2𝜀ctuT
ctuct, 2yT

dsuds − 2𝜀dsuT
dsuds

)
corresponds to passiv-

ity when 𝜀ct = 𝜀ds ≡ 0 and to input strict passivity when 𝜀ct > 0 and 𝜀ds > 0; in view of (22) and (23), the proof is now
complete in accordance with Theorem 1.

2.3 Hybrid linear TV-KYP conditions

In this section, the TV-KYP conditions developed in the preceding section are specialized to hybrid linear dynami-
cal systems. Defining xeq = 0 as desired operating points for the linearization, the hybrid nonlinear dynamical system
represented by (1)–(4) can be linearized as follows:

ẋ(t) = Act(t)x + Bct(t)uct(t), x (t0) = x0, t ≠ tk, (24)

yct(t) = Cct(t)x +Dct(t)uct(t), t ≠ tk, (25)

x+k = Ads(t)x−k + Bds(t)uds(t), t = tk, (26)

yds(t) = Cds(t)x−k +Dds(t)uds(t), t = tk, (27)

where Act = Jx
(

fct
)|||x=xeq

∈ R
n×n, Bct = gct

||x=xeq
∈ R

n×mct , Cct = Jx (hct)|x=xeq
∈ R

qct×n, and Dct = jct
||x=xeq

∈

R
qct×mct along with Ads = Jx

(
fds
)|||x=xeq

∈ R
n×n, Bds = gds

||x=xeq
∈ R

n×mds , Cds = Jx (hds)|x=xeq
∈ R

qds×n, and

Dds = jds
||x=xeq

∈ R
qds×mds define the time-dependent system matrices associated with continuous-time and

 10991239, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.6818 by C

ochrane C
anada Provision, W

iley O
nline L

ibrary on [20/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



SHARIFI and DAMAREN 7

discrete-time subsystems, respectively, and Jx denotes the Jacobian matrix with respect to x. The hybrid
TV-KYP conditions characterizing passivity and input strict passivity for hybrid linear dynamical systems can,
now, be presented as follows.

Corollary 1. Consider the linearized hybrid dynamical system described by (25)–(27) with mct = qct and mds =
qds. Furthermore, assume the dynamical properties of the system being considered evolve periodically over time. If
there exist matrices P = PT ∈ R

n×n
> 0, Lct ∈ R

pct×n, Wct ∈ R
pct×mct , Lds ∈ R

pds×n, and Wds ∈ R
pds×mds such that

continuous-time and discrete-time equations of the form

̇P(t) + AT
ct(t)P(t) + P(t)Act(t) + LT

ct(t)Lct(t) = 0, (28)

P(t)Bct(t) − CT
ct(t) + LT

ct(t)Wct(t) = 0, (29)

−2𝜀ct1mct×mct +Dct(t) +DT
ct(t) −WT

ct(t)Wct(t) = 0, (30)

AT
ds (tk)P

(
t+k
)

Ads (tk) − P
(

t−k
)
+ LT

ds (tk)Lds (tk) = 0, (31)

AT
ds (tk)P

(
t+k
)

Bds (tk) − CT
ds (tk) + LT

ds (tk)Wds (tk) = 0, (32)

−2𝜀ds1mds×mds +Dds (tk) +DT
ds (tk) − BT

ds (tk)P
(

t+k
)

Bds (tk) −WT
ds (tk)Wds (tk) = 0 (33)

are met; the linearized dynamical system is passive if 𝜀ct = 𝜀ds ≡ 0, and is input strictly passive if 𝜀ct > 0 and
𝜀ds > 0.

Proof. The result is a direct consequence of Theorem 2 by setting V(x, t) = xTP(t)x, fct = Actx, gct = Bct,
hct = Cctx, jct = Dct, fds = Adsx−k , gds = Bds, hds = Cdsx−k , jds = Dds, lct = Lctx, wct = Wct, lds = Ldsx, and
wds = Wds. ▪

2.4 Feedback interconnection of hybrid dissipative systems

Placing the passivity theorem (Refer to Reference 9 for the original form and to Reference 32 for
the extended hybrid version) as a solid foundation, this section aims to discuss feedback interconnec-
tion of hybrid dissipative dynamical systems to construct stable closed-loop dynamics. Figure 1 shows a
schematic representation of how two hybrid dynamical systems, namely a plant  and a controller ,
are interconnected through negative feedback to establish a closed-loop system under the influence of
hybrid external disturbances (dct,dds), where

(
uct,uds,k

)
is the hybrid input of the plant to be controlled

with uds,k ≜ uds (x (tk) , tk);
(

yct, yds
)

defines the hybrid output of the plant;
(
⌢u ct,

⌢u ds,k
)

represents the hybrid input
of the controller with ⌢u ds,k ≜

⌢u ds
(
⌢x (tk) , tk

)
, which is equal to

(
yct, yds

)
when measurement noise is negligible; and(

⌢y ct,
⌢y ds

)
specifies the hybrid output of the controller. In accordance with the passivity theorem, the negative feedback

interconnection of a passive system and an input strictly passive system is input–output stable. Figure 1 can, therefore,
be used to illuminate the passivity theorem further as follows: passivity of the hybrid plant  and input strict passivity
of the hybrid controller  imply input–output stability of the closed-loop system through a negative feedback
interconnection.

F I G U R E 1 Schematic representation of closed-loop system composed of hybrid plant  and hybrid controller.
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8 SHARIFI and DAMAREN

3 PASSIVITY-BASED CONTROL

Utilizing the TV-KYP conditions developed in Section 2 in tandem with the passivity theorem, this section presents a
three-step control design procedure to derive the passivity-based control design frameworks in question. In this regard,
the hybrid output dynamics of the plant are judiciously determined in the first step to satisfy the passivity specifications
via the passivity-related TV-KYP conditions represented by (16)–(21) with 𝜀ct = 𝜀ds ≡ 0. A hybrid control scheme, which
separately adopts compensators of static and dynamic structures in the feedback path, is then designed to meet the input
strict passivity requirements. The stability of the closed-loop system is consequently established by a negative feedback
interconnection between the resultant hybrid plant and controller.

To pursue the first objective, (16) and (19) must be solved simultaneously for V(x, t) in an interacting manner. These
equations are, however, difficult to solve in general, thereby necessitating approximation techniques. Aiming to rise to this
challenge, a hybrid computational framework involving two numerical schemes pertaining to the continuous-time and
discrete-time subsystems is therefore proposed in the following subsections to approximate the storage function in each
continuous-time and discrete time subsystem. The hybrid output dynamics of the plant satisfying passivity properties
from input to output can, subsequently, be determined in terms of V(x, t) through the remaining conditions, that is, (17),
(18), (20), and (21) with 𝜀ct = 𝜀ds ≡ 0.

3.1 Numerical solution to differential TV-KYP equation

Employing the Galerkin spectral method,33 a set of ordinary differential equations is derived in this section to numerically
solve the differential TV-KYP equation, (16), thereby approximating the storage function between impulsive events. The
basic idea underlying the Galerkin-based approximation is to assume that the solution to (16), i.e. the storage function,
can be expressed as an infinite sum of known basis functions. Furthermore, in order for the Galerkin spectral method
to be applicable, the resultant formulation must be placed in a suitable inner product space such that the projection
is well-defined in terms of n-dimensional integrations. The approximation is thus restricted to a closed and bounded
set in , namely a compact set 𝛀, which defines the bounded domain of the state space of interest. Therefore, it is
first assumed that the storage function in (16) can be discretized by an infinite series of prescribed state-dependent
basis functions, which are continuous and defined everywhere on 𝛀, and unknown coefficients with time-dependency
as follows:

V(x, t) ≔
∞∑

j=1
cj(t)𝜙j(x). (34)

Nevertheless, from a practical point of view, using an infinite number of terms for discretizing the abovementioned
quantity is impossible; the approximation process for V(x, t) continues further with considering a truncated version of
the infinite series represented by (34) involving the first N terms:

VN(x, t) ≔
N∑

j=1
cj(t)𝜙j(x) = 𝚽T

N(x)N(t), (35)

where 𝚽N(x) = [𝜙1(x) … 𝜙N(x)]T denotes a prescribed state-dependent set of basis functions, N(t) = [c1(t) … cN(t)]T

specifies the corresponding collection of unknown time-dependent coefficients, and N refers to the number of
basis elements (i.e., the order of approximation). The approximation sequence then proceeds with substituting (35)
into (16), which, in turn, results in an error equation due primarily to approximating the storage function with
VN(x, t). Utilizing the Galerkin spectral method, the unknown coefficients, N(t), are therefore determined such
that the resultant error is minimized. To this end, the error equation is projected onto the same basis functions
retained in the truncated series and the outcome is set equal to zero so as to obtain N simultaneous equations for
N unknowns:

⟨

TV-KYP
differential

( N∑

j=1
cj(t)𝜙j(x)

)

,𝚽N(x)

⟩

𝛀

= 0, (36)
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SHARIFI and DAMAREN 9

where the projection operator is the inner product ⟨(⋅), 𝜙i(x)⟩𝛀 ≜ ∫𝛀(⋅)𝜙i(x)dx computed over a closed and bounded set,𝛀.
The preceding set of equations represents the Galerkin-based projection of the differential TV-KYP equation in a compact
form, which can be expanded as follows:

⟨𝚽N ,𝚽N⟩𝛀 ̇N(t) +
⟨

Jx (𝚽N) fct,𝚽N
⟩
𝛀 N(t) +

⟨
lT
ctlct,𝚽N

⟩
𝛀 = 0. (37)

Considering lct(x, t) as a design parameter to be appropriately selected by the user, the following set of ordinary dif-
ferential equations termed the continuous-time passivity-based control gain equations needs therefore to be integrated
backward in time in order to compute N(t) between impulsive instants:

̇N(t) +(t)N(t) + b(t) = 0, N (tf) = f, (38)

where f denote the boundary conditions at the terminal time defined by the user as design parameters, and

(t) = ⟨𝚽N ,𝚽N⟩−1
𝛀
⟨

Jx (𝚽N) fct,𝚽N
⟩
𝛀

b(t) = ⟨𝚽N ,𝚽N⟩−1
𝛀
⟨

lT
ctlct,𝚽N

⟩
𝛀 . (39)

In summary, the proposed algorithm to compute the storage function in the continuous-time subsystem com-
prises three steps: fct, lct, 𝚽N , and 𝛀 are first injected into the algorithm as input; three definite n-dimensional
integrals, namely ⟨𝚽N ,𝚽N⟩,

⟨
Jx (𝚽N) fct,𝚽N

⟩
, and

⟨
lT
ctlct,𝚽N

⟩
, are then computed over the stability region defined

by 𝛀; and a set of ordinary differential equations represented by (38) is ultimately integrated backward in time
using a fixed-step numerical scheme, such as the fourth-order Runge–Kutta (RK4) solver,34 to compute N(t) as
output.

3.2 Numerical solution to difference TV-KYP equation

With the continuous-time passivity-based control gain equations thus derived; a set of algebraic equations is developed
in this section to approximate the storage function at each impulse. In this regard, the spectral collocation method34 is
utilized to numerically solve the difference TV-KYP equation, (19), at t = tk. The main idea behind the spectral collo-
cation technique is to project the aforementioned equation onto a discrete basis at each impulsive instant to produce
as many equations as required for the unknowns. This is analogous to the Galerkin spectral method where the error
equation resulting from approximating the storage function is projected onto a truncated set of basis elements to obtain
N simultaneous equations for N unknowns.

Preparatory to deriving the discrete-time counterpart of the passivity-based control gain equations, a truncated version
of the discretized storage function, (35), is substituted into (19) to formulate the following set of algebraic equations at
each jump instant, t = tk:

𝚽T
N(x)

|||x=fds
N

(
t+k
)
−𝚽T

N
(

x−k
)
N

(
t−k
)
+ lT

ds
(

x−k , t−k
)

lds
(

x−k , t−k
)
= 0. (40)

Having N
(

t+k
)

available from the backward integration of (38), N
(

t−k
)

can, thus, be computed via the preceding
set of equations. However, the state knowledge at t = t−k , x−k , is required to reach this objective, which, in consequence,
provides a new challenge. Aiming to rise to this challenge, x−k is collocated with a suitable set of points, x = row

m

{
xm
}

where xm ∈ R
n and m = 1, … ,N, at each impulsive instant to obtain N equations for N unknowns,

{
cj
(

t−k
)}N

j=1. The
following set of algebraic equations termed the discrete-time passivity-based control gain equations must, therefore, be
solved for N

(
t−k
)

at each impulse:

N
(

t−k
)
=
(
𝚿k(x)

)−1 [𝚼k
(

x, t−k
)
+ 𝛇k(x, t−k )N

(
t+k
)]

, (41)

 10991239, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.6818 by C

ochrane C
anada Provision, W

iley O
nline L

ibrary on [20/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



10 SHARIFI and DAMAREN

where
𝚼k

(
x, t−k

)
= column

m

{
lT
ds
(

xm, t−k
)

lds(xm, t−k )
}

=
⎡
⎢
⎢
⎢
⎣

lT
ds
(

x1, t−k
)

lds
(

x1, t−k
)

⋮

lT
ds
(

xN , t−k
)

lds
(

xN , t−k
)

⎤
⎥
⎥
⎥
⎦N×1

,

𝚿k(x) = matrix
m,j

{
𝜙j
(

xm
)}

=
⎡
⎢
⎢
⎢
⎣

𝜙1
(

x1
)

· · · 𝜙N
(

x1
)

⋮ ⋱ ⋮

𝜙1
(

xN
)

· · · 𝜙N
(

xN
)

⎤
⎥
⎥
⎥
⎦N×N

,

𝛇k
(

x, t−k
)
= matrix

m,j

{
𝜙j(x)||x=fds(xm,t−k )

}

=
⎡
⎢
⎢
⎢
⎣

𝜙1(x)|x=fds(x1,t−k ) · · · 𝜙N(x)|x=fds(x1,t−k )
⋮ ⋱ ⋮

𝜙1(x)|x=fds(xN ,t−k ) · · · 𝜙N(x)|x=fds(xN ,t−k )

⎤
⎥
⎥
⎥
⎦

N×N

, (42)

where lds
(

x−k , t−k
)

is assumed to serve as a design parameter to be appropriately chosen by the user.
To succinctly summarize, the proposed algorithm for approximating the difference TV-KYP equation, (19), at each

impulse is initialized with fds, lds, N
(

t+k
)
, 𝚽N , and x as input. Constructing arrays of lds and 𝚽N fed by x as shown in

(42), an algebraic set of equations given by (41) is then solved at each impulsive instant to compute N
(

t−k
)

as output.

3.3 Passivity specifications for hybrid plant

Armed with the continuous-time and discrete-time passivity-based control gain equations, the hybrid nonlinear
passivity-based control gain vector can be computed over the entire operating range of the system via solving the following
set of equations in an interacting manner for N(t):

⎧
⎪
⎨
⎪
⎩

̇N(t) +(t)N(t) + b(t) = 0, N (tf) = f t ≠ tk See Eq.(39),

N
(

t−k
)
=
(
𝚿k(x)

)−1 [𝚼k
(

x, t−k
)
+ 𝛇k(x, t−k )N

(
t+k
)]

t = tk See Eq.(42).
(43)

Beginning with the boundary conditions at the terminal time f, the continuous-time set of equations, which gov-
erns the continuous evolution of the passivity-based control gains in the flow manifold, are first integrated backward
in time to compute N(t) between impulsive instants. Once a specific criterion is met, an impulse is then induced in
the solution at t = tk through applying the discrete-time control gain equations fed by N

(
t+k
)

and, in consequence,
the continuous evolution of N(t) is instantaneously switched to a quantum leap occurring in the jump manifold.
N

(
t−k
)

computed at t = tk is subsequently used as a new set of terminal conditions for the continuous-time control
gain equations to be integrated backward in time from t−k to t+k−1. Exhibiting continuous evolution and instantaneous
changes on appropriate manifolds, the control gain vector maintains this interacting sequence until the initial time t0
is reached.

The continuous-time and discrete-time outputs of interest can, now, be determined through (17), (18), (20), and (21).
By making use of simplifying assumptions of the form wct(x, t) ≡ 0, jct(x, t) = jT

ct(x, t), wds (xk, tk) ≡ 0, and jds (xk, tk) =
jT

ds (xk, tk), which, in fact, limit the design space for each subsystem, the continuous-time and discrete-time outputs of the
plant can, thus, be obtained as follows:

hct(x, t) = (1∕2)gT
ct(x, t)JT

x (𝚽N(x))N(t),
jct(x, t) = 0, (44)
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SHARIFI and DAMAREN 11

hds (xk, tk) = (1∕2)gT
ds
(

x−k , tk
)

JT
x (𝚽N(x))

|||x=fds
N

(
t+k
)
,

jds (xk, tk) = (1∕4)gT
ds
(

x−k , tk
) N∑

j=1
cj
(

t+k
)

Hx
(
𝜙j(x)

)|||x=fds
gds

(
x−k , tk

)
, (45)

where Hx denotes the Hessian matrix with respect to x.
With the hybrid output of interest thus determined, a hybrid controller capable of meeting the input strict passiv-

ity requirements remains to be designed to construct closed-loop stability. With this aim in view, two distinct structures
are employed in the following subsections to synthesize the hybrid nonlinear controller in question: a static compen-
sator, which serves to provide proportional output feedback with constant positive gains in each continuous-time and
discrete-time subsystem; and a dynamic compensator, the state of which evolves both continuously and discontinuously
on appropriate manifolds as time elapses. In both architectures, external disturbances acting on the closed-loop system
are assumed to be sufficiently small, that is, (dct,dds) ≅ (0, 0), and, in consequence, the hybrid output of the controller,(
⌢y ct,

⌢y ds
)
, is directly fed back to the plant with negative sign as its hybrid input (See Figure 1). It is noteworthy that

the plant dynamics are also presupposed to evolve periodically over time for the purpose of synthesizing hybrid nonlin-
ear time-varying controllers with enhanced global performance.1 Therefore, asymptotic stability properties are no longer
restricted to the time interval from 0 to tf, and can be repeated over the entire operating range of the system.

3.4 Closed-loop stability: static compensator

With the purpose of constructing a stable closed-loop system, a static controller in the form of a hybrid proportional out-
put feedback compensator with constant positive gains, that is,  ≜ (Kct,Kds) where Kct = KT

ct > 0 and Kds = KT
ds > 0,

is employed in this section to meet the input strict passivity requirements. As the proposed static compensator ben-
efits inherently from the input strict passivity properties, provided that (Kct,Kds) > (0, 0), there is no necessity to use
the corresponding strict passivity-related TV-KYP conditions, and the closed-loop stability can simply be established by
interconnecting the plant dynamics, which are now guaranteed to be passive, and the static controller through negative
feedback. In this regard, the eigendecomposition of proportional gain matrix can be used to demonstrate the input strict
passivity of the static compensator. Since

(
uct,uds,k

)
= −

(
⌢y ct,

⌢y ds
)
= −

(
Kct

⌢u ct,Kds
⌢u ds,k

)
= −

(
Kctyct,Kdsyds

)
, the desired

hybrid nonlinear passivity-based control law can, thus, be formulated as follows:

{
uct(x, t) = −Kcthct t ≠ tk

uds,k = −
(
1mds×mds + Kdsjds

)−1Kdshds t = tk
. (46)

3.5 Closed-loop stability: Dynamic compensator

Aiming to enhance the control authority and to filter out sensor noise, which, in turn, contributes significantly to the first
objective, a compensator of a dynamic nature is adopted in this section to be interconnected with the passive plant through
negative feedback. The idea of using a dynamic compensator in a feedback path has origins in Reference 35 where, in com-
pliance with the positive real design procedure, the continuous-time linear time-invariant (LTI) KYP conditions were used
to develop an embedded control architecture involving a strictly positive real (continuous-time) LTI dynamic compensator
in order to stabilize large-scale space structures. Complementing the aforementioned continuous-time dynamics with
discrete-time events occurring at an appropriate sequence of time instants, together with endowing the resultant dynam-
ics with a time-dependent character, this article proposes a time-varying control-affine structure involving an interacting
pair of continuous-time and discrete-time dynamics to serve as the dynamic compensator in question as follows:
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12 SHARIFI and DAMAREN

where ⌢x is the (virtual) state of the controller and ⌢x ±
k ≜

⌢x
(

t±k
)

represent the controller’s state vec-
tor immediately before and after impulsive actions at t = tk. Furthermore,

⌢

A ct,
⌢

B ct,
⌢

C ct,
⌢

Dct,
⌢

A ds,
⌢

B ds,
⌢

C ds,
and

⌢

Dds denote the time-dependent system matrices, with appropriate dimensions, associated with the
continuous-time and discrete-time subsystems of . With (48) and (50) in mind, since

(
⌢u ct,

⌢u ds,k
)
=
(

yct, yds
)

and
(
⌢y ct,

⌢y ds
)
= −

(
uct,uds,k

)
, the hybrid passivity-based control input to be determined can be formulated in the

following form:

{
uct(x, ⌢x , t) = −⌢

C ct(t)⌢x − ⌢

Dct(t)yct t ≠ tk,

uds
(

x−k ,
⌢x −

k , tk
)
= −⌢

C ds(t)⌢x −
k −

⌢

Dds(t)yds t = tk.
(51)

With the hybrid output dynamics of interest thus computed, the main challenge is now to determine the
time-dependent matrices present in (47)–(50) such that the input strict passivity requirements are met for . With this
aim in view, the strict passivity-related TV-KYP conditions given by (28)–(33) with 𝜀ct > 0 and 𝜀ds > 0 (corresponding to
the structure of (47)–(50) which are linear in ⌢x ) are first fed with the -related system matrices and then employed to
characterize input strict passivity for . By considering Lct, Wct, 𝜀ct, Lds, Wds, and 𝜀ds as design parameters to be appro-
priately selected by the user, the outcome is, nevertheless, an underdetermined set of equations (i.e., the resultant six
equations involve 10 unknowns), which, in turn, presents a new challenge. Aiming to rise to these challenges, the follow-
ing three-step design procedure is proposed in this article. In the first step,

⌢

C ct,
⌢

C ds,
⌢

A ct, and
⌢

A ds are selected in a judicious
manner to render (28)–(33) determined, while simultaneously guaranteeing asymptotic stability for; the resultant dif-
ferential and difference TV-KYP equations, (28) and (31) respectively, are then solved for P(t) in an interacting manner;
and

⌢

B ct,
⌢

Dct,
⌢

B ds, and
⌢

Dds are ultimately computed via the remaining TV-KYP equations (where 𝜀ct > 0 and 𝜀ds > 0).
Instead of arbitrarily assigning

⌢

C ct,
⌢

C ds,
⌢

A ct, and
⌢

A ds, this article proposes the hybrid linear quadratic regulator
(LQR) policy (See Reference 36 for a concise form of the hybrid LQR formulation), amongst all possible approaches,
to accomplish the first objective. In this regard, a hybrid LQR formulation with finite-time horizon, which simultane-
ously combines the continuous-time set of differential Riccati equations with discrete-time Riccati events, is first set up
as per the linearized equations of the plant dynamics given by (24)–(27) in an attempt to render the (underdetermined)
equations (28)–(33) with 𝜀ct > 0 and 𝜀ds > 0 determined, while simultaneously ensuring that the dynamics of  are
asymptotically stable. Once the time-varying Riccati solutions are computed over the entire operating time, the resultant
continuous-time and discrete-time optimal gain matrices are then assigned to

⌢

C ct and
⌢

C ds, respectively. Given a hybrid
quadratic performance index of the form:

 =
∫

tf

t0

(
xT(t)Qctx(t) + uT

ct(t)Rctuct(t)
)

dt +
∑

k=1

(
x−T

k Qdsx−k + uT
ds,kRdsuds,k

)
, (52)

where specifies the total number of impulses applied during the operating period, and Qct = QT
ct ∈ R

n×n
≥ 0, Rct = RT

ct ∈
R

mct×mct
> 0, Qds = QT

ds ∈ R
n×n
≥ 0, and Rds = RT

ds ∈ R
mds×mds

> 0 denote the continuous-time and discrete-time weight-
ing matrices acting on the state and control; it is well known that the hybrid Riccati-based control law, which minimizes
the hybrid performance index represented by (52), can be obtained by the following pair of optimal control inputs:

{
v∗ct(x, t) = −R−1

ct BT
ct𝜞 (t)x(t) t ≠ tk,

v∗ds,k (xk, tk) = −R−1
ds BT

dsA
−T
ds
[
𝜞
−
k −Qds

]
x−k t = tk,

(53)

where 𝜞 (t) = 𝜞 T(t) ≥ 0 represent the time-varying Riccati solutions. In this regard, 𝜞 (t) can be computed via integrating
the following continuous-time set of differential Riccati equations backward in time from t = tf to t = t0, given the bound-
ary conditions at the terminal time 𝜞 (tf) = 0, under the influence of jumps inducing in the matrix solution via provoking
the discrete-time set of Riccati equations at t = tk:

{
̇𝜞 (t) + AT

ct𝜞 (t) + 𝜞 (t)Act +Qct − 𝜞 (t)BctR−1
ct BT

ct𝜞 (t) = 0, 𝜞 (tf) = 0, t ≠ tk,

𝜞
−
k = Qds + AT

ds𝜞
+
k Ads − AT

ds𝜞
+
k Bds

[
Rds + BT

ds𝜞
+
k Bds

]−1BT
ds𝜞

+
k Ads, t = tk.

(54)

With (51) and (53) in mind,
⌢

C ct and
⌢

C ds are therefore determined as follows:
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SHARIFI and DAMAREN 13

⌢

C ct(t) = R−1
ct BT

ct𝜞 (t), (55)

⌢

C ds (tk) = R−1
ds BT

dsA
−T
ds
[
𝜞
−
k −Qds

]
. (56)

Proceeding with the above-mentioned hybrid LQR formulation further,
⌢

A ct and
⌢

A ds are then selected such that the
hybrid dynamic compensator represented by (47)–(50) is guaranteed to be asymptotically stable, that is,

⌢

A ct(t) = Act − Bct
⌢

C ct

= Act − BctR−1
ct BT

ct𝜞 (t), (57)

⌢

A ds (tk) = Ads − Bds
⌢

C ds

= Ads − BdsR−1
ds BT

dsA
−T
ds
[
𝜞
−
k −Qds

]
, (58)

where (Act,Bct) and (Ads,Bds) are assumed to be controllable.
Proceeding to the second step, the linear strict passivity-based gain matrix, P(t), can be computed, with

⌢

A ct and
⌢

A ds
thus determined, through solving (28) and (31) simultaneously in an interacting manner as follows:

{
̇P(t) + ⌢

A T
ctP(t) + P(t)⌢A ct + LT

ctLct = 0, P (tf) = Pf, t ≠ tk,

P−k =
⌢

A T
dsP+k

⌢

A ds + LT
dsLds, t = tk,

(59)

where P±k ≜ P
(

t±k
)

and Pf = PT
f ≥ 0 specify the boundary conditions at the terminal time defined by the user as design

parameters.
In the final step, simplifying assumptions in the form of Wct ≡ 0,

⌢

Dct =
⌢

DT
ct, Wds ≡ 0, and

⌢

Dds =
⌢

DT
ds are made to

limit the design space in each continuous-time and discrete-time subsystem; and
⌢

B ct,
⌢

Dct,
⌢

B ds, and
⌢

Dds are ultimately
computed, respectively, via (29), (30), (32), and (33) as follows:

⌢

B ct(t) = P−1(t)⌢C T
ct, (60)

⌢

Dct(t) =
⌢

Dct = 𝜀ct1mct×mct , (61)

⌢

B ds (tk) =
(
⌢

A T
dsP+k

)−1
⌢

C T
ds, (62)

⌢

Dds (tk) = 𝜀ds1mds×mds + (1∕2)⌢B T
dsP+k

⌢

B ds. (63)

As is apparent from equation (60), the controllability of the pair
(
⌢

A ct,
⌢

B ct
)

along with the observability of the
pairs

(
⌢

C ct,
⌢

A ct
)

and
(

Lct,
⌢

A ct
)
are additionally required to render P(t) invertible in order to compute

⌢

B ct.
All the required ingredients are now in place to find the desired hybrid nonlinear passivity-based control law. To this

end,
⌢

C ct,
⌢

C ds,
⌢

Dct, and
⌢

Dds (computed from (55), (56), (61), and (63), respectively) along with the hybrid output of the
plant represented by (44) and (45) are therefore substituted into (51) to obtain the following hybrid pair of passivity-based
control inputs:

{
uct(x, ⌢x , t) = −⌢

C ct
⌢x (t) − ⌢

Dcthct, t ≠ tk,

uds
(

x−k ,
⌢x −

k , t+k
)
= −

(
1mds×mds +

⌢

Dds jds
)−1 (⌢C ds

⌢x −
k +

⌢

Dds hds
)
, t = tk.

(64)

Figure 2 succinctly summarizes the proposed three-step control design algorithm pursued in the preceding sections
to derive the desired hybrid nonlinear passivity-based control architectures. Aiming to determine the hybrid output
dynamics of the plant which satisfy the passivity properties from input to output, given the heterogeneous dynam-
ics of the system, a discretized representation of the storage function involving a prescribed state-dependent set of
basis functions𝚽N(x) = [𝜙1(x) … 𝜙N(x)]T and their entangled time-dependent coefficients (termed the hybrid nonlinear
passivity-based control gains) N(t) = [c1(t) … cN(t)]T is first substituted into the differential and difference TV-KYP
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14 SHARIFI and DAMAREN

F I G U R E 2 Hybrid nonlinear passivity-based control using static and dynamic compensators.

equations represented by (16) and (19). The resultant hybrid set of equations described by (43) is then solved in an
interacting manner for N(t) in both continuous-time and discrete-time subsystems. The first step, therefore, ends by
injecting the computed passivity-based control gains into (44) and (45) to obtain the hybrid output dynamics of inter-
est. Proceeding to the second step, hybrid compensators of static and dynamic structures are separately designed to meet
the input strict passivity requirements. Whereas the static compensator benefits inherently from the input strict passivity
properties, provided that (Kct,Kds) > (0, 0), the time-dependent system matrices involved in the structure of the dynamic
compensator in question are determined by simultaneous utilization of the hybrid finite-time horizon LQR scheme for-
mulated by (52)–(54) and the strict passivity-related TV-KYP conditions represented by (28)–(33) with 𝜀ct > 0 and 𝜀ds > 0.
In the last step, the resultant plant dynamics and controller are interconnected through negative feedback to establish the
closed-loop stability in accordance with the passivity theorem.

4 PRACTICAL CONSIDERATIONS

Given the heterogeneous dynamics of the plant to be controlled in nonlinear forms, three major parameters must be
selected appropriately to apply the hybrid numerical algorithm developed in Section 3.3: a compact set which contains the
origin as an interior point and is preferably symmetric about it, a set of basis functions which can adequately approximate
the storage function involved in the differential and difference TV-KYP equations, and a set of collocation points which
are located inside and on the boundaries of the compact set.

The compact set (or stability region or a bounded domain of the state space), 𝛀, is defined as the domain of possible
values for the states. 𝛀 can be determined according to kinematical or practical limitations of the system, together with
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SHARIFI and DAMAREN 15

the likely deviation of the system states from their nominal value of zero. For instance, when an attitude control problem
using modified Rodrigues parameters is concerned, the stability region associated with the attitude parameters must be
restricted to (−2𝜋, 2𝜋) in order to ovoid their singularities occurring at −2𝜋 and 2𝜋. For angular velocity components,
however, there are no kinematical limitations; their domain of possible values can, therefore, be selected on the basis of
practical considerations.

Proper selection of basis functions is critical to synthesize the nonlinear passivity-based controllers in question. Two
important requirements pertaining to the structure and number of basis elements, namely, characteristic and quantity
requirements, must be satisfied in order to make an appropriate choice of basis functions. The main objective being pur-
sued by the characteristic requirement is to synthesize a controller by which the essential nonlinear terms involved in the
dynamics of the system are spanned by the basis functions, and hence effectively captured. Basis elements are therefore
configured such that the constituent linear and nonlinear terms of the system dynamics are incorporated into the con-
trol law. The resultant controller therefore wields authority to compensate adequately for the nonlinear dynamics of the
system. Furthermore, the number of basis elements must be sufficiently large to approximate the storage function with
sufficient accuracy (quantity requirement). The accuracy of VN(x, t) is therefore predicated upon both characteristics and
quantities of the basis elements selected to form the approximation. In addition to the characteristic and quantity require-
ments stressed in the preceding, an appropriate choice of basis functions must also produce an invertible ⟨𝚽N ,𝚽N⟩𝛀 to
render (39) solvable.

As demonstrated in the literature, polynomials have been proven to serve effectively as basis functions in algorithms
where the Galerkin-based projection is used to approximate the steady-state version of the Hamilton-Jacobi-Bellman37

and Hamilton-Jacobi-Isaac38 equations. To the knowledge of the authors, the best way to find appropriate selection of
basis functions for time-dependent dynamical systems is to commence with the quadratic basis elements obtained by
the second-order expansion of the system state, eliminating those terms whose corresponding control gains are either
zero or very small as compared to the other terms. The remaining quadratic basis elements must, then, be augmented by
further higher-order terms to capture the essential nonlinear dynamics of the system. Due to multiplication of gT

ct(x, t) and
gT

ds (xk, tk) with JT
x (𝚽N(x)) in the configuration of the proposed passivity-based control laws given by (46) and (51); these

additional higher-order basis elements must be selected such that their partial derivatives with respect to gain-effective
states (those states which correspond to nonzero elements of gT

ct and gT
ds, thereby contributing substantially to preserve

non-zero control gains) result in functions of the states desired to ultimately appear in the passivity-based control laws to
capture the dominant nonlinear dynamics of the system. For clarification, consider a four-dimensional continuous-time
system with the following control input function:

gct(x, t) =

[
0 0 g31 0
0 0 0 g42

]T

,

where x = [x1 x2 x3 x4]T, and g31 and g42 represent the non-zero elements of gct. Since x3 and x4 (associated with g31 and
g42, respectively) act as the gain-effective states for the problem in hand, any basis element consisting of either x3 and x4
will show up in the passivity-based control law as demonstrated below:

uct(x, t) = −1
2

KctgT
ctJ

T
x (𝚽N(x))N(t)

= −1
2

Kct

[
0 0 g31 0
0 0 0 g42

] ⎡⎢
⎢
⎢
⎢
⎣

𝜕𝜙1
𝜕x1

· · · 𝜕𝜙N
𝜕x1

⋮ ⋱ ⋮
𝜕𝜙1
𝜕x4

· · · 𝜕𝜙N
𝜕x4

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

c1(t)
⋮

cN(t)

⎤
⎥
⎥
⎥
⎦

= −1
2

Kct

⎡
⎢
⎢
⎣

g31
𝜕𝜙1
𝜕x3

· · · g31
𝜕𝜙N
𝜕x3

g42
𝜕𝜙1
𝜕x4

· · · g42
𝜕𝜙N
𝜕x4

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

c1(t)
⋮

cN(t)

⎤
⎥
⎥
⎥
⎦

.

Additional higher-order basis elements must, therefore, be selected such that their partial derivatives with respect to
x3 and x4 give rise to functions of x intended to ultimately emerge in the control law, and hence capture the significant
nonlinear dynamics of the system. For example, if the system being considered possesses dynamics involving a nonlinear
term such as x2

1x2, basis elements of the form x2
1x2x3 or x2

1x2x4 (or even x2
1x2x3x4) will eventually produce x2

1x2 in the
passivity-based control law to capture the foregoing nonlinear term.
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16 SHARIFI and DAMAREN

By increasing the number of basis elements in a manner consistent with the characteristic requirements,
VN(x, t)gradually approaches V(x, t). At a certain number of basis elements, satisfactory performance is ultimately
obtained and, in consequence, the quantity requirement is fulfilled, that is, VN ≅ V . Henceforth, any further increase in
the number of basis elements yields insignificant improvement in the system performance at the expense of computa-
tional cost.

Due to entanglement between prescribed state-dependent basis functions,
{
𝜙j(x)

}N
j=1, and time-dependent coeffi-

cients,
{

cj(t)
}N

j=1, in forming a discretized representation of V(x, t), each cj(t) corresponds intimately to a specific basis
element 𝜙j(x), and, in turn, evolves in accordance with the character of this very basis element in addition to the
dynamics of the system. As a consequence, since basis functions are selected in compliance with the system dynamics,
time-dependent control gains duplicate the dynamical behavior of the system. For example, for a controllable system
whose dynamics enjoy periodic properties,

{
cj(t)

}N
j=1 evolve periodically in the steady-state phase.

A suitable set of collocation points is also necessary to design the discrete-time portion of the hybrid nonlinear
passivity-based controller. Collocation points can be selected from the entire compact set excluding the origin, provided
that the rank condition required to render𝚿k(x) invertible is satisfied for solving (41).

All computations involved in the proposed hybrid control algorithms are performed off-line (prior to implementa-
tion); once the passivity-based control gains, N(t), are computed through solving (43) in an interacting manner, the
derived control architectures can be implemented in hardware and run in real time. Moreover, there are possibilities to
facilitate the implementation process of the proposed control schemes. For instance, assuming a periodic or quasi-periodic
character for the time-varying passivity-based control gains over the operating time, Fourier series39 can be employed to
approximate the steady-state portion of N(t) by discarding the initial transient phase coming backward from tf. Rather
than storing the entire time history ofN(t), the Fourier-based approximate coefficients can be stored on-board. As a direct
consequence, not only is the storage memory requirement significantly reduced, but also N(t) computed by a backward
integration process prior to implementation are also no longer restricted to the time interval from 0 to tf (defined by the
user during control design) and can, in turn, be extended globally to any desired operating time of an arbitrary length.
However, the number of coefficients present in Fourier series must be sufficiently large to accurately capture the actual
periodic part of N(t).

Lastly, since the discrete-time passivity-based control gain equations, (41), and the discrete-time dynamics, (3),
require, respectively, the knowledge of the time-varying control gains at t = t+k (i.e., N

(
t+k
)
) for backward integration

(control design) and knowledge of the system state at t = t−k (i.e., x−k ) for forward integration (simulations), the terminal
and initial time instants must be excluded from impulsive application times, that is: tk ∈ (t0, tf).

5 ILLUSTRATIVE EXAMPLE

The functionality of the passivity-based control design frameworks proposed in Sections 3.4 and 3.5 is evaluated in this
section through a multi-state mass-spring system shown in Figure 3. In this regard, the hybrid numerical algorithm
described in Section 3.3 is first executed to compute the passivity-based control gains the utilization of which in the hybrid
output dynamics of the plant satisfies the passivity specifications. Interconnecting the passive plant with an input strictly
passive controller, which individually adopts compensators of static and dynamic forms, through negative feedback, the
stability properties of the resultant closed-loop system are then assessed in Sections 5.1 and 5.2, respectively. Under the
influence of continuous-time forces acting on masses 1 and 2 along with a single impulsive action on mass 2, the equations
of motion for the mass-spring system can be formulated in a state-space representation as follows:

ẋ(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x3

x4
(
𝜅2x2 − x1 (𝜅1 + 𝜅2) − 𝜅2𝛼

2
2
(

x3
1 − x3

2
)
− 𝜅1𝛼

2
1x3

1
)
∕m1

(
𝜅2 (x1 − x2) + 𝜅2𝛼

2
2
(

x3
1 − x3

2
))
∕m2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0
0 0

cos(𝜔t)∕m1 0
0 cos(𝜔t)∕m2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

uct +
∑

k=1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0

1∕m2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

uds,k𝛿 (t − tk) ,
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SHARIFI and DAMAREN 17

F I G U R E 3 Schematic representation of mass-spring system under action of continuous-time and discrete-time forces.

where x =
[
x1 x2 x3 x4

]T, m1 = 1 kg, m2 = 0.5 kg, 𝛼1 = 1, 𝛼2 = 2, 𝜅1 = 1 N∕m, 𝜅2 = 1.5 N∕m, 𝜔 = 1 Hz, and 𝛿(t)
denotes the Dirac delta function located at each impulsive instant tk.

With fct, gct, fds, and gds coming directly from the hybrid equations of motion; stability region, 𝛀, basis functions,
𝚽N(x), impulsive application instants, the boundary conditions at the terminal time, f, and weighting functions, lct and
lds, remain to be determined. Since there are no kinematical limitations for the displacement and velocity components
of both point masses, their domain of possible values is accordingly selected on the basis of practical considerations as
follows:

𝛀 =
[
− 3 3

]

x1

×
[
− 3 3

]

x2

×
[
− 1 1

]

x3

×
[
− 1 1

]

x4

,

where the position and velocity quantities are expressed in m and m∕s, respectively.
Basis functions are the next set of parameters to be appropriately determined. As is apparent, the dynamics of the

system involve two nonlinear terms, namely x3
1 and x3

2. For the control to adequately capture these nonlinear terms, the
quadratic basis elements obtained by the second-order expansion of the states must, thus, be augmented by additional
higher-order terms. Since x3 and x4 act as the gain-effective states for the problem in hand, two basis elements in the form
of x3

1x3 and x3
2x3 (or equivalently x3

1x4 and x3
2x4) are accordingly appended to the resultant set of quadratic basis elements

to fulfill the characteristic requirements as follows:
{

x2
1 , x1x2, x2

2 , x2
3 , x3x4, x2

4 , x3
1x3, x3

2x3
}

.
By increasing the number of basis elements in a manner consistent with the characteristic requirements, the quantity

requirement is ultimately met at N = 14, and the following set of basis functions are accordingly obtained:

𝚽N(x) =
{

x2
1 , x1x2, x2

2 , x2
3 , x3x4, x2

4 , x3
1x3, x3

2x3, x4
1 , x2

1x2
2 , x4

2 , x4
3 , x2

3x2
4 , x4

4
}
.

Assuming a prescribed set of impulsive application times, five equally spaced impulses, the applications of which
result in satisfactory performance, are selected for this problem, that is, = 5.

The boundary conditions at the terminal time, f, play a crucial role in producing acceptable results. Owing to the
time-varying nature of the passivity-based control gains N(t), blind selection of f can lead to undesirable gains with
unbounded growth in N(t) backward, thereby destroying the control design. The following boundary conditions at the
terminal time are therefore selected to obtain satisfactory performance:

f =
[
0, 1, 1, 102

, 10, 102
, 1, 1, 0, 1, 1, 102

, 10, 102]T
.

Moreover, by considering lct and lds in the form of lct(x, t) = ctx and lds
(

x−k , t−k
)
= dsx−k , where ct ∈ R

pct×n and
ds ∈ R

pds×n are assumed to be constant, the following matrices are selected to weight the system state:

𝜣ct = T
ctct = diag

(
1 1 10−1 10−1

)
,

𝜣ds = T
dsds = diag

(
1 1 10−1 10−1

)
.

As is expected, a weighing matrix with larger diagonal terms results in performance whose transient response
approaches the equilibrium faster.
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18 SHARIFI and DAMAREN

5.1 Stabilization via static compensator

In this section, the passivity-based control design framework equipped with a static constant-gain compensator is
employed to stabilize the mass-spring system shown in Figure 3. To this end, the continuous-time and discrete-time
positive proportional parameters used in the feedback loop to guarantee input strictly passivity are tuned to Kct =(
65 × 10−2) 12×2 and Kds = 10−2, respectively. These parameters, in fact, serve to panelize the continuous-time and

impulsive control effort.
The simulation results associated with the static compensator are shown in Figures 4 and 5 under the influence of the

initial conditions x(0) =
[
10−1 −2 × 10−1 0 0

]T where the required computational time is 4.35 s. As is apparent, the
time histories of the positions and velocities of point masses m1 and m2 demonstrate satisfactory performance in terms of
transient response and steady-state behavior. By adjusting the size of the diagonal terms in the weighting matrices acting
on the state and control, that is, 𝜣ct and 𝜣ds as against Kct and Kds, a trade-off between the speed of the response and
control effort can be made to achieve satisfactory performance.

5.2 Stabilization via dynamic compensator

In the next attempt, the passivity-based control architecture involving a dynamic compensator is used to stabilize the
mass-spring system being considered. To this end, the following weighting matrices acing on the state and control in each

F I G U R E 4 Time histories of position and velocity of mass-spring system with static compensator.

F I G U R E 5 Time histories of continuous-time and discrete-time control inputs for mass-spring system under action of static
compensator.
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SHARIFI and DAMAREN 19

F I G U R E 6 Time histories of position and velocity of mass-spring system with dynamic compensator.

continuous-time and discrete-time subsystem are first selected to tune the proposed hybrid LQR architecture formulated
by (54) in preparation for rendering the dynamic compensator asymptotically stable:

Qct = diag
(

5 5 5 × 10−1 5 × 10−1
)

, Rct = diag
(

102 102
)
,

Qds = diag
(

10 10 10−1 10−1
)

, Rds = 107
.

Next, the following parameters are selected to simultaneously erect the interacting set of equations given by (59) to be
integrated backward in time in order to compute P(t) to be used in (60), (62), and (63):

𝜩ct = LT
ctLct = diag

(
4 × 10−1 4 × 10−1 10 10

)
,

𝜩ds = LT
dsLds = diag

(
6 × 10−1 6 × 10−1 102 102

)
,

Pf =

[
Pf,1 Pf,2

Pf,2 Pf,3

]

,

where Pf,1 = 02×2, Pf,2 = 12×2, and Pf,3 = 12×2. In this regard, 𝜩ct and 𝜩ds serve, respectively, to weight the con-
tinuous evolution of the state in the flow manifold and instantaneous changes in the state of the system in the
jump manifold. Lastly, the continuous-time and discrete-time positive parameters used in (61) and (63), the uti-
lization of which ensures input strict passivity via (30) and (33), are tuned to 𝜀ct = 65 × 10−2 and 𝜀ds = 10−5,
respectively.

The simulation results associated with the dynamic compensator are depicted in Figures 6 and 7 under the
exertion of the initial conditions x(0) =

[
10−1 −2 × 10−1 0 0

]T where the required computational time is 7.39 s. As
is evident, the hybrid passivity-based controller wields authority effectively to stabilize the states of the system with
reasonably quick and well-damped responses for all position and velocity components. By increasing 𝜀ct, 𝜀ds, Qct, and
Qds (while Rct and Rds are decreased or remain constant), the proposed control scheme drives position and veloc-
ity components to zero faster. This improved performance occurs, however, at the expense of larger continuous-time
and impulsive control effort, which is practically undesirable. Furthermore, the superior performance of the dynamic
compensator can be observed in comparison to the static compensator by quantitatively assessing their functional-
ities via defining and computing root-mean-square norms in terms of the state and control inputs over the entire
operating time.
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20 SHARIFI and DAMAREN

F I G U R E 7 Time histories of continuous-time and discrete-time control inputs for mass-spring system under action of dynamic
compensator.

6 CONCLUSION

Two passivity-based control architectures for hybrid nonlinear dynamical systems involving an interacting mixture
of continuous-time and discrete-time dynamics whose dynamical properties evolve periodically over time have been
developed in this article. By deriving the KYP conditions characterizing dissipativity for hybrid nonlinear time-dependent
dynamical systems, a hybrid numerical framework was then proposed to solve the resultant equations in an interacting
manner. Utilizing the aforementioned KYP conditions and the passivity theorem simultaneously, compensators of static
and dynamic structures were then developed to establish stable closed-loop dynamics. To summarize, the proposed hybrid
control schemes enjoy several advantages: (1) the approximate control laws are in an explicit form of output feedback;
(2) the control laws remain stable when the approximation is truncated at a finite degree of complexity; (3) the stabil-
ity region is specified by the user; (4) computations are performed off-line; (5) the system performance is anticipated to
exhibit enhanced robustness with respect to uncertainties and measurement noise effects; and (6) the resultant control
laws, the synthesis of which is based upon the full nonlinear dynamics of the system, can be exploited over the entire
operating range of the system.
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