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Abstract
The dynamics of flexible spacecraft structures with embeddedmagnetic actuators are studied. Discretized equations of motion
for a constrained plate model and an unconstrained two-plate/rigid bus model are derived for actuators that create in-plane
forces via current-carrying coils. Taking inputs to be themagnetic forces generated between pairs of coils, the goal of vibration
suppression is shown to result in a bilinear control problem. The selection of a generalized rate output variable is used to
obtain a passive map from coil-pair force inputs, yieldingL2 stability for strictly passive feedback laws. The implementation
of one such feedback corresponds to using collocated sensing at the actuator locations, and given mild assumptions about the
actuator location, is a robust stabilizer with respect to unstructured uncertainties. Simulations of the closed-loop system are
completed to support findings throughout.
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1 Introduction

Flexibility is an inherent challenge for large spacecraft with
extended structures. Vibration may be brought about from
attitude or orbit manoeuvres, thermal stress or deployment
of payloads. For vibration control, various actuation schemes
have been proposed, including ways of applying transverse
forces, such as with thrusters, cables or manipulators [2,5,
14] control moment gyros [3,10], and piezoelectric actuators
[6,15].

Magnetic control schemes have been researched for space
applications in various contexts. For instance, positional
control of spacecraft using the Lorentz force was studied
in [9,11]. Attitude control using magnetic torques pro-
duced using current-carrying loops was studied in [8,17].
Another application explored in the latter paper is the use of
electromagnetic booms to control attitude andposition simul-
taneously. Two main problems arise in the above schemes.
The first is the instantaneous underactuation arising from the
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cross-product force and torque laws that are inherent to exter-
nal magnetic field actuation. The second is that the strength
of the geomagnetic field decays with the cube of the orbit
altitude. The first problem can, in some circumstances, be
helped by the fact that the magnetic field in the spacecraft
body frame changes as it orbits the Earth, thereby providing
average controllability [16].

Arranging current-carrying conductors which produce
internal structural forces to affect the vibratory behaviour
of space structures was investigated in [1]. The authors con-
ceived of magnetic coils embedded in truss elements which,
when activated, served to constrain the deflection of the ele-
ment, thereby altering the bending deflection by means of
imposing a moment on a section of the whole structure. This
arrangement leads to a linear control system. The advan-
tages of this idea are that the coils interact with each other
and, therefore, do not require a close external magnetic field,
and that an electromagnetic systemmay be lessmechanically
complex, less massive, and/or higher bandwidth than another
option. Our work investigates using forces as feedback laws
in discrete actuator locations within continuous structures,
for the particular arrangement of “coil-pairs,” which are two
current loops that are very close together. In contrast to the
previouswork, the bending deflection of the actual element in
which the actuator is located is affected by the stress created
by the pair of actuators.
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The effect of the in-plane forces on the normal deflection
depends on the normal deflection itself. This means that even
with linearized dynamics for the attitude and elastic coordi-
nates the controlled dynamics are bilinear. Several problems
in which bilinear dynamics emerge are related to elastic-
ity and the resulting state-dependent forcing. For instance,
in [4], a thin beam with a tip-mounted electromagnet, con-
trolled by a stationarymagnet near the tip produced a bilinear
system. In another example, a follower force on the end of
a multibody system with flexible joints leads to a bilinear
stabilization problem and was examined in [13]. Both of the
above studies lead to a quadratic state feedback.

2 Magnetic coil pairs

The force between two current loops a and b is given by [1]:

Fab = Ia Ibμ0

4π

∮
a

∮
b

dlb × (dla × (ra − rb))
|ra − rb|3 (1)

where Ia , Ib are the currents in loop a and loop b respectively,
dla , dlb are the current elements, ra , rb are the position of
the current elements, andμ0 is the vacuum permeability. For
two collinear, circular loops, sharing axis ẑ for their axis of
symmetry, at a distance d apart, we can express the quantities
in Cartesian coordinates:

ra = [Ra cos(θa), Ra sin(θa),−d/2]T
rb = [Rb cos(θb), Rb sin(θb), d/2]T (2)

dla = [−Ra sin(θa), Ra cos(θa), 0]T
dlb = [−Rb sin(θb), Rb cos(θb), 0]T (3)

Which results in the following expression which can be
numerically integrated for the force, Fab:

Fab = Ia Ibμ0dRa Rb

4π

∫ 2π

0

∫ 2π

0

× cos(θa − θb) dθadθb ẑ
[(Ra cos(θa) − Rb cos(θb))2 + (Ra sin(θa) − Rb sin(θb))2 + d2]3/2 .

(4)

The key feature is that the force can be compression or
tension over a small area proportional to the product of the
currents Ia and Ib, which may be controlled. Multiple rings
can approximate solenoids or similar arrangements.

3 Model dynamics

3.1 Structure modelling

Consider a set of pointswhich comprise a spacecraftV ,made
of elastic parts, labeledE , and rigid parts, labeledR. The col-

umn matrix r = [x, y, z]T specifies points in the spacecraft
relative to origin and coordinate frame attached toR.

Let the small deflection of an infinitesimal mass element
dm of the spacecraft, expressed in the spacecraft body frame,
be given by [3]:

w(r, t) = w0(t)− r×θ(t)+
{
ue(r, t), r ∈ E

0, r ∈ R

}
, V = E

⋃
R,

(5)

where w0 is the position of the origin, θ is the small angular
deflection of R and ue is the small elastic deflection of E
with respect toR. The skew-symmetric matrix

r× =
⎡
⎣ 0 −z y

z 0 −x
−y x 0

⎤
⎦

implements the cross-product operation.
The models under consideration include thin rectangular

plates aligned with the body z-axis, with z = 0 at the mid-
plane. Denoting the out-of-plane deflection byw(x, y, t), the
displacement field using the Kirchoff–Love assumptions is:

ue =
[

− z
∂w

∂x
, −z

∂w

∂ y
, w

]T
(6)

The expression for strain energy due to bending is given by
[12]:

UB = D

2

∫
E A

{
(∇2w)2+2(1−ν)

[(
∂2w

∂x∂ y

)2

− ∂2w

∂x2
∂2w

∂ y2

]}
dxdy,

(7)

where EA denotes the elastic area remaining to be integrated,
as we have integrated through the thickness, h, of the plate,
from z = −h/2 to z = h/2, and defined the flexural rigid-
ity D = Eh3

12(1−ν2)
, where E is Young’s Modulus and ν is

Poisson’s ratio (Fig. 1).
An additional contribution to the strain energy arises from

in-plane stress intensities Nx , Ny and Nxy :

Us = 1

2

∫
E A

{
Nx

(
∂w

∂x

)2

+Ny

(
∂w

∂ y

)2

+2Nxy
∂w

∂x

∂w

∂ y

}
dxdy.

(8)

Meanwhile, the kinetic energy stemming from the motion
of all points in the vehicle is:

T = 1

2

∫
V

ρ(r)ẇ(r, t)2 dxdy (9)
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Fig. 1 Unconstrained two-plate
model of rigid (R) spacecraft
body with elastic (E1, E2)
appendages. Red bi-arrows
indicate actuator-induced stress
intensities

where ρ(r) is the mass density per unit area.When expanded
to include rigid and elastic portions:

T = 1

2

∫
R

ρR[ẇ0 − r×θ̇ ]T[ẇ0 − r×θ̇ ] dxdy

+1

2

∫
E

ρE [ẇ0 − r×θ̇ + u̇e]T[ẇ0 − r×θ̇ + u̇e] dxdy.
(10)

To continue, the elastic deflection will be approximated
using a finite set of Ne-shaped functionsψ i (r) and associated
time-varying coordinates qe,i (t):

w(x, y, t) =
Ne∑
i=1

ψ i (x, y)qe,i (t) = Ψ (x, y)qe(t). (11)

The energies in terms of this expansion are written below.
Note that differentiation of shape functions is indicated with
subscriptswhile subscripts on N refer to stress intensity com-
ponents.

UB = D

2

∫
EA

{[
(Ψ xx + Ψ yy)qe

]2

+ 2(1 − ν)

[
(Ψ xyqe)

2 + (Ψ xxqe)
T(Ψ yyqe)

]}
dxdy

(12)

US = 1

2

∫
EA

{
Nx

[
Ψ xqe

]2
+ Ny

[
Ψ yqe

]2

+ Nxy

[
Ψ xqe

]T[
Ψ yqe

]}
dxdy (13)

T = 1

2

∫
V

ρ(r)
[
ẇ0 − r×θ̇ + Ψ q̇e

]T

×
[
ẇ0 − r×θ̇ + Ψ q̇e

]
dxdy. (14)

We apply Hamilton’s principle to determine the equations
of motion

δ

∫ t f

ti
[T − (UB +US)] dt = 0 (15)

∫ t f

ti
[δq̇TMq̇ − δqTKq] dt

−
∫ t f

ti

∫
EA

δqTe

{
NxΨ

T
xΨ x

+NyΨ
T
yΨ y + Nxy(Ψ

T
xΨ y + Ψ T

yΨ x )

}
qe dxdy = 0,

(16)

where

M =
⎡
⎣m1 −c× P
c× J H
PT HT Mee

⎤
⎦ , K =

⎡
⎣0 0 0
0 0 0
0 0 K ee

⎤
⎦ ,

q = [wT
0 (t), θT(t), qTe (t)]T (17)

m is the total mass, c is the first moment of mass, and J is
the moment of inertia of the undeformed spacecraft.

P=
∫
E

ρE [0, 0, Ψ ]T dxdy,

H=
∫
E

ρE r
×[0, 0, Ψ ]T dxdy,

Mee=
∫
EA

ρEAΨ
TΨ dxdy, (18)

K ee=
∫
EA

D

2
(Ψ T

xxΨ xx + Ψ T
xxΨ yy + Ψ T

yyΨ xx + Ψ T
yyΨ yy

+ (1 − ν)(2Ψ T
xyΨ xy − Ψ T

xxΨ yy − Ψ T
yyΨ xx ) dxdy

(19)
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In the above definition of M, bending rotary inertia of the
flexible portions has been neglected (terms z2( ∂ẇ

∂x )2, z2( ∂ẇ
∂ y )2

arising from u̇Te u̇e are considered small).

3.2 Effect of actuators

In keeping with Newton’s third law, the pairs of magnetic
forces generated by the coils lie in the same line of action. In
addition, there is no torque on the two coils in the ẑ direction
due to the collinear arrangement of the coil pairs. As a result,
each force pair generates an in-plane tension or compression
with components that contribute to Nx and Ny according to
the angle the actuator makes in the x–y plane. Furthermore,
we assume that the inter-coil distance in actuators is much
smaller than the distance between actuators and the size of the
mode shapes, and so the forces Nx and Ny can be modelled
as a set of Dirac delta functions at discrete locations:

Nx =
m∑
i=1

ui (t) cos(αi )δDirac(r − r i ),

Ny =
m∑
i=1

ui (t) sin(αi )δDirac(r − r i ), Nyx = 0, (20)

where m is the number of actuators. Now, following an inte-
gration by parts on the kinetic term noting the variation is
zero at the time interval endpoints, we have

∫ t f

ti
δqT

(
−Mq̈ − Kq −

m∑
i=1

ui (t)Πiq

)
dt = 0 (21)

Since the variation δq is arbitrary within kinematic con-
straints the equations of motion are

Mq̈ + Kq +
m∑
i=1

ui (t)Πiq = 0, (22)

where Πi are control influence matrices defined as

Πi =
⎡
⎣0 0 0
0 0 0
0 0 K c,i

⎤
⎦ , K c,i =

[
cos(αi )Ψ

T
xΨ x + sin(αi )Ψ

T
yΨ y

]∣∣∣∣
r=ri

(23)

and αi is the angle the actuator makes in the x–y plane.

4 Stabilization

4.1 Constrained case

Consider the case where a flexible plate is cantilevered on
one side to a rigid platform. Such a system with embedded

coil-pair actuators would be described by:

Mee q̈e + K eeqe +
m∑
i=1

ui (t)K c,iqe = 0. (24)

Matrices Mee and K ee are symmetric and positive definite.
The Lyapunov function V = 1

2 q̇
T
e Mee q̇e + 1

2q
T
e K eeqe is,

therefore, positive definite. Its time derivative is:

V̇ = q̇Te [Mee q̈e + K eeqe] = −q̇Te

[
m∑
i=1

ui (t)K c,iqe

]
.

(25)

If ui (t) = kiqTe K c,i q̇e, where ki is a positive constant
then V̇ = −∑m

i=1 ki q̇
T
e K c,iqeq

T
e K c,i q̇e, and the equations

become:

Mee q̈e +
m∑
i=1

ki K c,iqeq
T
e K c,i q̇e + K eeqe = 0 (26)

Hence, V̇ is negative semi-definite. If qe is identically zero
then the system is in equilibrium, and if q̇e = 0, then q̈e is
also zero, and the only solution to K eeqe = 0 is the origin
since K ee > 0. It is possible, however, for the expression
V̇ = −(q̇Te K c,iqe)

2 to be zero for non-trivial trajectories
depending on the construction of K c,i .

To illustrate the effect of actuator placement on control
influence matrices K c,i , the Euler–Lagrange equations are
written in modal form using eigenvectors qe,β from the
unforced problem:

−ω2
βMeeqe,β + K eeqe,β = 0 (27)

which satisfy the orthogonality relations

qTe,βMeeqe,γ = δβγ , qTe,β K eeqe,γ = ω2
βδβγ (28)

Inserting the modal expansion

qe(t) =
Ne∑

β=1

qe,βηβ(t) (29)

and left multiplying by each qTe,β we get the modal equations

η̈β + ω2
βηβ = −

m∑
i=1

Ne∑
j=1

ui (t)qTe,β K c,iqe, jη j (30)

Identifying
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qTe,β K c,iqe, j = cos(αi )qTe,βΨ T
x (r i )Ψ x (r i )qe, j

+ sin(αi )qTe,βΨ T
y (r i )Ψ y(r i )qe, j (31)

and defining

ϕi
x,β = Ψ x (r i )qe,β ϕi

y,β = Ψ y(r i )qe,β (32)

as the natural mode-shaped derivatives in the x- and y-
directions evaluated at r i , the equations of motion are now:

η̈β + ω2
βηβ = −u(t)

(
cos(αi )(ϕ

i
x,βϕi

x,1η1 + ϕi
x,βϕi

x,2η2

+ · · · + ϕi
x,βϕi

x,Ne
ηNe ) (33)

+ · · · + sin(αi )(ϕ
i
y,βϕi

y,1η1 + ϕi
y,βϕi

y,2η2

+ · · · + ϕi
y,βϕi

y,Ne
ηNe )

)
β = 1, 2, . . . , Ne.

(34)

We can see from the above that in order for ηβ to be stabi-
lizable, one of cos(α)ϕx,β , sin(α)ϕy,β has to be non-zero.
The interpretation is that the actuator must not be placed at
a zero-crossing of both spatial derivatives of a mode shape.
In Fig. 2, derivative nodal lines are shown for an example
mode and the areas where an actuator would be ineffective
in controlling that mode identified.

4.2 Unconstrained case

In the unconstrained case, we can expand the displacement
using

q(t) = Qrηr (t) +
Ne∑

β=1

qβηβ(t). (35)

where ηr are the rigid modes, such that K Qr = 0. A

particular choice is Qr =
[
16×6

0Ne×6

]
in which case ηr =

[w0r (t), θr (t)]T are the angular and translational displace-
ments due to the rigid modes only. The modal system
equations are:

[
m1 −c×
c× J

]
η̈r = 0 (36)

η̈β + ω2
βηβ = −

m∑
i=1

Ne∑
j=1

ui (t)qTe,β K c,iqe, jη j ,

β = 1, 2, . . . , Ne. (37)

Using a similar Lyapunov function V = 1
2 q̇

TMq̇+ 1
2q

TKq,
which is nowonly semidefinite on account of K , leads to V̇ =
−q̇T[∑m

i=1 ui (t)Πiq]. We can choose, similar to in (26),
ui (t) = ki q̇TΠiq to obtain V̇ = −∑m

i=1 ki q̇
TΠqqTΠ q̇,

and the equations of motion will be:

Fig. 2 x-derivative and
y-derivative mode shape
zero-crossings for mode with
ω = 2.986 rad/s. Black circles
represent interior points of
zero-control authority.
[Lx , Ly, ν, D, ρ] =
[10 m, 10 m, 0.3, 10 Pam3, 1 kg/m2]

123



Aerospace Systems

Mq̈ +
m∑
i=1

kiΠiqqTΠi q̇ + Kq = 0 (38)

The set of trajectories the systemwill approach now includes
linear solutions in the space of rigid body modes, as the coil-
pair actuators act only on the vibration modes. Note that in
this case, the eigenmodes are now based on the eigenvalue
problem:

−ω2
βMqβ + Kqβ = 0 (39)

and the limitations on actuator placement are based on the
unconstrained modes.

4.3 Robustness and implementation

There are several advantages to analyzing these systems from
the perspective of passivity. First, it may facilitate controller
design beyond the Lyapunov method above. Second, it is
known we can represent unmodelled vibration modes as pas-
sivemechanical systems, and so ifwe design a strictly passive
feedback law for the controlled dynamics, it will not cause
unbounded growth in the uncontrolled signals.

Shortly, wewill use the partial differential equation (PDE)
[12]:

D∇2∇2w + ρẅ = ∂

∂x

(
Nx

∂w

∂x

)
+ ∂w

∂ y

(
Ny

∂w

∂ y

)
(40)

Consider the positive semidefinite storage function:

V = 1

2

∫
EA

[D(∇2w)2 + ρẇ2] dA (41)

V̇ = 1

2

∫
EA

∂

∂t
(D(∇2w)2 + ρẇ2) dA

=
∫
EA

[D∇2w∇2ẇ + ρẇẅ] dA (42)

V̇ =
∫
EA

[D∇2(∇2w)ẇ + ρẅẇ] dA +
∮

∂EA

∇2w
∂ẇ

∂n
ds

− ∂∇w

∂n
ẇ ds, (43)

where n = (n1, n2) is the outward unit normal of the plate
boundary and s = (−n2, n1) is the unit vector tangent to the
boundary. The boundary integral is 0 since on the cantilever
side(s), ∂ẇ

∂n = 0 and ẇ = 0, while on the free sides,∇2w = 0

and ∂∇2w
∂n = 0 are statements of zero boundary moment and

shear force, respectively. Therefore, substituting the PDE,we
have:

V̇ =
∫
EA

ẇ
∂

∂x

(
Nx

∂w

∂x

)
+ ẇ

∂

∂ y

(
Ny

∂w

∂ y

)
dA. (44)

Integrating by parts, noting that stress intensities Nx , Ny are
zero at boundaries and using the sifting property of the Dirac
delta function, we get:

V̇ = −
m∑
i=1

(
cos(αi )

∂ẇ

∂x

∂w

∂x
+ sin(αi )

∂ẇ

∂ y

∂w

∂ y

)∣∣∣∣
r i

ui .

(45)

Taking y = coli

{
−

(
cos(αi )

∂ẇ
∂x

∂w
∂x + sin(αi )

∂ẇ
∂ y

∂w
∂ y

)∣∣∣∣
r i

}
,

the condition for passivity, V̇ ≤ yTu, is satisfied with strict
equality. This is the most conservative case as the inequality
continues to hold in systems with structural damping.

Strictly passive systems satisfy
∫ T
0 uT y dt ≥ ε

∫ T
0 uTu dt,

ε > 0, ∀T > 0. If H1 in y = H1u is passive, and H2 in
u = H2 y is strictly passive, then for the feedback intercon-
nection defined by y = H1e = H1(d−u) = H1(d−H2 y),

d ∈ L2 �⇒ y ∈ L2, whereL2 = {u(t) :
√∫ ∞

0 uTu dt <

∞}. Stabilization is achieved for any strictly passive feed-
back in the presence of finite energy disturbances d ∈ L2

[7]. Importantly, the result is valid irrespective of the model
parameters or number of modes modelled. The simplest
strictly passive feedback u = −K d y, where K d is diagonal
with positive entries, corresponds to sensors and actuators
collocated in the sense that they are at the same location and
the sensor reads the components wx ẇx |ri and wyẇy |ri with
the appropriate scaling given the orientation αi of the actu-
ator. The components ẇx , ẇy may be obtained using a rate
gyro sensor, while the wx , wy could be obtained using a
combination of rate gyro integration and strain sensor data.
However, control laws involving non-diagonal K d (sensor
coupling) and dynamic feedbacks are also possible. Note that
since wx ≈ Ψ xqe, wy ≈ Ψ yqe, these output feedback laws
implement the state feedback laws of section 4.1 and 4.2.

5 Simulation

The shape functions must be selected to satisfy the boundary
conditions for the actual displacement ue. In both the con-
strained and unconstrained examples to follow, the plate is
cantilevered on one side and free on the others. We select for
shape functions:

ψ i= j+(k−1)nx (x, y) = X(x) j Y (y)k (46)

where X j (x) is the j’th eigenfunction (mode) of a thin free-
free beam, that is, the j’th mode of
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Table 1 Physical parameters for constrained plate simulations

Ne Lx L y ρ ν D fx fy α

9 5 m 10 m 1 kg/m2 0.3 10 Pa m3 [0,Lx/2, Lx ] [Ly, 2Ly/3, Ly] [9π/16, π/2,−9π/16]

Fig. 3 Closed-loop 1st and 2nd
modes with different strictly
passive feedbacks for
constrained model
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Mode 1
Mode 2

∂4X

∂x4
− γ 4

x X = 0,
∂2X(0)

∂x2
= ∂3X(0)

∂x3
= ∂2X(Lx )

∂x2

= ∂3X(Lx )

∂x3
= 0 (47)

and Yk(y) is the k’th eigenfunction of a thin cantilevered
beam, satisfying

∂4Y

∂ y4
− γ 4

y Y = 0, Y (0) = ∂Y (0)

∂ y
= ∂2Y (Ly)

∂ y2

= ∂3Y (Ly)

∂ y3
= 0 (48)

nx is the number of X j (x) used in the approximation. To
clarify the indexing, it is just the reordering of the matrix[
X1 X2 . . .

]T [
Y1 Y2 . . .

]
into a single vector by column con-

catenation. In this way, all possible products of beam-shaped
functions constitute the shape functions of the plate.

The equations of motion are written in state-space form
with nonlinear output:

ẋ = Ax +
m∑
i=1

ui (t)Bi x, yi = −xTΠi x, (49)

where

x =
[
q
q̇

]
, q =

⎡
⎣w0

θ

qe

⎤
⎦ , A =

[
0 1

−M−1K 0

]
,

Bi =
[

0 0
−M−1Πi 0

]
(50)

A 4th-order Runge–Kutta method is applied below to simu-
late the closed-loop dynamics.

5.1 Constrained case

The constrained model with embedded actuators was simu-
lated from an initial deflection of η1(t = 0) = η2(t = 0) =
1. Table 1 shows the physical parameters used.

Here, fx , fy are the locations of the actuators. The side
y = 0 is cantilevered, while the other three edges are
free. In the left plot of Fig. 3, the control laws ui (t) =
1000qTe K c,i q̇e N/m are used on all actuators. This is a dis-
cretized version of what might be implemented in practice
with ui = −1000 yi . Now, suppose the output is filtered
to reject noise in measurement. In addition, we notice that
because the model is state dependent, the controller has trou-
ble reducing the small oscillations. We can use a steeper gain
profile close to the origin as follows:

ui (t) = −
⎧⎨
⎩
S1(ri (t) − ε) + εS2, ri > ε

S2ri (t), −ε ≤ ri ≤ ε

S1(ri (t) + ε) − εS2, ri < −ε

⎫⎬
⎭ ,

×S2 > S1 ≥ 0, ε > 0, (51)

where ṙi + λri = yi , λ > 0, so the controller is composed
of a strictly positive real linear block (the first-order filter)
connected in series with a strictly passive static nonlinearity.
Such a system with an arbitrarily small feedforward ε > 0 is
strictly passive [7]. This modified feedback with parameters
(S1, S2) = (1000, 2 × 105) ε = 0.05s−1, λ = 3s−1 is
used on all actuators and shown on the right in Fig. 3.
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Table 2 Physical parameters for
unconstrained plate simulations

Ne Lx L y ρ ν D fx fy α

2 × 9 10 m 10 m 1 kg/m2 0.3 10 Pa m3 [0,Lx ] [Ly, Ly] [π/4,−π/4] rad

Fig. 4 Closed-loop 1st and 2nd
modes with different strictly
passive feedbacks for
unconstrained model
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5.2 Unconstrained case

The unconstrained model with embedded actuators was sim-
ulated from an initial deflection of η1(t = 0) = η2(t = 0) =
1. Table 2 shows the physical parameters used. The Ne field
means that each plate has nine elastic degrees of freedom.

The parameters in Table 2 apply to both plates; the space-
craft and its actuators have odd symmetry in the x–y plane.
The rigid body R has dimensions [xdim, ydim, zdim] =
[10, 10, 5] m and mass 500 kg. On the left in Fig. 4,
we have the closed-loop response for ui (t) = 5000qTΠi q̇,
while on the right, we have the same type of variable-gain
feedback as in the second constrained case with parameters
(S1, S2) = (1, 5 × 104), ε = 0.0002 s−1, λ = 0.25 s−1.

It is notable that the first mode of both the constrained
and unconstrained structure persists more than the second
and other higher modes, ordered by natural frequency. The
reason is that the control input ui multiplies Bi x, which is
proportional to the state and, therefore, has less effect with
small vibrations. The construction of Bi shows that modes
with fewer nodes have generally smaller slope values, and
thus smaller multipliers of the control. Therefore, the above
scheme for undamped structures more readily depletes the
oscillation of higher frequency modes.

6 Conclusion

We have investigated the effect of embedded coils of cur-
rent carrying wire in flexible constrained and unconstrained
structures. The resulting bilinear control problem has been
approached first through an assignment to make the Lya-
punov function negative. Next, it was shown this technique

can be generalized to strictly passive feedback controllers
given that a sensor measures a special output, given by x–
y-components of the product of slope and slope-rate. The
robustness with respect to model parameter error, unmod-
elled passive dynamics, and finite-energy disturbances arise
naturally from the passivity-based feedback technique. The
main limitation to this method is that actuators/sensors must
be placed away from regions where the derivatives of the
natural mode shapes are zero in both directions. Simulations
show some example actuator configurations that are effective
at suppressing structural vibration with these feedback laws.
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