
 http://pig.sagepub.com/
Engineering

Engineers, Part G: Journal of Aerospace 
Proceedings of the Institution of Mechanical

 http://pig.sagepub.com/content/223/8/1041
The online version of this article can be found at:

 
DOI: 10.1243/09544100JAERO641

 2009 223: 1041Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
C J Damaren

Hybrid magnetic attitude control gain selection
 
 

Published by:

 http://www.sagepublications.com

On behalf of:
 

 
 Institution of Mechanical Engineers

can be found at:
Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace EngineeringAdditional services and information for 

 
 
 

 
 http://pig.sagepub.com/cgi/alertsEmail Alerts: 

 

 http://pig.sagepub.com/subscriptionsSubscriptions:  

 http://www.sagepub.com/journalsReprints.navReprints: 
 

 http://www.sagepub.com/journalsPermissions.navPermissions: 
 

 http://pig.sagepub.com/content/223/8/1041.refs.htmlCitations: 
 

 What is This?
 

- Aug 1, 2009Version of Record >> 

 at RYERSON UNIV on June 25, 2014pig.sagepub.comDownloaded from  at RYERSON UNIV on June 25, 2014pig.sagepub.comDownloaded from 

http://pig.sagepub.com/
http://pig.sagepub.com/content/223/8/1041
http://www.sagepublications.com
http://www.imeche.org/home
http://pig.sagepub.com/cgi/alerts
http://pig.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://pig.sagepub.com/content/223/8/1041.refs.html
http://pig.sagepub.com/content/223/8/1041.full.pdf
http://online.sagepub.com/site/sphelp/vorhelp.xhtml
http://pig.sagepub.com/
http://pig.sagepub.com/


1041

Hybrid magnetic attitude control gain selection
C J Damaren
Institute for Aerospace Studies, University of Toronto, 4925 Dufferin Street, Toronto, Ontario M3H 5T6, Canada
email: damaren@utias.utoronto.ca

The manuscript was received on 8 June 2009 and was accepted after revision for publication on 13 July 2009.

DOI: 10.1243/09544100JAERO641

Abstract: For spacecraft in low Earth orbits, attitude control via the torques provided by the
geomagnetic field is an attractive option. Recent research has demonstrated that asymptotic
pointing of attitude setpoints is possible using a linear combination of Euler parameter and
angular velocity feedback. However, given the time-varying nature of the magnetic field, the size
of the gains leading to stability is restricted. The present work looks at a hybrid scheme consisting
of magnetic control using on-board dipole moments and an independent three-axis actuation
scheme (i.e. reaction wheels or thrusters). A stability analysis is presented using passivity concepts
that shows that the limitation on magnetic control gains can be removed if a minimum level of
three-axis actuation augments the magnetic scheme.

Keywords: magnetic attitude control, passivity theorem

1 INTRODUCTION

The primary disturbance torques acting on spacecraft
in geocentric orbits are those due to aerodynamics,
the geomagnetic field, gravity gradient, and solar-
radiation pressure. In each case, these can also be
harnessed for attitude control purposes. In partic-
ular, the torque produced by the geomagnetic field
interacting with on-board magnetic dipole moments
(created by current-carrying coils) can be used to
produce a control torque. There are interesting con-
trollability issues associated with this torque since
it originates from a cross-product law involving the
previous two quantities. However, since the direc-
tion of the magnetic field is usually changing, the
pointwise uncontrollable direction is also changing.
A recent survey of magnetic spacecraft attitude control
is presented in reference [1].

Recent work by Lovera and Astolfi [2, 3] addressed
the regulation of attitude setpoints using the geomag-
netic torque. They examined proportional–derivative
(PD) control using Euler parameters (quaternions)
and the angular velocity. It is well known [4] that a
linear combination of these variables in the case of
full three-axis actuation (such as can be provided by
reaction wheels or thrusters) renders the spacecraft
attitude and rate globally asymptotically stable. In ref-
erences [2] and [3], the corresponding extension to

magnetic attitude control requires that the average of a
certain matrix involving the geomagnetic field be pos-
itive definite. In this case, there are limitations on the
size of the PD gains given the time-varying nature of
the magnetic field. This in turn limits the settling time
for attitude regulation.

Many spacecraft carry magnetic torquers as well
as an alternative three-axis actuation system such as
reaction wheels or thrusters. The magnetic torquers
can be used for detumbling and momentum dump-
ing of the reaction wheels. In some cases, it may be
beneficial to simultaneously use the magnetic actua-
tion system in concert with the three-axis system. This
shall be termed hybrid magnetic attitude control. For
example, this can extend the torquing capability of the
spacecraft and may have beneficial repercussions on
power consumption. A natural question to ask is, to
what extent can the three-axis capability mitigate the
gain limitations on the magnetic actuation system?

In this article, the hybrid attitude control problem
is formulated and a stability analysis on the linearized
system is performed. The feedback control structure
combines the PD law of reference [3] for the mag-
netic dipole moments with a three-axis PD law. The
present author’s primary analysis tool is passivity and
bounds on the feedback gains are established that lead
to a locally asymptotically stable system. Simulation
results are used to validate the analysis.
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1042 C J Damaren

2 SPACECRAFT ATTITUDE DYNAMICS

The rotational dynamics of a rigid-body spacecraft can
be modelled using Euler’s equation

Iω̇ + ω×Iω = d + m×Bb + u (1)

where I is the moment of inertia matrix, ω is the angu-
lar velocity expressed in a body-fixed frame, d is the
disturbance torque, and

ω× =
⎡
⎣ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤
⎦

In equation (1) are introduced the torque produced
by the three-axis actuation system, u, and the dipole
moment used for magnetic control, m. The quan-
tity Bb contains the body-frame components of the
geomagnetic field vector.

The attitude is modelled using the Euler parameters
[5] (quaternions) q = [q1 q2 q3]T and q4. Defining q̄ =
[q1 q2 q3 q4]T, they satisfy the kinematical equation

˙̄q = 1
2

Q(q̄)ω, Q(q̄) =
[

q41 + q×

−qT

]
(2)

The rotation matrix relating the inertial frame to
the body frame can be computed from the quater-
nions using

Cbi = (q2
4 − qTq)1 + 2qqT − 2q4q× (3)

It will maintain its orthogonality if the constraint
q̄Tq̄ = 1 is maintained. The inertial frame has been
identified as the target attitude for the body frame
(i.e. q = 0).

The magnetic field components satisfy Bb = CbiBi,
where the inertial frame components Bi will be mod-
elled using a tilted dipole model [6]. It is also assumed
that the inertial frame corresponding to the desired
attitude is the geocentric inertial frame. Therefore

Bi =
⎡
⎣(Br cos δ + Bθ sin δ) cos α − Bφ sin α

(Br cos δ + Bθ sin δ) sin α + Bφ cos α

Br sin δ − Bθ cos δ

⎤
⎦

where α and δ are the spacecraft right ascension and
declination. From them, it is possible to calculate φm,
the east longitude, and θm, the coelevation. Br , Bθ , Bφ

are the geomagnetic field components in spherical
coordinates and are given as follows

Br = 2
(

Re

Rb

)3

[g 0
1 cos θm + (g 1

1 cos φm

+ h1
1 sin φm) sin θm]

Bθ =
(

Re

Rb

)3

[g 0
1 sin θm − (g 1

1 cos φm

+ h1
1 sin φm) cos θm]

Bφ =
(

Re

Rb

)3

[g 1
1 sin φm − h1

1 cos φm]

where Re is the Earth’s mean equatorial radius, Rb is
the spacecraft position, and the coefficients g 0

1 , g 1
1 , and

h1
1 are taken from the 1995 International Geomagnetic

Reference Field

g 0
1 = −29 682 nT, g 1

1 = −1789 nT, h1
1 = 5310 nT

In the sequel, the present author wishes to develop
feedback controllers that regulate the spacecraft about
the equilibrium (if d is neglected) ω = q = 0.

3 CONTROL SYSTEM MODEL

For the three-axis actuation system, it is assumed that
the torques are generated according to the control law

u(t) = −γ I−1[εkdω(t) + 2ε2kpq(t)] (4)

The stability properties of this control law in the
absence of the magnetic controller are given by the
following lemma.

Lemma 1

For m = d = 0 and γ > 0, kd > 0, kp > 0, ε > 0, the
equilibrium ω = q = 0 of equations (1), (2), and (4) is
globally asymptotically stable.

Proof

This follows simply from the use of the Lyapunov
function [7]

V = 1
2
ωTI2ω + 2γ ε2kp[qTq + (q4 − 1)2]

followed by the application of LaSalle’s theorem.

Following reference [3], the following control law for
the magnetic control dipole moment is adopted

m(t) = ‖Bi(t)‖−2B×
b (t)v(t)

v(t) = −I−1[εkdω(t) + 2ε2kpq(t)]
(5)

The use of the redundant parameter ε parallels its use
in references [2] and [3] where it plays an important
role in stability proofs using averaging theory. It has
been used here so that lemma 2 and its proof may be
employed. The parameter ε has also been used in the
three-axis control law in equation (4) so that γ can
be used as a pure dimensionless scaling. As will be
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Hybrid magnetic attitude control gain selection 1043

demonstrated, it is a rough measure of the relative size
of the three-axis torques and those provided by the
magnetic coils.

The stability properties of equation (5) in the
absence of the three-axis actuation torque are gov-
erned by the following lemma.

Lemma 2

Let d = u = 0 in equation (1). Assume that the space-
craft orbit is such that

�̄0 = lim
T−→∞

− 1
T

∫T

0
‖Bi(t)‖−2B×

i (t)B×
i (t) dt > O (6)

Then, for given finite gains kp > 0, kd > 0, there exists
ε∗ > 0 such that for any 0 < ε < ε∗, the equilibrium
ω = q = 0 of equations (1), (2), and (5) is locally
exponentially stable.

Proof

See reference [3].

The lemma places clear bounds on the size of the
gains leading to a sufficient condition for stability.
Note that ε∗ is a decreasing function of kp and kd. It is
not hard to construct numerical examples where larger
gains lead to instability. This will be demonstrated in
section 4. Unfortunately the lemma provides no con-
structive way of determining ε∗ and it must essentially
be determined by online tuning using simulation. It
was an attempt to quantify ε∗ that led to the present
article.

Let us now examine the simultaneous application
of the torques described by equations (4) and (5). In
preparation for the stability analysis, equations (1) to
(5) are linearized. Assume that the body frame dif-
fers from the inertial frame by small angles θ = 2q, i.e.
Cbi = 1 − θ×, and small rates ω = θ̇. Making these sub-
stitutions in equations (1), (4), and (5) while neglect-
ing products of small terms leads to the linearized
motion equation

Iθ̈ = (B̃
×
i B̃

×
i − γ 1)I−1(εkdθ̇ + ε2kpθ) + d

or

θ̈ + (γ I−2 − I−1B̃
×
i B̃

×
i I−1)(εkdθ̇ + ε2kpθ) = I−1d (7)

where B̃i = ‖Bi‖−1Bi. Note that Bi is used instead of Bb

in equation (7) because linearized equations for the
stability analysis are desired. Note that under a small
attitude angle approximation Bb = (1 − θ×)Bi. If this is
inserted into the motion equations, the term contain-
ing θ× leads to products of small angles and products
of small angles and rates that can be neglected in the
linear stability analysis.

Note that sensor noises may be incorporated into
the analysis by replacing θ with θ + n1 and θ̇ with

θ̇ + n2. This leads to a modification of equation (7)
in which d is replaced with d̂ = d + Nn where n =
[nT

1 nT
2 ]T contains the sensor noises and N = [B̃×

b B̃
×
b −

γ 1]I−1[ε2kp1 εkd1] with B̃b = ‖Bb‖−1Bb.
Now introduce the eigendecomposition of the iner-

tia matrix, I = E�ET, where E is the orthogonal eigen-
matrix and � = diag{λ1, λ2, λ3} is the diagonal matrix
of principal moments of inertia (eigenvalues). Let-
ting θ(t) = Eψ(t) in equation (7) and substituting the
eigendecomposition for I leads to

ψ̈ + [γ�−2 + �(t)][εkdψ̇ + ε2kpψ] = ETI−1d̂ (8)

where

�(t) = −ETI−1B̃
×
i (t)B̃

×
i (t)I−1E = �T(t) � O (9)

Let us define

y = εkdψ̇ + ε2kpψ

The mapping from d̂ to y is shown in the form of a
block diagram in Fig. 1. It has been represented as the
feedback interconnection of two operators G and H .
Since G is linear time-invariant (LTI), it has been repre-
sented using Laplace transforms where s is the Laplace
transform variable.

Now, it is necessary to establish conditions on the
feedback gains that lead to stability of the linear time-
varying system depicted in Fig. 1. The major tool used
is the passivity theorem [8]. Prior to stating it, let us
define a few fundamental notions. A function of time
y ∈ L2 if

∫∞
0 yT(t)y(t) dt < ∞. A function of time y ∈ L2e

if
∫T

0 yT(t)y(t) dt < ∞, 0 < T < ∞. The system in Fig. 1
is L2-stable if d, n ∈ L2 ⇒ ETI−1d̂ ∈ L2 ⇒ y ∈ L2. Note
that since the multiplication operator N has finite gain,
d, n ∈ L2 ⇒ d̂ ∈ L2.

The operator G is passive if
∫T

0
νTGν dt � 0, ∀T � 0, ∀ν ∈ L2e

The operator H is strictly passive if
∫T

0
yTH y dt � ε

∫T

0
yTy dt , ∀T � 0, ∀y ∈ L2e

for some ε > 0. The operator H in Fig. 1 is clearly
strictly passive since it corresponds to multiplication

Fig. 1 Block diagram
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by a positive-definite (but time-varying) matrix, that is

∫T

0
yTH y dt =

∫T

0
yT[�(t) + µγ�−2]y dt

� µγλ−2
max

∫T

0
yTy dt

assuming µ > 0 and γ > 0, and λmax = maxi{λi}.
The passivity theorem applied to Fig. 1 states that the

negative feedback interconnection of a passive oper-
ator G and a strictly passive operator H is L2-stable.
Since G is LTI it can be described in the frequency
domain by a transfer matrix G(s) = diag{Gi(s)}, i =
1, 2, 3. From the block diagram, it is clearly diago-
nal and

Gi(s) = εkds + ε2kp

s2 + γ ′
i (εkds + ε2kp)

, γ ′
i = (1 − µ)γ

λ2
i

(10)

It is well known that an LTI operator G is passive if
its corresponding transfer matrix is positive real. Here,
conditions will be established that render Gi(s), hence
G(s), strictly positive real (SPR), which is a slightly
stronger condition. Since Gi(s) is strictly proper, it is
SPR if [9]:

(a) it is analytic in Re{s} � 0;
(b) Re{Gi(jω)} > 0, −∞ < ω < ∞;
(c) limω→∞ ω2Re{Gi(jω)} > 0.

Clearly (a) is satisfied if

γ > 0, kd > 0, kp > 0, ε > 0, µ < 1 (11)

It is easy to show that

Re{Gi(jω)} = (γ ′
i k2

d − kp)ε
2ω2 + γ ′

i ε
4k2

p

(γ ′2
i ε2kp − ω2)2 + (γ ′

i εkdω)2
(12)

Fig. 2 Results for magnetic torque alone (ε = 0.001, γ = 0)
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Hybrid magnetic attitude control gain selection 1045

and hence

lim
ω−→∞ ω2Re{Gi(jω)} = (γ ′2

i k2
d − kp)ε

2 (13)

Therefore, a sufficient condition for (b) and (c) to be
satisfied (assuming (11) is satisfied) is

γ ′
i k2

d − kp > 0 (14)

Letting µ → 0, this can be satisfied for i = 1, 2, 3 if

γ >
kpλ

2
max

k2
d

(15)

Note that if this is satisfied, there exists µ > 0 so that
(14) is satisfied for i = 1, 2, 3. It is concluded that if
the conditions in equations (11) and (15) are satisfied,
then the conditions of the passivity theorem are met

and d̂ ∈ L2 ⇒ y ∈ L2. Using Laplace transforms, note
that ψ(s) = M(s)y(s) where M(s) = (εkds + ε2kp)

−11.
Since M(s) ∈ H∞ and sM(s) ∈ H∞, y ∈ L2 implies that
ψ ∈ L2 and ψ̇ ∈ L2 and hence limt→∞ ψ(t) = 0. There-
fore, θ(t) = Eψ(t) → 0 as t → ∞. This complete the
input–output stability treatment of equation (8).

Let us now turn to a Lyapunov-style treatment con-
sistent with lemmas 1 and 2. Let G(s) = C(s1 − A)−1B
denote a minimal realization of G and let x = col{ψ, ψ̇}
denote the corresponding state vector. Therefore, for
d̂ = 0, the block diagram in Fig. 1 can be realized as

y = Cx, ẋ = Ax + Bν, ν = −[�(t) + µγ�−2]y
(16)

Since G(s) is SPR, the Kalman–Yakubovich lemma
guarantees the existence of P = PT > O and Q = QT >

Fig. 3 Results for magnetic torque alone (ε = 0.005, γ = 0)
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O such that PA + ATP = −Q, PB = CT. Adopting V =
1/2xTPx as a Lyapunov function, it is easy to show
that

V̇ = −1
2

xTQx − yT[�(t) + µγ�−2]y (17)

Hence, the system in equation (7) (d = 0) is asymptoti-
cally stable and therefore so is that in equation (8). It is
concluded that if the conditions in equations (11) and
(15) are satisfied, then the system in equations (1), (2),
(4), and (5) is locally asymptotically stable.

It is important to realize that unlike the purely
magnetic situation covered by lemma 2, there is no
scaling condition on ε. Hence, if the gain γ gov-
erning the three-axis actuation is sufficiently large,
then the hybrid control scheme will be stable for any
magnetic field.

As noted in the Introduction, magnetic torquers
are often used for momentum dumping of reaction
wheels. This is possible within this scheme since if the
magnetic portion of the control law is removed (and
used to generate an external torque for momentum
dumping), the remaining part of the control (due to
the reaction wheels) is globally asymptotically stable
and input–output stable.

4 NUMERICAL EXAMPLE

Let us consider a rigid spacecraft with moment of
inertia matrix I = diag{27, 17, 25} kg · m2. It is in a
circular Keplerian orbit with altitude 450 km and incli-
nation 87◦. The longitude of the ascending node and
argument of latitude at t = 0 are zero. The right ascen-
sion of the Greenwich meridian is zero at t = 0.

Fig. 4 Results for hybrid torque control (ε = 0.005, γ = 1.2)
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Hybrid magnetic attitude control gain selection 1047

Fig. 5 Magnetic torque to three-axis torque ratio versus
γ (ε = 0.005)

The initial conditions are q = 0, q4 = 1, and ω1 =
ω2 = ω3 = 0.02 rad/s. The initial gain selection is as
follows

kd = 625 kg2 m4/s, kp = 625 kg2 m4/s2

ε = 0.001 (18)

The use of the magnetic controller alone (i.e. γ = 0)
leads to the attitude and angular velocity histories
shown in Fig. 2. Clearly, there is asymptotic stability.
When ε is increased to 0.005, the resulting trajecto-
ries are shown in Fig. 3. In this case, the stability of
the previous results has been lost, which demonstrates
the existence of the limitation on gain size when using
magnetic control alone.

For the above values of kd and kp, the critical value
of γ predicted by equation (15) is 1.17. The simulation
results for ε = 0.005 and γ = 1.2 are given in Fig. 4.
The addition of the three-axis actuation scheme has
led to an asymptotically stable attitude equilibrium.
Further simulation results show that for this value of
ε, stability is achieved for γ > 0.16 demonstrating the
sufficient but not necessary nature of the bound in
equation (15).

Let us denote the magnetic torque by τ = m×Bb

and recall that u is the three-axis control torque.

Defining ‖u‖2 =
√∫5T

0 uTu dt where T is the orbital
period, the ratio Rmu = ‖τ‖2/‖u‖2 is plotted against γ

in Fig. 5. Interestingly, the curve is not monotonically
decreasing but falls within an envelope that is.

5 CONCLUSIONS

A hybrid attitude control scheme consisting of mag-
netic torques produced by the geomagnetic field inter-
acting with on-board torquing coils augmented with
an independent three-axis actuation scheme has been
considered. The limited gain margin of the magnetic
scheme when used alone has been noted and shown to
be alleviated by the suitable introduction of additional
actuation from the three-axis scheme. A linear stability
analysis has been presented using passivity concepts
and minimal bounds on the three-axis control gains
were obtained. Numerical simulations validated the
concepts.

© Author 2009
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