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Original Article

Stability of an impulsive control scheme
for spacecraft formations in eccentric
orbits

Ludwik A Sobiesiak and Christopher Damaren

Abstract

An N-impulse control scheme for spacecraft formations in elliptical orbits is developed to regulate the differential

elements of the deputy spacecraft in the presence of the J2 perturbation. The presented control scheme is an extension

of an existing circular-orbit formation control scheme and is shown to perform well at large eccentricities where the

circular control scheme fails. For the case of two impulses being applied at arbitrary firing times, a discrete-time approach

for ascertaining the stability of the controlled spacecraft formation, under the assumption of small impulsive thrusts, is

presented. It is found that stability is guaranteed for the majority of firing time pairs; however, the requisite �V can be

prohibitive for some firing time pairs. The control scheme and stability predictions for formations in high eccentricity

orbits are validated in numerical simulation.
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Introduction

Spacecraft formation flying is a maturing technology
suitable for Earth observation, Earth science, and
astronomical science missions. Spacecraft formations
in eccentric orbits specifically have been identified as
particularly useful for such missions. Both NASA’s
magnetospheric multiscale (MMS) mission1 and
ESA’s PROBA-3 solar coronagraphy mission2 are
planned formation flying missions that will employ
highly elliptical orbits to achieve their scientific object-
ives. When considering spacecraft formations, the
motion of one spacecraft (the deputy) is typically con-
sidered relative to a reference spacecraft (the chief).
Geometries can range from a simple leader-follower
formation to a complex multi-spacecraft tetrahedral
formation, such as the one being considered for the
MMS mission. Periodic formations, such as the pro-
jected circular orbit, where the deputy spacecraft
appears to circle the chief, are formation geometries
currently being considered for distributed synthetic
aperture radar applications (SAR). If left uncon-
trolled, spacecraft formation geometry will degrade
due to disturbances that spacecraft are subjected to,
such as the J2 zonal harmonic caused by the Earth’s
oblateness, solar radiative pressure, atmospheric drag,
and third-body gravitational effects. Whatever the

geometry of a particular mission, the maintenance
of a specific formation geometry is key to a formation
flying mission.

This article presents an impulsive formation main-
tenance strategy based on the control of mean differ-
ential orbital elements for spacecraft formations flying
in eccentric orbits. The strategy is suitable for an arbi-
trary number of corrective thrusts; however, particu-
lar focus is given to the two-thrust case, where an
analytical solution, given certain assumptions, for
the thrust components and firing times is available.

The maintenance of spacecraft formations via the
control of differential orbital elements was first inves-
tigated by Schaub et al.,3 who proposed a Lyapunov-
based continuous-time control law. While effective,
the continuous thrusting strategy is undesirable for
most scientific missions because of the vibrations
that the spacecraft would experience due to the thrust-
ing. Impulsive control schemes remedy the vibrations
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problem. Impulsive formation controllers using near-
circular orbit approximations have been developed
for long-term formation keeping4 and implemented
for formation flying missions currently in orbit.5–7

For formations with non-zero eccentricities, a three-
impulse formation keeping strategy has been devel-
oped by Schaub et al.8

Model predictive controllers based on both relative
Cartesian states and differential elements have been
developed for control of formations in eccentric
orbits in Tillerson and How9 and Breger and How.10

These methods can be formulated to be robust to
sensor noise and other disturbances; however, they
are ultimately numerical optimization problems and
their requisite computational load may not be feasible
or desirable for some missions.

The control scheme presented in this article extends
the strategy for circular orbits proposed by Vadali
et al.4 to non-circular orbits. It will be shown that
by including the effects of the J2 perturbation into
the controller design, superior relative position con-
trol and �V cost compared to Schaub et al.’s general
three-impulse strategy can be achieved. A full deriv-
ation of the control strategy constraint equations is
presented, followed by performance results from
implementation of the controller in simulation of the
nonlinear spacecraft dynamics. For the two-impulse
case in particular, the stability of the closed-loop
system is assessed using a discrete-time system
describing the evolution of the differential element
error. Stability predictions from the discrete-time
model are corroborated with results from simulation
of the nonlinear equations.

Problem formulation

The objective of any formation flying control strategy
is to maintain the desired relative position of the
deputy spacecraft with respect to a chief spacecraft.

An intuitive frame of reference to express the relative
position of the deputy spacecraft, r¼ [rr r� rh]

T, is the
local-vertical local-horizontal (LVLH) reference
frame, illustrated in Figure 1, where ĥr is in the direc-
tion of the position vector of the chief spacecraft, out-
ward from the Earth, ĥh is normal to the orbital plane,
and ĥ� completes the right-hand rule.

The relative orbit of the deputy spacecraft can also
be described by the difference between its mean orbi-
tal elements and the mean orbital elements of the chief
spacecraft

�e ¼ ed � ec ð1Þ

where the classical mean orbital elements are

e ¼ ½ a e i � ! M � ð2Þ

Rather than having a time-varying position trajectory,
by using differential mean elements, a formation
geometry can be represented by six time-invariant
(in the Keplerian case) differential elements. Mean
elements, in particular, are a natural choice for for-
mation control, since the secular effects of the J2 zonal
harmonic perturbation are included in their dynamics.
Since relative position error is a more intuitive way of
qualifying controller performance than differential
element error, the relative position and velocity of
the deputy spacecraft can be obtained via

r

_r

� �
¼ DðtÞDðtÞ�ens ð3Þ

where D(t) is the first-order transformation between
mean and osculating differential orbital elements and
D(t) is the transformation between the osculating dif-
ferential elements and the LVLH curvilinear

r

Deputy

ĥh

LVLH FrameChief

Rc

ĥr

ĥθ

î3

î1

î2

Inertial

Frame

Chief Orbit Path

Rd

Figure 1. LVLH reference frame.

LVLH: local-vertical local-horizontal.

Sobiesiak and Damaren 1647

 at RYERSON UNIV on June 25, 2014pig.sagepub.comDownloaded from 

http://pig.sagepub.com/


coordinate system. Both transformations can be
found for the nonsingular differential element set

�ens ¼ �a �i �� �q1 �q2 ��
� �

in Gim and Alfriend.11 To use the classical elements, a
transformation between singular and nonsingular dif-
ferential elements is needed

�ens ¼ NðtÞ�e ð4Þ

where

NðtÞ¼

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 cos! 0 0 �esin! 0
0 sin! 0 0 ecos! 0

0
sinfð2þecosfÞ

�2
0 0 1

ð1þecosfÞ2

�3

2
66666664

3
77777775

ð5Þ

and � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

.

J2 drift for formations in eccentric orbits

Although in high altitude orbits the strength of the the
J2 perturbation is diminished, drift in spacecraft for-
mations due to the perturbation can still degrade for-
mation geometry. This article considers two
formations for the purpose of illustrating the pro-
posed control methodology.

Highly eccentric orbit case – MMS formation. Spacecraft
formation flying in high altitude, highly eccentric
orbits (HEO) has been proposed for a number of
upcoming missions. One of these missions, the
MMS, will operate in an orbit with a semi-major
axis of a¼ 42,905 km and eccentricities varying
between e¼ 0.81818 and e¼ 0.9084.12 Closed aperture
formations operating in Molniya orbits with
a¼ 46,000 km and e¼ 0.67 have been proposed for
distributed Earth imaging applications.13 Although,
at these high orbits, the specific magnitude of the J2
gravity perturbation is on the order of 1� 10�6N/kg,
differences in the mean orbital element drift rates of
the chief and deputy spacecraft can cause formation
drift on the order of 1–100m/orbit, depending on the
formation.

Four spacecraft will eventually comprise the entire
MMS formation. For simplicity, only two spacecraft
are considered in this article. The two-spacecraft for-
mation is defined by the initial conditions in Table 1.
The formation is a closed, periodic formation with an
average chief-deputy separation of 32 km. The growth
in error in the relative position of the deputy space-
craft is illustrated in Figure 2. Drift is largest in radial
and along-track directions, approaching position
errors of 2 km and 5 km, respectively, over five
orbits. Drift in the out-of-plane direction is an order

of magnitude less, nearing 500m of error after five
orbits. The figure was generated by calculating the
relative position of the deputy spacecraft after obtain-
ing the inertial positions of both chief and deputy
spacecraft by integration of the nonlinear equations
of motion. The drift magnitudes correspond to the
magnitudes predicted by differencing the mean elem-
ent drift rates of chief and deputy spacecraft and
transforming it to relative position error.

Mid-eccentric orbit case - elliptical PCO. This formation is
a 1000m elliptical projected circular orbit (PCO) for-
mation flying at an eccentricity of 0.35. The initial
conditions for the formation are provided in Table
2. The term elliptical is used to indicate that the rela-
tive motion is not perfectly circular, due to the mod-
erate eccentricity of the chief spacecraft orbit. For this
formation, maximum position error grows approxi-
mately 0.23m per orbit.

Controller formulation

The dynamics of the mean orbital elements are

_eðtÞ ¼

0

0

0

_�

_!

_M

2
666666664

3
777777775

þ

2a2esin f

h

2a2p

rh
0

psin f

h

ðpþ rÞcos fþ re

h
0

0 0
rcos�

h

0 0
rsin�

hsin i

�
pcos f

he

ðpþ rÞsin f

he
�
rsin�

h tan i
bðpcos f�2reÞ

ahe
�
bðpþ rÞsin f

ahe
0

2
6666666666666666664

3
7777777777777777775

�

urðtÞ

u�ðtÞ

uhðtÞ

2
64

3
75 ð6Þ

Table 1. MMS formation initial orbital elements.12

Chief Deputy

a, km 42,905 �a, m �40.175

e 0.81818 �e, 10�3
�1.944

i, deg 28.5 �i, deg,10�4
�1.593

�, deg 357.8 ��, deg,10�3
�2.01

!, deg 298.2 �!, deg,10�3
�9.50

M, deg 0.0 �M, deg,10�2 2.838
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where r¼ p/(1þ e cos f) is the orbit radius and h¼ abn
is the orbital angular momentum. Gauss’s variational
equations (GVE) relate accelerations, u(t)¼ [ur(t) u�(t)
uh(t)]

T, expressed in the LVLH frame to changes in the
the orbital elements. Although derived for osculating
elements, the GVE are accurate to O(J2) for mean
elements.14 The well-known secular drift rates of the
mean elements are

_a ¼ 0 ð7Þ

_e ¼ 0 ð8Þ

_i ¼ 0 ð9Þ

_� ¼ �
3

2
J2n

R�
p

� �2

cos i ð10Þ

_! ¼
3

4
J2n

R�
p

� �2

ð5 cos2 i� 1Þ ð11Þ

_M ¼ nþ
3

4
J2n�

R�
p

� �2

ð3 cos2 i� 1Þ ð12Þ

where R� is the equatorial radius of the Earth and J2
is the second zonal harmonic coefficient.

The orbital element dynamics can be written in the
form

_e ¼ AðeÞ þ BðeÞuðtÞ ð13Þ

where AðeÞ ¼ ½0 0 0 _� _! _M�T, u(t)¼ [ur u� uh]
T, and

B(e) is the coefficient matrix of u(t) in equation (6)
and the mean elements e are implicitly a function of
time, t. The dynamics of the deputy mean differential
elements are therefore

�_e ¼ _ed � _ec, ¼ Aðec þ �eÞ � AðecÞ

þ Bðec þ �eÞud � BðecÞuc ð14Þ

The chief spacecraft is assumed to be uncontrolled, so
uc¼ 0. The deputy element dynamics are linearized
about the chief mean orbital elements to yield

�_e ’
@A

@e

				
e¼ec

�eþ BðecÞ þ
@B

@e

				
e¼ec

�e

 !
ud ð15Þ

Since there is no bound on �e, the term @B
@e

		
ec
�e can be

arbitrarily large. As Breger and How show in Breger
and How,10 for sufficiently small �e, the term is small
compared to to B(ec) and can be safely neglected.
While the definition of ‘sufficiently small’ is dependent
on the formation, typically for spacecraft near their
desired differential element, the assumption that �e is
sufficiently small is a reasonable one. The matrix
~AðeÞ � @A

@e

		
e
is a 6� 6 matrix of the form

ð16Þ

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5000

0

5000

r r E
rr

or
 [m

]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5000

0

5000

r θ
 E

rr
or

 [m
]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−500

0

500

r h
 E

rr
or

 [m
]

Time [orbits] 

Figure 2. Relative position drift of a formation in HEO.

Table 2. Elliptical PCO formation closed-aperture formation

initial orbital elements.

Chief Deputy

a, km 17,200 �a, m �0.343

e 0.35 �e 0.0

i, deg 20.0 �i, deg,10�3 3.502

�, deg 0.0 ��, deg,10�3 1.805

!, deg 10.0 �!, deg,10�3
�6.455

M, deg 0.0 �M, deg,10�3 4.458
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where the only non-zero elements are the partial
derivatives of the mean element drift rates with
respect to a, e, and i. Assuming that over a time inter-
val t0 to tf there are N impulsive control thrusts
�v1,. . .,�vN that are applied at ti, i¼ 1,. . ., N, then
the dynamics of the system are

�_eðtÞ ¼ ~AðecÞ�eðtÞ þ
XN
i¼1

BðecÞuiðtÞ�ðt� tiÞ ð17Þ

where �(�) is the dirac delta function. It is assumed
that the durations of the corrective thrusts are suffi-
ciently small, as to be considered instantaneous.
Integrating equation (17) from t0 to tf yields an ana-
lytical expression for the evolution of the differential
orbital elements

�eðtf Þ ¼ e
~AðecÞ�tf0�eðt0Þ þ

XN
i¼1

e
~AðecÞ�tfiBðecðtiÞÞ�vi,

ð18Þ

where �tji¼ tj� ti and e
~AðecÞ is the matrix exponential

of ~A evaluated at ec. The matrix ~A is nilpotent, such
that ~Ak

¼ 0 for k5 2. Using this property, the matrix
exponential can be accurately evaluated by

e
~AðecÞ�tji ¼ 1þ ~AðecÞ�tji ð19Þ

Replacing the matrix exponential term in the vector
�eðtf Þ � e

~A�tf0�eðt0Þ by equation (19) yields

�eðtf Þ� e
~A�tf0�eðt0Þ ¼ �eðtf Þ� �eðt0Þ� ~AðecÞ�eðt0Þ�tf0

ð20Þ

Equation (20) suggests a feedback control law where
�e(tf) are the desired end states of the differential orbi-
tal elements and �e(t0) are the current differential
elements. The expanded individual equations from
equation (18) for N¼ 2 are presented in equations
(21a) to (21f)

�aðtf Þ ¼ �aðt0Þ þ 2
a2

h

X2
j¼1

e sin fj
p
rj

0
h i

�vj

ð21aÞ

�eðtf Þ ¼ �eðt0Þþ
X2
j¼1

psin fj
h

ðpþ rÞcos fjþ rje

h
0

� �
�vj

ð21bÞ

�iðtf Þ ¼ �iðt0Þ þ
X2
j¼1

0 0
rj cos �j

h

h i
�vj ð21cÞ

��ðtf Þ ¼ ��ðt0Þ

þ
@ _�

@a
�aðt0Þ þ

@ _�

@e
�eðt0Þ þ

@ _�

@i
�iðt0Þ

� �
�tf0

þ
X2
j¼1

0 0
rj sin �j
h sin i

� �
�vj

þ
@ _�

@a
��afj þ

@ _�

@e
��efj þ

@ _�

@i
��ifj

� �
�tfj

ð21dÞ

�!ðtf Þ ¼ �!ðt0Þ

þ
@ _!

@a
�aðt0Þþ

@ _!

@e
�eðt0Þþ

@ _!

@i
�iðt0Þ

� �
�tf0

þ
X2
j¼1

�
pcos fj
he

ðpþ rj Þsin fj
he

�
rj sin�

h tan i

� �
�vj

þ
@ _!

@a
��afjþ

@ _!

@e
��efjþ

@ _!

@i
��ifj

� �
�tfj

ð21eÞ

�Mðtf Þ ¼ �Mðt0Þ

þ
@ _M

@a
�aðt0Þþ

@ _M

@e
�eðt0Þþ

@ _M

@i
�iðt0Þ

� �
�tf0

þ
X2
j¼1

bðpcosfj�2rjeÞ

ahe

bðpþ rj Þsin fj
ahe

0

� �
�vj

þ
@ _M

@a
��afjþ

@ _M

@e
��efjþ

@ _M

@i
��ifj

� �
�tfj

ð21fÞ

For N> 2 impulses, the thrust components and
firing times can be determined by solving the opti-
mization problem

minimize
XN
j¼1

�vj
T�vj

with respect to �vj, tj, j ¼ 1, . . . ,N

subject to 0 ¼ �eðtf Þ � e
~AðecÞ�tf0�eðt0Þ

�
XN
j¼1

e
~AðecÞ�tfjBðecðtj ÞÞ�vj:

For the case of N¼ 2 impulses, equation (21a) to (21f)
can yield additional insight into the control problem
that offers an alternative analytical method for calcu-
lating a thrust solution. This will be explored in the
following section.

The two-impulse case

For two control thrusts at arbitrary times t1 and t2,
where t0< t1< t2< tf, the impulse vectors �v1 and �v2
can be solved for

�v1

�v2

� �
¼ e

~AðecÞ�tf1Bðecðt1ÞÞje
~AðecÞ�tf2Bðecðt2ÞÞ

h i�1
� �eðtf Þ � e

~AðecÞ�tf0�eðt0Þ

 �

ð22Þ

For convenience, the matrix X(ec, t1, t2) is defined as

Xðec, t1, t2Þ � e
~AðecÞ�tf1Bðecðt1ÞÞje

~AðecÞ�tf2Bðecðt2ÞÞ

h i
ð23Þ
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Alternatively, rather than choosing arbitrary thrust
application times, a possible set of thrust application
times can be calculated using equations (21c) and
(21d). If the effects of changes to �a, �e, �i on the
differential drift rate of the right ascension of the
ascending node are momentarily ignored, equation
(21d) becomes a function of the out-of-plane compo-
nents of the thrust vectors �vhi. Equation (21c) is
already only a function of �vhi. Using the two equa-
tions together, the true latitudes corresponding to
the thrust application times and the out-of-plane
thrust components can be calculated. The true lati-
tude of the first thrust is calculated using

tan �1¼

��ðtfÞ� ��ðt0Þ�
@ _�

@a
�aðt0Þþ

@ _�

@e
�eðt0Þ

��

þ
@ _�

@i
�iðt0Þ

�
�tf0

�
sin i

0
BBB@

1
CCCA

�iðtfÞ� �iðt0Þ

ð24Þ

�1 must be adjusted to lie between 0 and �, then
�2¼ �1þ�. Using �1, the first out-of-plane thrust com-
ponent is

�vh1 ¼ �
h

2r1

 
ð�iðtf Þ � �iðt0ÞÞ

2

þ ��ðtf Þ � ��ðt0Þ �
@ _�

@a
�aðt0Þ

��

þ
@ _�

@e
�eðt0Þ þ

@ _�

@i
�iðt0Þ

!
�tf0

!2

sin2 i

!1
2

ð25Þ

If the original �1 is negative, the negative square root is
taken for �vh1, otherwise the positive root is taken. The
second out-of-plane thrust component is �vh2¼��vh1.
The remaining in-plane thrusts can be calculated by sol-
ving the remaining four constraint equations
numerically.

Numerical simulation

To evaluate the proposed control scheme, the two
formations described by Tables 1 and 2 are consid-
ered. The chief and deputy spacecraft are simulated
using the full nonlinear equations of motion, with J2
through J6 gravitational perturbations included as
disturbances. Rather than compensating for an ini-
tial error, the formation is initialized at the correct
initial conditions and the controller corrects any drift
in elements due to the gravitational perturbations.

The analytical two-impulse scheme, using equa-
tions (24) and (25), and an optimal four-impulse
scheme are compared to Schaub et al’s three-impulse
scheme.8 Four impulses are chosen to demonstrate the
feasibility of using N> 2 impulses for control. To

obtain the four-impulse solution the MATLAB non-
linear optimization function fmincon is used to solve
the optimization problem posed in the section
‘Controller formulation’.

For both test cases described below (‘MMS forma-
tion’ and ‘elliptical PCO formation’) one orbital
period was chosen for the control interval, so t0¼ 0
and tf¼T where T is the orbit period T ¼ 2�

ffiffiffiffiffiffiffiffiffiffi
a3=�

p
.

MMS formation. Figure 3 illustrates the differential
orbital element errors for the three control strategies.
While Schaub et al.’s three-impulse strategy has min-
imal effect on differential semi-major axis and eccen-
tricity, the strategies from this article cause periodic
jumps in both differential elements, which may be
undesirable. Due to the inclusion of the effect of J2,
however, the two and four-impulses schemes have
improved tracking of the differential ascending
node, argument of perigee, and significantly better
tracking of mean anomaly.

This improved differential element tracking results in
reduced relative position errors, as shown in Figure 4.
For this case, the improvement is most pronounced in
the along-track direction; however, all three directions
have a superior tracking error. Relative position error
statistics for the three cases are summarized in Table 3.

Total �V required for the two-impulse strategy is
12.0mm/s and for Schaub’s three-impulse strategy, it
is 14.1mm/s per orbit, while the optimal four-impulse
strategy uses 6.97mm/s per orbit. Overall, the four-
impulse scheme has the best performance in this case,
having both the lowest relative position tracking error
and required �V. The two-impulse strategy has
slightly larger error than the four-impulse strategy;
however, its �V requirement is similar to that of
Schaub’s three-impulse scheme.

Elliptical PCO formation. Results similar to those seen
for the MMS formation are seen for the elliptical
PCO formation. Schaub’s strategy tracks �a, �e and
�i well for this case; however, its tracking of ��, �!
and �M is worse than that of both proposed
schemes. Differential element tracking errors for
this case are presented in Figure 5. Position tracking
error, presented in Figure 6, using Schaub’s scheme
is also inferior for all three position components.
Required �V for control is compared in Figure 7.
Schaub’s strategy used no control for the first orbit,
since the formation is initialized to the correct orbital
elements. The proposed strategy does apply a control
effort to compensate for the J2 pertubration over
that orbit. Over ten orbits, both the two-impulse
and four-impulse scheme outperform Schaub’s
scheme in required control effort, requiring
0.31mm/s and 0.27mm/s, respectively, compared to
0.32mm/s.

Effects of increasing N. The four-impulse case in the pre-
vious section was provided to demonstrate the
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feasiblity of the controller for an abitrary number of
thrusts. Although performance using a larger number
of thrusts cannot be inferred from the previous case
alone, it is not unreasonable to assume that as N

grows the tracking error and required control effort
will converge to a limiting, near-continuous thrusting
case. Additional simulations with larger N confirm
this assumption.
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Table 3. Position error statistics for MMS formation.

Strategy

RMS error Max absolute error

rr (m) r� (m) rh (m) rr (m) r� (m) rh (m)

Proposed two-impulse 190 119 29 362 190 58

Proposed four-impulse 186 48 16 350 80 28

Schaub’s three-impulse 346 195 41 614 1050 69

RMS: root mean square.
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Figure 8 compares the required control effort for
the cases of N¼ 2, 4, 10, 30. An improvement in
required �V is observed as N increases but beyond
N¼ 10 the gain is minimal. Figure 9 shows how the
tracking errors of �i and �! change with different
N. Some improvement is seen in the tracking of �i;
however, the other element tracking errors behave
similar to �! tracking error, remaining approximately

the same magnitude as the number of impulses
increases.

How to determine an optimal N remains a subject
for future work. It appears that there are benefits to an
increased number of impulses per orbit, but the mag-
nitude of the benefits will no doubt vary with the orbit
of the chief spacecraft and the desired formation geom-
etry. Determining an optimal N will not, however, be
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only a question of improvement in control effort and
error tracking. It will depend on the computational
power available, since selecting a larger N will incur a
penalty in terms of computation time.

The extent of the benefits offered by the N-impulse
scheme may vary depending on the formation, but
from the cases presented, the optimized strategy does
provide both fuel savings and tracking improvement
when compared to Schaub’s three-impulse method.

Alternative optimal strategies. Breger and How10 presents
an optimal differential element-based model-predictive
controller (MPC) for formation control. Compared to
the MPC control, this article’s optimized strategy is a
smaller optimization problem, providing an optimal-
per-orbit thrust solution while the MPC control pro-
vides a more robust, multi-orbit formation keeping
plan, at the cost of increased computations.

The optimization problem in Breger and How10 is,
in general, a much larger optimization problem. A
time arc is discretized into N nodes, with a corrective
thrust being applied at each. Constraints on the dif-
ferential element errors are enforced at each node.
The method yields a formation keeping plan with N
thrusts for N nodes in the time arc. By adding add-
itional constraints, the controller in Breger and How10

can be made robust to sensor noise. Firing times,
however, are not decided optimally; rather, by discre-
tizing the time arc into a sufficiently large number of
nodes (e.g. Breger and How10 discretizes a one orbit-
long time arc into 1000 nodes – resulting in 3� 1000
design variables), optimal thrusts can be determined
for each of the discretized nodes. The assumption is
that with a large N, some nodes will lie near optimal
firing times. The need for this large number of discret-
ization nodes significantly increases the complexity of
the optimization problem.

In comparison, the presented optimization prob-
lem in this article determines both optimal thrusts
and optimal firing times. A single error constraint is
enforced at the end of the time arc. The inclusion of
the firing time in the optimization problem means that
there are 4N (three thrust components plus one firing
time) design variables now, instead of 3N, as in the
case of Breger and How,10 but N can be much smaller
and optimal firing times will still be obtained.
Choosing an ‘optimal’ N, as discussed previously, is
still an open matter.

Formation stability for two-impulse
control

The feedback law presented in equation (22) provides
two corrective impulses for arbitrarily selected firing
times. A natural question that arises is whether the
chosen firing times result in a stable, closed-loop
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system. In this section, this question of input–output
stability of the closed-loop formation using the feed-
back law from equation (22) is addressed.

Closed-loop discrete-time model

The mean orbital element tracking error is defined as

fðtÞ ¼ ed ðtÞ � edRðtÞ ð26Þ

which is equivalent to the differential orbital element
tracking error

fðtÞ ¼ �ed ðtÞ þ ecðtÞ � �edRðtÞ � ecðtÞ

¼ �eðtÞ � �eRðtÞ ð27Þ

Following the same linearization process as in the
section ‘Controller formulation’, the error dynamics
are

_fðtÞ ¼ ~AðeRÞfðtÞ þ BðeRÞuðtÞ, ð28Þ

where Ã and B(e) matrices are the same as in the
section ‘Controller formulation’, but are here

evaluated using the deputy’s reference orbital elem-
ents. Assuming small thrust magnitudes that can be
approximated as impulses, the system dynamics for
the two-impulse case are

_fðtÞ ¼ ~AðeRÞfþ BðeRðt1ÞÞu1�ðt� t1Þ

þ BðeRðt2ÞÞu2�ðt� t2Þ ð29Þ

This assumption is a reasonable one, since the pur-
pose of the control scheme is to maintain a current
formation, not to perform any significant reconfigur-
ations. Integrating equation (29), the evolution over
time of the system is given by

fðtÞ ¼ e
~Atfðt0Þ þ

Z t

0

e
~Aðt��ÞBðt1Þu1�ð� � t1Þd�

þ

Z t

0

e
~Aðt��ÞBðt2Þu2�ð� � t2Þd�

¼ e
~Atfðt0Þ þ e

~Aðt�t1ÞBðt1Þ�v1

þ e
~Aðt�t2ÞBðt2Þ�v2 ð30Þ

0

1

2

3

4

5

6

0

0.2

0.4

0.6

0.8

1

|λ
| m

ax

0

1

2

3

4

5

6

0

0.2

0.4

0.6

0.8

1

|λ
| m

ax

0 2 4 60 2 4 6

0 2 4 6
0

1

2

3

4

5

6

0

0.2

0.4

0.6

0.8

1

|λ
| m

ax

(a)  
e 

(b)

=0.818181 e 

(c)

=0.718181

e =0.618181

θ
1

[rad] θ
1

[rad]

θ
1

[rad]

θ 2
]dar[

θ 2
]dar[

θ 2
]dar[

Figure 11. Changes to unstable regions due to eccentricity.

1656 Proc IMechE Part G: J Aerospace Engineering 227(10)

 at RYERSON UNIV on June 25, 2014pig.sagepub.comDownloaded from 

http://pig.sagepub.com/


where � is the dirac delta function. An interval of one
orbital period of the chief spacecraft, T ¼ 2�

ffiffiffiffiffiffiffiffiffiffi
a3=�

p
, is

considered. Discretizing equation (30) yields the
following discrete-time system

f½kþ 1� ¼ e
~ATf½k�

þ e
~AðT�t1ÞBðt1Þje

~AðT�t2ÞBðt2Þ

h i �v1

�v2

� �
¼ Adf½k� þ Bd�v½k� ð31Þ

Returning to the two-impulse control law in equation
(22), �e(tf)� �e(t0) is equivalent to �f, so the expres-
sion for the control vector �v[k] can be obtained
using

�v½k� ¼ �X�1ðec, t1, t2Þ fþ ~AðecÞ�eðt0ÞT

 �

ð32Þ

Substituting equation (32) into equation (31) gives an
analytical description of the closed-loop system

f½kþ 1� ¼ ðAd � BdX
�1ðec, t1, t2Þ

�
f½k�

� BdX
�1ðec, t1, t2Þ ~AðecÞ�eðt0ÞT ð33Þ

For bounded-input bounded-output stability

j�ij5 1, i ¼ 1 . . . 6,

where �i are the eigenvalues of the closed-loop state
matrix Ad�BdX

�1(ec, t1, t2).

Numerical example

The stability criteria presented above will hold true if
the maximum eigenvalue in modulus, �m¼max{W�iW:
8i2 [1, 6]}, is less than 1. An eigenvalue map of �m
can be constructed for all possible firing time pairs,
h¼ {�1, �2}2 [0, 2�) and �2 6¼ �1, to illustrate possible
regions of instability where the maximum eigenvalue
modulus lies outside the unit disc. Firing time pairs h
are specified in terms of chief true latitude.

The stability of the MMS formation from the sec-
tion ‘Numerical simulation’ is considered. Figure 10 is
the maximum eigenvalue in modulus plot for possible
firing times. The plot is symmetric about the line
�2¼ �1, so only the upper half of the plot has been
populated with data. There are three distinct regions
where the selected firing times result in an unstable
system. The region about the line �2¼ �1þ� is a
result of the matrix X(ec, t1, t2) becoming ill-condi-
tioned when �1 and �2 are separated by �. The condi-
tion number of X increases by several orders of
magnitude and its inversion leads to out-of-plane
thrust components that are excessively large.
Numerical simulations of a formation using the
unstable firing pairs validate the stability prediction.
Note that in the analytical two-impulse case (the
decoupled solution of the section ‘The two-impulse
case’), we used �2¼ �1þ� but this does not lead to
instability on account of the approximations made
there. The approximations make decoupling possible
but avoid instability by providing a solution, which is
slightly inconsistent with inverting the matrix X.

The eccentricity of the chief orbit plays a role in the
size of the unstable regions. As shown in Figure 11,
lower chief eccentricities result in smaller unstable
regions. Below a critical eccentricity, the unstable
regions disappear entirely, except for the unstable
region due to the ill-conditioned X matrix when
firing times �2¼ �1þ�.

An important consideration that has so far been
ignored in the stability analysis is the �V needed for
formation maintenance, given a firing time pair. The
required �V changes significantly depending on what
firing times are chosen and in some cases, due to its
large magnitude, can invalidate the assumption of
small impulsive thrusts. Figure 12(a) shows that
while for the majority of firing time pairs the �V
required is small, for some firing time pairs �V
approaches 1m/s.

For a 1N hydrazine thruster, of a kind comparable
to the ones uses aboard the PRISMA formation flying
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Figure 12. Estimated fuel usage, MMS formation.
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mission,15 a 1m/s change in velocity would require
about a two and a half minute thrust, assuming a
150 kg spacecraft. Such a burn can no longer be con-
sidered impulsive. Therefore the stability analysis for
that firing time pair is no longer accurate. This case can
be seen by comparing Figures 9(c) and 12(b), where a
large region of firing times that are stable still have
large �V requirements. Simulations show that firing
time pairs with very large �V are unstable when the
dynamics of a 1N hydrazine thruster with anminimum
impulse bit of 0.043N are included in the simulation.
The problem is essentially one of actuator saturation,
where the desired control effort can no longer be
applied at the required time. The stability analysis is
therefore limited to firing time pairs whose thrusts are
sufficiently small to be considered impulsive.

Conclusion

An impulsive control strategy has been presented to
mitigate formation drift due to the J2 perturbation for
spacecraft formations in eccentric orbits. This work
generalized the circular impulsive control scheme pre-
sented by Vadali et al. in previous work. The control
strategy can be extended to mitigate the influence of
higher order perturbations by including their effects on
differential mean elements in the formulation of the
constraint equations. Formation control has been
demonstrated for both the analytically obtained two-
impulse strategy and the numerically obtained four-
impulse strategy. Performance compared to Schaub
et al.’s existing three impulse control strategy showed
improved mean different element tracking and, conse-
quently, improved relative position tracking when
using both analytical and numerical methods. Fuel
costs for the two-impulse strategy were not signifi-
cantly different from the three-impulse strategy; how-
ever, the optimized four-impulse control strategy did
yield an improvement in required �V, in addition to
having superior error tracking. The developed stability
analysis shows that the majority of possible firing
times are stable and viable for formation keeping,
although some have prohibitively high fuel require-
ments. The stability analysis is valid under the assump-
tion of thrusts that are sufficiently small to be
considered impulsive.
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Appendix

Notation

a semi-major axis
b semi-minor axis
e eccentricity
e mean orbital element vector
f true anomaly
i inclination
M mean anomaly
n orbital angular velocity
r orbit radius
r relative position vector
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_r relative velocity vector

�v impulsive thrust vector
� right ascension of ascending node
! argument of periapsis
�¼!þ f true latitude
�(�) differential quantity
^ð�Þ unit quantity

Subscript

c chief

d deputy
h out-of-plane direction
ns nonsingular
r radial direction
R reference
� along-track direction
� earth-related

Superscript

* optimal solution
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