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Abstract
Low-thrust spacecraft propulsion systems enable fuel-efficient trajectories through space but the resulting trajectory opti-
mization problems can be challenging. Such problems often use direct collocation methods for transcribing the optimal
control problem into a nonlinear programming problem. In this work, the Hermite–Legendre–Gauss–Lobatto (HLGL) and
the Legendre–Gauss pseudospectral (PS) direct collocation methods have been compared for a minimum-time low-thrust
Earth-to-Mars transfer problem. It is demonstrated that trajectories with different time domains can be effectively compared
using points that correspond to the same normalized times. Various metrics that describe the computational cost as well as the
errors with respect to a reference trajectory have been used. For the HLGL method, the number of subintervals (m) and the
order of the interpolating polynomial (n), can be varied such that the number of nodes (N ) stays constant. The distribution
of the number of such (m, n) pairs is analysed using the concept of divisor functions from number theory and an algorithm
for determining all the possible combinations for any N value is developed. In addition, a method is presented by which the
Edelbaum trajectory is used to set bounds, scale the problem, and generate a suitable initial guess. The primary contribution
of this paper involves a detailed comparison of the performance of all the HLGL pairs with the PS method for nodes in the
range N = 6 to N = 40 for the minimum-time low-thrust Earth-to-Mars transfer.

Keywords Low thrust · Spacecraft trajectory optimization · Interplanetary transfer · Pseudospectral method ·Divisor function

1 Introduction

Low-thrust electric propulsion for spacecraft provides a fuel-
efficient mode of transportation in space. Because of the high
specific impulses of these engines, they have been used for a
variety of missions with the first interplanetary spacecraft to
use this technology beingDeepSpace I [4]. The primary chal-
lengewith the optimization of low-thrust trajectories is due to
the large search space caused by the continuous thrusting, the
non-Keplerian nature of the orbits, and the longmission dura-
tions. As with high-thrust trajectory optimization, a suitable
initial guess to an optimization algorithm is required in order
to obtain a converged solution. An effective method of gen-
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erating these initial guesses is through the use of shape-based
methods that use functions with limited parameters to model
a family of low-thrust trajectories [17,22,24]. To satisfy the
equations of motion and the boundary conditions, differ-
ent systems of equations corresponding to each shape-based
method need to be solved. Petropoulos and Longuski [16]
developed the four-parameter exponential sinusoid model to
approximate near-planar low-thrust trajectories. Research by
Wall and Conway [23,24] developed an inverse polynomial
model that can be used for a three-dimensional rendezvous
mission with up to a 15 ◦ inclination change with a specified
starting and ending time. Another type of analytical solution
is basedon theworkbyEdelbaum[7],whichprovides expres-
sions for a minimum-time coplanar circle-to-circle transfer
with a low, constant, tangential thrust, for which the termi-
nal phase cannot be specified [6]. Such methods are useful
for rapidly searching large areas of the feasible set, which
can reduce computational times for problems such as grav-
ity assist optimization [13]. Once an estimate of an optimal
trajectory has been found using analytical methods, it can be
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supplied as an initial guess to a direct transcription method
for finer optimization [16].

Direct transcriptionmethods, also called direct collocation
methods, convert the optimal control problem into a Non-
linear Programming (NLP) problem through transcription
onto a discrete set of points in the time domain. Com-
pared to the calculus of variations-based indirect methods,
direct methods do not require the derivation of the first-
order necessary conditions and are less sensitive to the initial
guess [3]. These methods can be further divided into global
collocation methods and local collocation methods. Global
collocation methods use an approximating function over the
entire time interval. An area of active research involves a
class of methods known as pseudospectral methods, which
have been generally used as global methods [20]. These
methods use orthogonal basis polynomials to approximate
the state and control and use orthogonal collocation points
to achieve accurate quadrature approximations. For smooth
problems, pseudospectral methods have the property of spec-
tral, or exponential, convergence [21]. Garg et al. [9] have
compared the Legendre–Gauss–Lobatto (LGL), Legendre–
Gauss (LG), and Legendre–Gauss–Radau (LGR) variants of
the pseudospectral method in depth and developed the trans-
formations between the Karush–Kuhn–Tucker multipliers of
the NLP problem and the costates of the continuous prob-
lem. Local collocation methods break the time interval into
segments and within each of these segments, piecewise func-
tions are used to approximate the state and control histories.A
well-known method is the Hermite–Simpson method where
within each segment, cubic polynomials are used to approx-
imate the state and linear functions are used to approximate
the control. Herman and Conway [12] have compared the
performance of direct collocation methods that use higher
order Gauss–Lobatto quadrature rules.Williams developed a
framework known as the Hermite–Legendre–Gauss–Lobatto
(HLGL)method for higher odd-orderedGauss–Lobatto rules
[27]. This method avoids the detailed analytical derivation of
the constraints needed in the work by Herman and Conway
[12] and takes a generalized matrix based approach.

Numerical comparisons of the performance of different
direct methods with respect to the number of time discretiza-
tion nodes, N , is an important research topic. In fact, as
expressed by Shirazi et al. [22] in their recent survey paper,
there is no widely accepted way to do comparisons of space-
craft trajectory optimization methods. Williams conducted
[26,27] a comparison of various direct transcription meth-
ods using five different values of N and later using eight
different values of N for the HLGL method. Wang et al.
[25] compared the LGL, LG, and LGR pseudospectral meth-
ods for a minimum-fuel Earth-to-Mars rendezvous mission
but restricted their analysis to N = 42. García-Heras et al.
[8] compared the Hermite–Simpson, the 5th-order HLGL,
the Chebyshev–Gauss–Lobatto, and the LGL methods for a

minimum-fuel air traffic management problem but not all of
the methods were compared for the same N values.

It is apparent that there is limited research into a compar-
ison of direct methods for a fine mesh of N values with a
thorough investigation, for local methods, of all the combi-
nations of the number of subintervals and the order of the
interpolating polynomial for a given N value. As a comple-
ment to the existing research, and to address this research
gap, a detailed comparison of the local Hermite–Legendre–
Gauss–Lobatto (HLGL) and the global Legendre–Gauss
pseudospectral (PS) direct methods for fixed problem sizes
in the range N = 6 to N = 40 has been performed here for a
minimum-time interplanetary spacecraft trajectory optimiza-
tion problem.

2 Methodology

A formulation of a general continuous optimal control prob-
lem stated in the Bolza form [5], is as follows:

Minimize J = φ
(
x f , t f

) +
∫ t f

t0
L (x (t) ,u (t) , t) dt

Subject To:

ẋ (t) = f (x (t) ,u (t) , t)

gi (x (t) ,u (t) , t) ≤ 0, i = 1, 2, . . . , ng

hi (x (t) ,u (t) , t) = 0, i = 1, 2, . . . , nh (1)

where x(t) ∈ R
nx is the state, u(t) ∈ R

nu is the control,
x f is the terminal state, t f is the terminal time, and J is the
objective function. The functions gi and hi correspond to the
inequality and equality constraints, respectively. It is impor-
tant to note that the general formulation in Eqs. (1) is suitable
for both minimum-time as well as minimum-fuel optimiza-
tions, due to the presence of t f and u(t) in the definition of
J .

2.1 Edelbaum transfer

Edelbaum published his analytic equations for a low-thrust
minimum-time transfer between two inclined circular orbits
of radii r0 and r f based on Gauss’ variational equations [7].
For the case of a coplanar circle-to-circle transfer, these equa-
tions simplify [6] to:

r(t) = μ
(√

μ
r0

− f t
)2

θ(t) = μ

4 f

(
1

r20
− 1

r2 (t)

)
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Table 1 Summary of the Legendre–Gauss pseudospectral and Hermite–Legendre–Gauss–Lobatto methods

State interpolation
strategy

State interpolating
polynomial

Enforcement of dynamics Control interpolation Quadrature

PS Lagrange interpola-
tion over the entire
time domain using
the state values at the
set of N + 1 interpo-
lating points τ 0:N

A single N th-order
global polynomial is
used to approximate
the state over the
entire time domain

The hPS equations con-
strain the derivatives of the
interpolating polynomial to
match the vector field at the
set of N collocation points
τ 1:N

Lagrange interpola-
tion over the entire
time domain using
the control values at
τ 1:N

LG quadrature per-
formed over the entire
time domain

HLGL Hermite interpo-
lation over the i th
subinterval using the
state values and its
derivatives at the set
of n+1

2 nodes γ i

A separate nth-order
local polynomial is
used to approximate
the state for each of
the m subintervals

The hHLGL equations con-
strain the derivatives of
the interpolating polynomial
over the i th subinterval to
match the vector field at the
set of n−1

2 collocation points
ζ i

Linear interpolation
over the i th subinter-
val using the control
values at γ i

LGL quadrature per-
formed cumulatively
over each subinterval

ṙ (t) = 2μ f
(√

μ
r0

− f t
)3

θ̇ (t) = μ

2 f

(
ṙ (t)

r3 (t)

)

Tm =
(
1

f

)(√
μ

r0
−

√
μ

r f

)
, (2)

where we assume a small, constant, tangential thrust ( f ), a
small eccentricity throughout the transfer, and a long transfer
time (Tm) relative to the orbital period [6,7]. The quantity
μ is the standard gravitational parameter and θ is the true
anomaly. Sincewe have constant thrust, this coplanar transfer
is optimal with respect to both time and fuel.

The Edelbaum equations are not as flexible as some of the
other analytical methods such as exponential sinusoids and
inverse polynomials because they only depend on r0, r f , and
the thrust magnitude f . For this reason, they cannot be used
to generate trajectories for rendezvous missions where the
time of flight and terminal position are constraints. However,
the real power of Edelbaum’s equations lies in the fact that
they can be used as an initial guess for direct transcription
methods to solve closely related minimum-time problems.

2.2 Legendre–Gauss pseudospectral method

The continuous optimal control problem in Eqs. (1) can be
transformed into an NLP problem using the Legendre–Gauss
pseudospectral method [9]:

Minimize J = φ
(
XN+1, t f

)

+
(
t f − t0

2

) N∑

i=1

wiL (Xi ,Ui , t (τi ))

Subject To:

gi (X1:N+1,U1:N+1, t (τ 1:N+1)) ≤ 0, i = 1, 2, . . . , ng

hi (X1:N+1,U1:N+1, t (τ 1:N+1)) = 0, i = 1, 2, . . . , nh

hPS := DX0:N −
(
t f − t0

2

)
F (X1:N ,U1:N , t (τ 1:N )) = 0,

(3)

where the problem has been discretized at the set of N
Legendre–Gauss collocation points τ 1:N . The wi are the
Legendre–Gauss quadrature weights. Lagrange basis poly-
nomials are used to form a global N th-order polynomial to
interpolate the state and control. The quantities X1:N and
U1:N are the matrices composed of rows of the state and
control vectors, respectively, at τ 1:N . F is the state deriva-
tive matrix at τ 1:N evaluated using the equations of motion,
and D is the differentiation matrix such that DX0:N gives the
derivative of the interpolating polynomial for the state at each
of the collocation points. It should be noted that an additional
Nnx equality constraints, which are due to the PS method,
have been added to the problem. These are denoted by hPS

and are enforced at the collocation points τ 1:N . The other
equality and inequality constraints, gi and hi , are enforced
at τ 1:N+1 with the expectation that a high enough N is likely
to cause the entire interpolated solution to satisfy the con-
straints. For a summary of this method in relation to the
HLGL method, please see Table 1. For a detailed deriva-
tion of the Legendre–Gauss pseudospectral method, please
see Appendix A.

2.3 Hermite–Legendre–Gauss–Lobattomethod

The continuous optimal control problem in Eqs. (1) can
be transformed into an NLP problem using the Hermite–
Legendre–Gauss–Lobatto method [27]:
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Minimize J = φ
(
xm (1) , t f

)

+
m∑

i=1

hi
2

n∑

j=1

w jL
(
xi

(
ξ j

)
,ui

(
ξ j

)
, ti

(
ξ j

))

Subject To:

gi (x (γ ) ,u (γ ) , t (γ )) ≤ 0, i = 1, 2, . . . , ng

hi (x (γ ) ,u (γ ) , t (γ )) = 0, i = 1, 2, . . . , nh

hHLGL := ΦT
dibi

−hi
2
F
(
ΦT

i bi ,ui
(
ζ i

)
, ti

(
ζ i

)) = 0, i = 1, 2, . . . ,m

(4)

where the time domain has been split into m subintervals.
Within each subinterval, Hermite interpolation is used to
form an nth-order polynomial to approximate the state while
linear interpolation is used to approximate the control. For
subinterval i , the n LGL points ξ are divided into n+1

2 nodes
denoted by γ and n−1

2 collocation points denoted by ζ . In
total, across all subintervals, this problem has N nodes. The
term w j denotes the Legendre–Gauss–Lobatto quadrature
weights within each subinterval. The quantities xi and ui
are the state and control approximations at the i th subin-
terval while x and u represent the approximations of the
full state and control trajectories, respectively, in [t0, t f ].
The quantity ΦT

di
bi represents the derivative of the approxi-

mating polynomial for the state evaluated at ζ i while ΦT
i bi

just represents the polynomial evaluated at those points. An
additional mnx (

n−1
2 ) equality constraints, due to the HLGL

method, have been added to the problem. The hHLGL con-
straints are enforced at the collocation points, whereas the
other constraints, gi and hi , are enforced at the nodal points.
For a summary of this method in relation to the PS method,
please see Table 1. For a detailed derivation of the Hermite–
Legendre–Gauss–Lobatto method, please see Appendix B.

3 Problem formulation: Earth-to-Mars
orbital transfer

The dimensional problem statement is formulated with the
state x = [r θ ṙ θ̇ ] and the control u = [u α], where u is
the thrust magnitude and α is the thrust angle. This can be
written as:

Minimize J = t f

Subject To:

ẋ (t) =
[
ṙ θ̇

(
r θ̇2 − μSun

r2
+ u sin α

)

(−2ṙ θ̇

r
+ u cosα

r

)]

xlb ≤ x ≤ xub

xlb = [rEarth 0 − 100max(|ṙEdel|) 0]

xub =
[
rMars 2(2π)

⌈
θ f ,Edel

2π

⌉
100max(|ṙEdel|)

100max(|θ̇Edel|)
]

[0 − π ] ≤ u ≤
[
3 × 10−4 π

]

1 ≤ t f ≤ 10t f ,Edel

x (0) =
[

rEarth 0 0

√
μSun

r3Earth

]

x
(
t f

) =
[

rMars
3π

2
+ k2π 0

√
μSun

r3Mars

]

, (5)

where the units for x are [m rad m/s rad/s], the units for
u are [N/kg rad], and the unit of t is [s]. The quantities with
subscript ( )Edel correspond to the Edelbaum transfer. A lin-
ear scaling method is chosen where each of the variables and
their bounds are scaled by the corresponding upper bounds
so that the problem is non-dimensionalized. In addition, the
decision vector lies in [−1, 1] because the upper bound of
each variable has been chosen to be larger than or equal to
the magnitude of the lower bound.

4 PS and HLGL comparison with constant N

The Legendre–Gauss pseudospectral method and the
Hermite–Legendre–Gauss–Lobatto method have been com-
pared for an Earth-to-Mars minimum-time transfer problem
for the range N = [6, 40]. In addition, the N = 64 PS
method and the N = 64 HLGL method with n = 3 were
analysed to investigate the behaviour at a higher value of
N . The n = 3 HLGL method, using cubic polynomials, is
also known as the Hermite–Simpson (HS) method. The ref-
erence trajectory for calculating error metrics for trajectories
in the range N = [6, 40] was taken to be the solution of
the N = 64 PS method as it had a lower objective function
value than the N = 64HSmethod. Thesemethods have been
implemented and compared in Matlab using SNOPT [10] as
the NLP solver. The Edelbaum trajectory, shown in Fig. 1,
was used as an initial guess for the N = 16 HS method. To
make a fair comparison, the result of this optimization was
then used as an initial guess for all runs.

4.1 Optimized Earth-to-Mars trajectory

For N = 64, both the HS method and the PS method result
in trajectories that are close to each other, as can be seen in
Fig. 2. This suggests that close localminimahave been found.
The optimal transfer time for the PS method was found to
be approximately 354 days while for the HS method, it was
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Fig. 1 Earth-to-Mars Edelbaum transfer
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Fig. 2 Earth-to-Mars optimized trajectory—N = 64

found to be about 365 days. If we assume a spacecraft dry
terminal mass ofmdry = 300 kg and an enginewith a specific
impulse of Isp = 3550 s, it was found that the PS trajectory
expended more fuel in trying to minimize the objective as
it consumed mfuel = 90 kg while the HS trajectory only
consumed mfuel = 76 kg. In addition, it was found that the
arc length of the PS trajectory was 8.41 × 1011 m while the
HS trajectory had a higher arc length of 8.52× 1011 m. This
agrees with the lower transfer duration for the PS trajectory.

4.2 HLGL (m, n) pairs for constant N

To compare the performance of the PS and HLGL methods,
it is desirable to keep the problem size approximately con-
stant. This can be done by comparing runs that have the same
number of nodes. In this work, we define the problem size

to be the length of the NLP vector passed to the NLP solver.
The problem size of the global PS method is directly con-
trolled by N , the number of nodes. In contrast, the problem
size of the HLGL method is indirectly controlled by m, the
number of subintervals, and n, the order of the interpolating
polynomial within each subinterval. It is important to note
that for a given N value, the size of the NLP vector for the
Legendre–Gauss PS method is given by N (nx + nu) + 1
while the size of the NLP vector for the HLGL method is
given by N (nx + nu) − nx + 1. The “+1” terms correspond
to adding the transfer time to the set of optimization variables.
The size of the NLP vector for the HLGL method is lower
by nx since we omit the initial state from the NLP vector as
it is a known quantity. It is, however, augmented internally
to evaluate constraints and perform interpolation. For large
enough values of N , it is reasoned that the difference of nx
will be negligible when controlling for the problem size. The
relation between N , m, and n can be expressed as

N = n + 1

2
+

(
n − 1

2

)
(m − 1) ,

{n ∈ 2Z + 1 | 3 ≤ n ≤ 2N − 1}, (6)

where the first term represents the number of nodes in the
first subinterval and the second term accounts for the (n −
1)/2 nodes in each of the remaining (m − 1) subintervals.
The restrictions on n are necessary to make the number of
constraints per interval, nx (n − 1)/2, a positive integer. It is
useful to isolate form in Eq. (6) as a function of N and n and
this results in the simple relation

m = 2 (N − 1)

n − 1
, {n ∈ 2Z + 1 | 3 ≤ n ≤ 2N − 1}. (7)

For a given value of N , Eq. (7) can be used to generate possi-
ble pairs of (m, n) values by iterating through various values
of n. To search for valid integer values of m, it is necessary
to test positive odd values of n between the lower bound of
n = 3 and the upper bound of n = 2N − 1. A full listing of
the possible (m, n) pairs in the range N = [6, 40] is given in
Table 2.

At this point, a connection to number theory can be made
here using Ramanujan’s work on divisor functions [19] and
Highly Composite Numbers (HCN) [2,15,18]. The divisor
function

σk (n) =
∑

d|n
dk (8)

sums over the kth powers of all d such that d is a divisor of
n, which is indicated by d|n. If k = 0, then

σ0 (n) =
∑

d|n
d0 (9)
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Table 2 HLGL (m, n) pairs and case numbers—bolded case numbers indicate convergence

Case
number

Nodes
N

HLGL
pair
(m, n)

Case
number

Nodes
N

HLGL
pair
(m, n)

Case
number

Nodes
N

HLGL
Pair
(m, n)

Case
number

Nodes
N

HLGL
pair
(m, n)

1 6 (5, 3) 37 16 (1, 31) 73 25 (4, 13) 109 33 (4, 17)

2 6 (1, 11) 38 17 (16, 3) 74 25 (3, 17) 110 33 (2, 33)

3 7 (6, 3) 39 17 (8, 5) 75 25 (2, 25) 111 33 (1, 65)

4 7 (3, 5) 40 17 (4, 9) 76 25 (1, 49) 112 34 (33, 3)

5 7 (2, 7) 41 17 (2, 17) 77 26 (25, 3) 113 34 (11, 7)

6 7 (1, 13) 42 17 (1, 33) 78 26 (5, 11) 114 34 (3, 23)

7 8 (7, 3) 43 18 (17, 3) 79 26 (1, 51) 115 34 (1, 67)

8 8 (1, 15) 44 18 (1, 35) 80 27 (26, 3) 116 35 (34, 3)

9 9 (8, 3) 45 19 (18, 3) 81 27 (13, 5) 117 35 (17, 5)

10 9 (4, 5) 46 19 (9, 5) 82 27 (2, 27) 118 35 (2, 35)

11 9 (2, 9) 47 19 (6, 7) 83 27 (1, 53) 119 35 (1, 69)

12 9 (1, 17) 48 19 (3, 13) 84 28 (27, 3) 120 36 (35, 3)

13 10 (9, 3) 49 19 (2, 19) 85 28 (9, 7) 121 36 (7, 11)

14 10 (3, 7) 50 19 (1, 37) 86 28 (3, 19) 122 36 (5, 15)

15 10 (1, 19) 51 20 (19, 3) 87 28 (1, 55) 123 36 (1, 71)

16 11 (10, 3) 52 20 (1, 39) 88 29 (28, 3) 124 37 (36, 3)

17 11 (5, 5) 53 21 (20, 3) 89 29 (14, 5) 125 37 (18, 5)

18 11 (2, 11) 54 21 (10, 5) 90 29 (7, 9) 126 37 (12, 7)

19 11 (1, 21) 55 21 (5, 9) 91 29 (4, 15) 127 37 (9, 9)

20 12 (11, 3) 56 21 (4, 11) 92 29 (2, 29) 128 37 (6, 13)

21 12 (1, 23) 57 21 (2, 21) 93 29 (1, 57) 129 37 (4, 19)

22 13 (12, 3) 58 21 (1, 41) 94 30 (29, 3) 130 37 (3, 25)

23 13 (6, 5) 59 22 (21, 3) 95 30 (1, 59) 131 37 (2, 37)

24 13 (4, 7) 60 22 (7, 7) 96 31 (30, 3) 132 37 (1, 73)

25 13 (3, 9) 61 22 (3, 15) 97 31 (15, 5) 133 38 (37, 3)

26 13 (2, 13) 62 22 (1, 43) 98 31 (10, 7) 134 38 (1, 75)

27 13 (1, 25) 63 23 (22, 3) 99 31 (6, 11) 135 39 (38, 3)

28 14 (13, 3) 64 23 (11, 5) 100 31 (5, 13) 136 39 (19, 5)

29 14 (1, 27) 65 23 (2, 23) 101 31 (3, 21) 137 39 (2, 39)

30 15 (14, 3) 66 23 (1, 45) 102 31 (2, 31) 138 39 (1, 77)

31 15 (7, 5) 67 24 (23, 3) 103 31 (1, 61) 139 40 (39, 3)

32 15 (2, 15) 68 24 (1, 47) 104 32 (31, 3) 140 40 (13, 7)

33 15 (1, 29) 69 25 (24, 3) 105 32 (1, 63) 141 40 (3, 27)

34 16 (15, 3) 70 25 (12,5) 106 33 (32, 3) 142 40 (1, 79)

35 16 (5, 7) 71 25 (8, 7) 107 33 (16, 5)

36 16 (3, 11) 72 25 (6, 9) 108 33 (8, 9)

counts the number of divisors for a given n and is a well-
known function in number theory [11]. As the values of σ0(n)

are tabulated in the literature [1], if we connect Eq. (7) to this
function, then it will be possible to look up the number of
valid (m, n) pairs for a given N . Let us, therefore, rewrite
Eq. (7) as:

m = 2 (N − 1)

n − 1
, {n ∈ 2Z + 1 | 3 ≤ n ≤ 2N − 1} (10)

= N − 1
( n−1

2

) , {n ∈ 2Z + 1 | 3 ≤ n ≤ 2N − 1} (11)

= N − 1

k
, {k ∈ Z | 1 ≤ k ≤ N − 1}, (12)

where k = n−1
2 . In this form, since any integral value of k

from 1 to N − 1 that is a divisor of N − 1 corresponds to an
HLGL (m, n) pair, we see that the number of HLGL pairs
corresponds to the number of divisors of N −1. To formalize
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Fig. 3 Number of HLGL pairs and its upper bound vs. N

this, let us denote the number of valid HLGL pairs for a given
N by η(N ). Then we can write

η (N ) = σ0 (N − 1) . (13)

With Eq. (13) we are able to use the values of the divisor
function to determine the number of possible HLGL pairs for
a given N . Additionally,we know that for a natural number p,
we can find an upper bound on the number of divisors using
σ0(p) < 2

√
p and knowing that the number of divisors must

be an integral value, we can write η(N ) ≤ �2√N − 1�. A
plot that shows η(N ) for the range N = [2, 40] along with
the upper bound of �2√N − 1� is given in Fig. 3.

Through this process, it can be seen that η(N ) is non-
monotonic and that there are some values of N that have
more valid (m, n) pairs than others. Odd values of N tend to
result in larger values of η(N ) since this causes N − 1 in Eq.
(13) to be even, and even numbers tend to have more divisors
than odd numbers. In 1915, Ramanujan [18] introduced the
concept of a Highly Composite Number (HCN) to describe a
number q such that σ0(p) < σ0(q), ∀p < q. Looking at the
spikes in Fig. 3, we see that a maximum value of η(N ) = 9
occurs at N = 37, which is expected since N − 1 = 36 is
the largest HCN less than 48.

4.3 Calculating errors between spacecraft
trajectories with different time domains

For minimum-time spacecraft trajectory optimization prob-
lems, since the terminal time is free, the time domains for
trajectories resulting from different optimization runs may
not be equal. This is certainly the case with using the N = 64
PS trajectory as the reference trajectory, since the transfer
duration found by this method is generally smaller than the

transfer durations found using the other cases that are being
compared. To calculate the Root Mean Square (RMS) errors,
corresponding points in time need to be chosen between both
trajectories. If we use dimensional time to find the corre-
sponding points, then the reference N = 64 PS trajectory
needs to be extrapolated and will diverge quite quickly as
this involves a 64th-order polynomial.

The solution used in this paper is to calculate RMS errors
by comparing points that correspond not to the same points in
dimensional time but to the same points in normalized time
s ∈ [−1, 1]. For example, the beginning (s = −1), middle
(s = 0), and end (s = 1) of each trajectory can be compared
with the corresponding points of the reference trajectory.
This idea eschews extrapolation and allows the comparison
of two spacecraft trajectories with different time domains.
As required, the RMS errors found using this method will
approach zero as these trajectories converge.

Specifically, in this work, we calculate the RMS errors
of trajectories found using either the PS or HLGL method
for the range N = [6, 40], with respect to the N = 64 PS
method reference trajectory. First, a set S of KRMS = 20000
linearly spaced points in [−1, 1] is chosen, including the
endpoints. Then the RMS error for the quantity p, which
can be a position, velocity, or thrust vector represented in
Cartesian coordinates, is calculated as

ERMS,p =
√√√√

∑

si∈S

|p(si ) − pref(si )|2
KRMS

, (14)

where | · | represents the Euclidean norm operator. The
quantities p(si ) and pref(si ) represent the values of p corre-
sponding to si at the comparison and reference trajectories,
respectively. To determine p(si ), either Lagrange interpola-
tion or Hermite interpolation needs to be applied depending
on whether the PS or HLGL method was used to find the
comparison trajectory. We note that Lagrange interpolation
is used to determine pref(si ) since we are using the N = 64
PS trajectory as the reference. For the terminal position error,
only the points corresponding to s = 1 are used for the cal-
culation.

4.4 Comparison results

The PS method has been compared with the HLGL method
for the range N = [6, 40] and each of the HLGL pairs is
given a unique case number. If an HLGL run converged,
the corresponding case number will be bolded in Table 2
and the data will be included in the figures below. A total
of 157 converged trajectories, including the PS runs, have
been generated for this analysis. The results for N = 37,
which corresponds to the largest number of HLGL (m, n)

pairs in this range, with η(37) = 9, are given in Table 3. The
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Table 3 Comparison metrics for HLGL (m, n) pairs with the LG pseudospectral method for N = 37—bolded case numbers indicate convergence

Case
number

Nodes
N

PS or HLGL
pair (m, n)

Transfer
duration (s)

Position RMS
error (m)

Terminal
position RMS
error (m)

Velocity
RMS error
(m/s)

Thrust RMS
error (N/kg)

Processor
time (s)

– 37 PS 3.07 × 107 1.35 × 108 2.23 × 104 6.37 × 101 1.03 × 10−4 610

124 37 (36, 3) 3.17 × 107 5.13 × 109 1.09 × 107 8.93 × 102 2.45 × 10−4 43.9

125 37 (18, 5) 3.13 × 107 5.00 × 109 1.63 × 108 7.54 × 102 2.20 × 10−4 42.1

126 37 (12, 7) 3.32 × 107 1.36 × 1010 9.87 × 108 1.58 × 103 2.60 × 10−4 295

127 37 (9, 9) 3.10 × 107 5.19 × 109 7.96 × 106 7.33 × 102 1.74 × 10−4 130

128 37 (6, 13) 3.10 × 107 4.38 × 109 1.58 × 106 5.72 × 102 1.36 × 10−4 107

129 37 (4, 19) 3.09 × 107 3.12 × 109 1.25 × 107 5.26 × 102 1.40 × 10−4 80.3

130 37 (3, 25) 3.13 × 107 4.65 × 109 1.28 × 106 7.36 × 102 2.03 × 10−4 78.4

131 37 (2, 37) – – – – – –

132 37 (1, 73) – – – – – –
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complete comparison results for the range N = [6, 40] are
given in Table 4 in Appendix C.

The plots in Figs. 4, 5, 6, 7, 8, and 9 show the behaviour
of all the HLGL pairs in comparison to the PS method with
insets showing the behaviour for N = 37. The PS metrics
for a particular value of N are repeated such that each of the
converged HLGL cases corresponding to that N value has a
PS metric for comparison. It is important to note that these
metrics are represented in dimensional units. From these
plots, one can immediately observe that although the rela-
tionship between the metrics and the case number is highly
variable and non-monotonic, certain general trends can be
found. First, it is seen from Fig. 9 that the processor times
for a given N value are in general higher for the PS method
than for the corresponding HLGL cases. From Fig. 8, it is
seen that the transfer duration, which represents the objec-
tive function, tends to be lower for the PSmethod than for the
HLGL method. From Case 3 to Case 15, the RMS errors for
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both the HLGL method and the PS method are similar. For
subsequent case numbers, the HLGL errors tend to be higher
than the corresponding PS errors and stay close to a certain
level as N increases while the PS errors tend to decrease
with increasing N . This may occur because as the number
of nodes is increased, the HLGL trajectories approach the
N = 64 HS trajectory and the PS trajectories approach the
N = 64 PS trajectory, which is used as the reference. How-
ever, like Case 72, there are exceptions where certain HLGL
cases have errors that are below the corresponding PS errors.
Another exception occurs for Case 59, which corresponds
to (m, n) = (21, 3) where the transfer duration is only 342
days in contrast to the reference value of 354 days for the
N = 64 PS method. Perhaps if we use the solution of this
run as an initial guess, lower transfer durations would result
for all the HLGL pairs. From Table 2, it is seen that problems
with convergence for HLGL runs occur for n ≥ 35. All the
PS runs in the range N = [6, 40] have converged but HLGL
runs with n ≥ 43 have not converged. An important analysis
is how for a given value of N , the choice of m and n affects
the performance of the HLGL method. From the insets, it is
seen that Case 126, which corresponds to (m, n) = (12, 7)
exhibits higher errors when compared to Case 127 which
corresponds to (m, n) = (9, 9), even though they both corre-
spond to N = 37. For the specific example of velocity RMS
error, looking at Table 3, it is apparent that while Case 126
has an error of 1.58× 103 (m/s), Case 127 only has an error
of 7.33 × 102 (m/s).

5 Conclusion

A minimum-time low-thrust Earth-to-Mars trajectory with
a terminal phase constraint has been solved using both the
Legendre–Gauss pseudospectral and theHermite–Legendre–
Gauss–Lobatto methods. The phase-free Edelbaum transfer
is used to set bounds, scale the problem, and generate a suit-
able initial guess. A general algorithm for finding the HLGL
(m, n) pairs for a given value of N has been formulated. An
expression for the number of possible HLGL pairs has been
represented using the concept of a divisor function and an
upper bound has been derived. Ramanujan’s work on Highly
CompositeNumbers is used to describe values of N forwhich
many HLGL pairs exist. It is also shown that spacecraft tra-
jectories with different time domains can be compared by
calculating errors between points that correspond to the same
normalized times. A detailed comparison of the performance
of the PS and HLGL methods has been completed for fixed
problem sizes in the range N = [6, 40], which addresses
a research gap. This reveals significant performance differ-
ences between the PS and HLGLmethods with respect to N ,
m, and n. Future adaptive versions of theHLGLmethod, such
as the recent work by Lei et al. [14], may benefit by exploit-
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ing those HLGL pairs which offer the best performance for
a given problem size. The approach of the present paper can
be used as a basis for a systematic comparison of two general
local and global direct collocation methods.

Appendix A Legendre–Gauss pseudospectral
method derivation

The pseudospectral method is typically formulated as a
globalmethod.Wewill develop and summarize the equations
for the N th-order global Legendre–Gauss pseudospectral
method using the N th-order LG points as collocation points
based on the work by Garg et al. [9].

First we transform the problem into τ = [−1, 1] from
t = [t0, t f ] space using:

t = t f − t0
2

τ + t f + t0
2

. (15)

The point τ0 corresponds to t0, τ 1:N represents the transfor-
mation of the set of N LG points in the open interval (t0, t f ),
and the terminal point τN+1 corresponds to t f . The state and
control are then approximated using Lagrange basis polyno-
mials Li (τ ):

x (τ ) =
N∑

i=0

Xi Li (τ ) (16)

u (τ ) =
N∑

i=1

Ui Li (τ ), (17)

where Xi and Ui are row vectors corresponding to τi .
Differentiating and evaluating at the kth collocation point

τk results in

ẋ (τk) =
N∑

i=0

Xi L̇ i (τk) =
N∑

i=0

DkiXi (τk) . (18)

We note that X0 is used for interpolation but not for collo-
cation. Now we can impose constraints that the interpolated
values of the state derivative at the collocation points τ 1:N
match the exact values of the state derivative at τ 1:N ,
expressed using F:

DX0:N =
(
t f − t0

2

)
F (X1:N ,U1:N , t (τ 1:N )) . (19)

Since we are using the Legendre–Gauss points, we can also
employ Gaussian quadrature to write

XN+1 = X0 +
(
t f − t0

2

)
wTF (X1:N ,U1:N , t (τ 1:N )), (20)

where XN+1 is the terminal state and w is the column vector
of Legendre–Gauss quadrature weights.

The NLP problem obtained from transcribing the optimal
control problem in Eqs. (1) can be written as:

Minimize J = φ
(
XN+1, t f

)

+
(
t f − t0

2

) N∑

i=1

wiL (Xi ,Ui , t (τi ))

Subject To:

gi (X1:N+1,U1:N+1, t (τ 1:N+1)) ≤ 0, i = 1, 2, . . . , ng

hi (X1:N+1,U1:N+1, t (τ 1:N+1)) = 0, i = 1, 2, . . . , nh

hPS := DX0:N −
(
t f − t0

2

)
F (X1:N ,U1:N , t (τ 1 :N )) = 0.

(21)

Wenote that an additional Nnx equality constraints are added
to the problem due to the Legendre–Gauss PS method.

Appendix B Hermite–Legendre–Gauss–
Lobattomethod derivation

TheHLGLmethod is a local method formulated byWilliams
[27]. We will develop and summarize this method here. The
time interval [t0, t f ] is first subdivided into m subintervals
where the (m+1)th-order LGL points are used as the subin-
terval boundaries in this paper. The time domain for each
subinterval is then transformed into τ = [−1, 1] using the
subinterval boundaries.Within each of these subintervals, the
state is approximated by an nth-order polynomial [27].

In the HLGL method, n is restricted to be an odd integer
such that n ≥ 3. For the i th subinterval, the state approxima-
tion can be written as

xi (τ ) = a0 + a1τ + a2τ 2 + · · · + anτ n . (22)

In order to form this polynomial, the n LGL points corre-
sponding to the i th subinterval are represented by ξ and are
divided into n+1

2 nodes denoted by γ and n−1
2 collocation

points denoted by ζ :

γ j � ξ2 j−1, j = 1, . . . , (n + 1)/2 (23)

ζ j � ξ2 j , j = 1, . . . , (n − 1)/2. (24)

The (n+1) pieces of information needed to find the coeffi-
cients are obtained from the nodes using both the state values
and its derivatives in the τ domain:
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⎡

⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

1 −1 1 · · · γ n−1
1 γ n

1
1 γ 1

2 γ 2
2 · · · γ n−1

2 γ n
2

...
...

...
...

...
...

1 γ 1
n+1
2

γ 2
n+1
2

· · · γ n−1
n+1
2

γ n
n+1
2

0 1 2γ 1
1 · · · (n − 1)γ n−2

1 nγ n−1
1

...
...

...
...

...
...

0 1 2γ 1
n+1
2

· · · (n − 1)γ n−2
n+1
2

nγ n−1
n+1
2

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎢⎢
⎣

a0
a1
a2
...

an

⎤

⎥⎥⎥
⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

x (γ1)

x (γ2)
...

x
(
γ n+1

2

)

hi
2 f (γ1)

...
hi
2 f

(
γ n+1

2

)

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

, (25)

where hi is the length of the i th subinterval in t space.
Equation (25) is of the form Aa = b, so we can now deter-
mine the values of the state at the collocation points by
inverting this system of equations:

xi (ζ j ) = vTj a = vTj A
−1bi = φT

j bi , (26)

where

v j =
[
1 ζ j ζ 2

j · · · ζ n
j

]T
,

j = 1, . . . , (n − 1)/2. (27)

If we take the derivative of Eq. (22) and evaluate at the col-
location points, then we obtain

ẋi (ζ j ) = vTd j
a = vTd j

A−1bi = φT
d j
bi , (28)

where

vd j =
[
0 1 2ζ j · · · nζ n−1

j

]T
,

j = 1, . . . , (n − 1)/2. (29)

If we form the following matrices for the i th subinterval:

Φ i = [
φ1 φ2 · · · φ(n−1)/2

]
(30)

Φdi =
[
φd1 φd2 · · · φd(n−1)/2

]
, (31)

then the constraints to be enforced within the i th subinterval
can now be written as

ΦT
dibi − hi

2
F
(
ΦT

i bi ,ui
(
ζ i

)
, ti

(
ζ i

)) = 0, (32)

where ui is evaluated at ζ i through linear interpolation of the
values at γ i , the nodes in the i th subinterval.

The NLP problem obtained from transcribing the optimal
control problem in Eqs. (1) can be written as:

Minimize J = φ
(
xm (1) , t f

)

+
m∑

i=1

hi
2

n∑

j=1

w jL
(
xi

(
ξ j

)
,ui

(
ξ j

)
, ti

(
ξ j

))

Subject To:

gi (x (γ ) ,u (γ ) , t (γ )) ≤ 0, i = 1, 2, . . . , ng

hi (x (γ ) ,u (γ ) , t (γ )) = 0, i = 1, 2, . . . , nh

hHLGL := ΦT
dibi

− hi
2
F
(
ΦT

i bi ,ui
(
ζ i

)
, ti

(
ζ i

)) = 0, i = 1, 2, . . . ,m

(33)

where w j are the Legendre–Gauss–Lobatto quadrature
weights within each subinterval. We note that an additional
mnx (

n−1
2 ) equality constraints are added to the problem due

to the HLGL method.

Appendix C Complete comparison results

Please see Table 4.
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