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a b s t r a c t

In previous work, the problem of optimizing the shape of a thin floating plate to maximize radiation

damping was investigated. The plate was modelled with zero draft and floated on the surface of an

irrotational, incompressible ocean of infinite extent. For simplicity, only rigid heave motions were

considered and the damping coefficient at one wave number was maximized. In the present work, the

hydroelastic properties of the optimized plate are determined and compared with those of circular and

square plates. The added mass, damping, and diffraction force coefficients in each mode are determined

as a function of wave number. The amplitude responses of the plate deflection and bending moments

are also presented. The finite element method is used to determine the vibration mode shapes and the

flow problem is analysed using the Chen and Mei variational principle wherein the potential field inside

a hemisphere surrounding the plate is represented using a spherical harmonic expansion and matched

on the hemisphere to an outer field described by distributing sources on the hemisphere.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

For very large floating structures (VLFS), structural flexibility
becomes important and one must describe its interaction with the
fluid motion. In many applications, it is desirable that the motions
of the structure be suppressed given excitations stemming from
external loads and wave forces. Like the rigid body case, one may
construct frequency responses relating the external forcings to
the amplitude of the modal coordinates. The amplitude decay of
transient responses is a strong function of the frequency-
dependent damping coefficients. These coefficients result from
the radiated waves produced by structural motions which result
in a net transfer of energy away from the structure.

An important class of VLFS are thin plates such as floating
airports where the mat-like structure resides in the free surface.
The hydroelasticity of this type of structure has been considered
by Andrianov and Hermans (2005) and Watanabe et al. (2006) for
circular plates while Damaren (2001) has studied the rectangular
case. A survey of work in this area has been done by Watanabe
et al. (2004). Earlier work by Ertekin and Kim (1999) examined
responses of thin plates to oblique, shallow-water waves.
Recently, Xia et al. (2008) looked at the responses of a two-
dimensional VLFS to solitary waves such as a tsunami wave. Riggs
ll rights reserved.
et al. (2008) have compared hydroelastic computer codes using a
VLFS benchmark problem.

Suppression of the vertical motions of these structures
requires appropriate sources of energy dissipation. These include
structural damping (including both material effects and those due
to articulations such as joints), viscous fluid effects, and radiation
damping due to the production of outgoing surface waves. In
previous work (Damaren, 2007), we were concerned with the
desire to optimize the planform shape of a thin floating plate to
maximize the radiation damping effect. It is expected that
radiation damping will dominate over the other two effects in
applications. In that work, only rigid-body heave motion was
considered and the damping coefficient at one wave number was
maximized. The present paper seeks to examine the hydroelastic
properties of the optimal shape determined in the former paper.
In particular, we present the added mass, damping, and diffrac-
tion force coefficients over a range of wave numbers for the
optimal plate as well as circular and square plates. In addition, the
plate deflection and bending moments are also presented for
the three plate shapes.

The plate is assumed to float on the free surface of an inviscid,
incompressible, and irrotational ocean of infinite depth. The
potential flow problem is solved using the variational principle
developed by Chen and Mei (1974) and detailed by Mei (1989).
The inner field within a hemisphere encompassing the plate is
described using a spherical harmonic expansion. The outer field is
described by distributing sources on the exterior of the hemi-
sphere and it along with its normal derivative is matched to those

www.elsevier.com/locate/oceaneng
dx.doi.org/10.1016/j.oceaneng.2009.10.008
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of the inner field using the variational principle. The vibration
modeshapes of the flexible plate are determined using the finite
element method with triangular shape elements used to capture
the irregular shape of the optimal plate.
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2. Hydroelastic boundary value problem

Consider the vertical motion of a thin floating plate which is
structurally flexible and lies in the free surface of an irrotational,
incompressible ocean of infinite depth. The plate is assumed to be
homogeneous and isotropic. We use a coordinate system
r¼ ½x y z�T where the plane z¼ 0 corresponds to the mean free
surface and the z�axis is vertically upward. The origin corre-
sponds to the geometric centre of the plate which we also assume
is the mass centre given a homogeneous mass distribution. The
wetted surface of the plate is denoted by B and the undisturbed
free surface is designated F which is the surface z¼ 0 less the plate
surface B. The undisturbed fluid occupies V which is the half-
space zr0 less the plate surface B. It is assumed to be bounded by
a cylinder S1 whose radius tends to infinity and whose bottom
B1 tends towards infinite depth (see Fig. 1).

The vertical motion of the plate is given by wðx; y; tÞ and the
equation of motion is given by

s €wðx; y; tÞþDr4wðx; y; tÞ ¼ pðx; y; tÞ ð1Þ

where s is the constant mass density per unit area, D the plate
rigidity, r4 the biharmonic operator, and pðx; y; tÞ the hydro-
dynamic pressure. The boundary of the plate will be described
using polar coordinates rðwÞ (see Fig. 2). The direction of the
outward normal to the plate edge will be denoted by n and t is the
direction of the tangent to the edge. The angle between
the outward normal and the x-axis is denoted by y.

On the edge of the plate, the following (natural) boundary
conditions hold:

Mn ¼ 0; Qnþ
@Mnt

@t
¼ 0 ð2Þ

where

Mn ¼Mxcos2yþ2Mxycosy sinyþMysin2y

Mnt ¼ ðMy �MxÞcosysinyþMxyðcos2y� sin2yÞ

Qn ¼ QxcosyþQysiny

and

Mxðx; y; tÞ ¼ � D
@2w

@x2
þn @

2w

@y2

� �
; Myðx; y; tÞ ¼ � D

@2w

@y2
þn @

2w

@x2

� �
▲

▲ ▲

B∞

S∞

B
y

z x

F

V

Fig. 1. Fluid domain with floating plate.
Mxyðx; y; tÞ ¼ � ð1� nÞD
@2w

@x@y
; Qxðx; y; tÞ ¼

@Mx

@x
þ
@Mxy

@y
;

Qyðx; y; tÞ ¼
@Mxy

@x
þ
@My

@y
ð3Þ

Here, n is Poisson’s ratio, Mx and My are bending moments (per
unit length), Mxy is the twisting moment (per unit length), and Qx

and Qy are vertical shearing forces (per unit length). Note that
Eq. (2) expresses an absence of bending moment and shear
resultant on the free edge of the plate.

The natural modes of vibration correspond to solutions of the
unforced problem ðpðx; y; tÞ ¼ 0Þ of the form

wðx; y; tÞ ¼ Refwbðx; yÞe
jobtg; b¼ 1;2;3; . . . ð4Þ

which leads to the eigenproblem

�so2
bwbþDr4wb ¼ 0; b¼ 1;2;3; . . . ð5Þ

Here, the boundary conditions presented in Eq. (2) are implied.
The functions wbðx; yÞ are the modeshapes and ob are the natural
vibration frequencies. The first three modes are zero-frequency
modes corresponding to rigid body heave, pitch, and roll and it
will be assumed that, in unnormalized form, these will be defined
such that

w1ðx; yÞ ¼ 1; w2ðx; yÞ ¼ x; w3ðx; yÞ ¼ y ð6Þ

These and the true vibration modes will be normalized so thatR
Bsw2

b dS¼ 1, b¼ 1;2;3; . . ..
Let us now direct our attention to forced time-harmonic

motions of the plate and fluid:

wðx; y; tÞ ¼
XN

b ¼ 1

Refqbwbðx; yÞe
jotg ð7Þ

The motion of the fluid is governed by the velocity potential
Fðr; tÞ which in V satisfies Laplace’s equation r2F¼ 0. It can be
B

χ

x

Fig. 2. Plate boundary geometry.
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Table 1
Optimal Fourier coefficients describing plate boundary.

n an

0 0.8305

1 0.0012

2 �0.1335

3 �0.0044

4 �0.4263

5 0.0064

6 0.2171

7 0.0028

8 0.1631

9 �0.0059

10 �0.1356

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

Fig. 3. Optimal floating plate for maximum damping in heave.
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written as

Fðr; tÞ ¼ Re zðfIðrÞþfSðrÞÞþ
XN

b ¼ 1

joqbfbðrÞ

2
4

3
5ejot

8<
:

9=
; ð8Þ

where z is the amplitude of an incident plane progressive wave
propagating in the positive x�direction with time dependence of
the form ejot . The spatial potential in this case is given by

fI ¼
jg

o ekze�jk0x ð9Þ

where k¼o2=g, g is the acceleration due to gravity, and
k0 ¼ k sgnðoÞ.

The radiation potentials fbðrÞ satisfy the following equations:

r2fb ¼ 0 in V ð10Þ

@fb

@z
¼wb on B ð11Þ

@fb

@z
¼ � kfb on F ð12Þ

@fb

@z
¼ 0 on B1 ð13Þ

@fb

@r
¼ � jkfb on S1 ð14Þ

The last of these is recognized as the radiation condition
where r¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

p
. The scattered potential fS satisfies Eqs. (10),

(12)–(14), and

@fS

@z
¼ �

@fI

@z
on B ð15Þ

instead of Eq. (11). Note that Eqs. (8), (11), and (15) ensure that
the boundary condition @F=@z¼ _wðx; y; tÞ is satisfied on B.

Using Bernoulli’s equation the linearized fluid pressure is given
by

pðx; y; tÞ ¼ � r @F
dt
� rgz

where r is the fluid density. When this and the modal expansion
in Eq. (7) are substituted into the motion equation in Eq. (1) and
the result is premultiplied by wa and integrated over B, we arrive
at

XN

b ¼ 1

ð�o2MabþKabÞRefqbejotg ¼ Reffaejotg ð16Þ

where Mab ¼
R
B
swawb dS and Kab ¼

R
B

waDr4wb dS. The orthogon-
ality properties of the natural modes are such that Mab ¼ dab and
Kab ¼o2

adab.
The (generalized) force coefficient is given by

fa ¼
XN

b ¼ 1

½�joHabqb � Ks;abqb�þz � fDa ð17Þ

where Ks;ab ¼ rg
R
B

wawb dS¼ ðrg=sÞdab are the hydrostatic restor-
ing force stiffnesses, the diffraction force coefficients are given by

fDa ¼ � jor
Z
B

ðfIþfSÞwa dS ð18Þ

and the radiation impedance is

Hab ¼ jor
Z
B

fbwa dS¼ jomabþlab ð19Þ

with

lab ¼ �or
Z
B

waImfb dS ð20Þ
mab ¼ r
Z
B

waRefb dS ð21Þ

Here, lab are the damping coefficients and mab are the added mass
coefficients. It is well known that the damping coefficients are
associated with the production of outgoing wave radiation and
the degree of energy dissipation for the body is proportional to it
(Mei, 1989).

Using Eqs. (16)–(19), the modal coordinates satisfy

XN

b ¼ 1

½�o2ðMabþmabÞþ jolabþðKabþKs;abÞ�qb ¼ z � fDa; a¼ 1; . . . ;N

ð22Þ

This can be used to determine the qb which can be substituted in
Eq. (7) to determine plate deflection which in turn can be used in
Eq. (3) to determine the bending moment amplitudes.
3. Finite element modelling of the plate motion

In this section, we establish the numerical procedures used to
determine the vibration mode shapes waðx; yÞ corresponding to
three plate shapes: a circular plate, a square plate, and the optimal
shape obtained by Damaren (2007). The latter was chosen to
maximize the damping coefficient in heave subject to a unit area
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constraint ðA¼ 1 m2Þ, a perimeter constraint (i.e., Pr10 m), and a
minimum dimension constraint (i.e., rZ0:1 m in polar coordi-
nates). The optimization was performed at a wave number of
k
ffiffiffi
A
p
¼ 1:4.

The shape was parameterized using polar coordinates (refer to
Fig. 2):

rðwÞ ¼ a0

2
þ
X10

n ¼ 1

ancosnw
y

(x1, y1)

(x3, y3)

(x2, y2)l3

l1
l2

x

Fig. 4. Triangular finite element.
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B∞
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V~ F~ F
_

V
_

Fig. 5. Discretization for variational formulation.

Fig. 6. Finite elem
To be specific, defining a¼ ½a0; . . . ; a10�
T , the cost function was

JðaÞ ¼
l1;1

ro ¼�
Z
BðaÞ

Imf1 dS

where f1 satisfies Eqs. (10)–(14) with w1ðx; yÞ ¼ 1. The area,
perimeter, and minimum dimension constraints all represent
constraints on the design parameters a. A sequential quadratic
programming code (NPSOL) was used to perform a gradient-based
optimization. The gradients were calculated using an adjoint-
based technique as detailed by Damaren (2007). The optimal
coefficients are given in Table 1 and the shape is given in Fig. 3.
The multiple lobes on this structure make it suitable for use as a
floating airport with multiple runways.

In order to discretize the partial differential equation (PDE)
given in Eq. (1), the finite element method is employed. Given the
irregular and varied nature of the shapes to be discretized,
triangular elements will be employed (Fig. 4).

The trial function used is that developed by Specht (1988)
which satisfies the so-called patch test:

wðx; y; tÞ ¼
X9

i ¼ 1

diðtÞciðx; yÞ ¼wT
ðx; yÞdðtÞ ð23Þ

where

wT
¼ rowfcig ¼ L1; L2; L3; L1L2; L2L3; L3L1;f

L2
1L2þ

1

2
L1L2L3½3ð1� m3ÞL1 � ð1þ3m3ÞL2þð1þ3m3ÞL3�;

L2
2L3þ

1

2
L1L2L3½3ð1� m1ÞL2 � ð1þ3m1ÞL3þð1þ3m1ÞL1�;

L2
3L1þ

1

2
L1L2L3½3ð1� m2ÞL3 � ð1þ3m2ÞL1þð1þ3m2ÞL2�

�

Here,

m1 ¼
‘2

3 � ‘
2
2

‘2
1

; m2 ¼
‘2

1 � ‘
2
3

‘2
2

; m3 ¼
‘2

2 � ‘
2
1

‘2
3

where ‘1, ‘2, and ‘3 are the lengths of the triangle sides in Fig. 4.
The Li functions are given by

Li ¼ ðaiþbixþciyÞ=ð2DÞ; i¼ 1;2;3; D¼
1

2
det

1 x1 y1

1 x2 y2

1 x3 y3

2
64

3
75

where

a1 ¼ x2y3 � x3y2; b1 ¼ y2 � y3; c1 ¼ x3 � x2

a2 ¼ x3y1 � x1y3; b2 ¼ y3 � y1; c2 ¼ x1 � x3

a3 ¼ x1y2 � x2y1; b3 ¼ y1 � y2; c3 ¼ x2 � x1
ent meshes.
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The nodal degrees of freedom are the deflections wðxi; yiÞ and the
slopes wx;i ¼ @wðxi; yiÞ=@x and wy;i ¼ @wðxi; yiÞ=@y, i¼ 1;2;3. If we
define

qe ¼ colfwðx1; y1Þ;wx;1;wy;1;wðx2; y2Þ;wx;2;wy;2;wðx3; y3Þ;wx;3;wy;3g

ð24Þ

then dðtÞ ¼AqeðtÞ where A is selected to that wðx; y; tÞ and its
derivatives as given by Eq. (23) yield the elements of qe at the
nodes.

The discretized form of the PDE in Eq. (1) takes the form

M €qþKq¼ f ð25Þ

where q contains the totality of the nodal degrees of freedom and
the mass matrix M and stiffness matrix K result from discretizing
ω1 = 0^

ω2 = 0^

ω3 = 0^

ω4 = 16.9^

ω5 = 16.9^

ω6 = 28.4^

ω7 = 39.2^

ω8 = 39.2^

ω9 = 64.6^

ω10 = 64.6^

Fig. 7. Modeshapes for the circular plate.
the kinetic energy and strain energy corresponding to Eq. (1). The
discrete form of the eigenproblem in Eq. (5) is

�o2
aMqaþKqa ¼ 0; a¼ 1;2;3; . . . ð26Þ

The corresponding elemental contributions to the eigenvectors
are denoted qe;a and the modeshapes, described within each
ω1 = 0^

ω2 = 0^

ω3 = 0^

ω4 = 13.5^

ω5 = 19.6^

ω6 = 24.3^

ω7 = 34.9^

ω8 = 34.9^

ω9 = 61.3^

ω10 = 61.4^

Fig. 8. Modeshapes for the square plate.
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ω1 = 0^

ω2 = 0^

ω3 = 0^

ω4 = 2.12^

ω5 = 4.12^

ω6 = 9.90^

ω7 = 10.8^

ω8 = 16.1^

ω9 = 18.4^

ω10 = 19.5^

Fig. 9. Modeshapes for the optimal plate.
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element, can be recovered from

waðx; yÞ ¼wT
ðx; yÞAqe;a: ð27Þ

4. Variational formulation of the radiation and diffraction
problems

Let us now examine a computational procedure for determin-
ing the solution of the flow problem specified by Eqs. (10)–(14).
Consider the geometry in Fig. 5 which was adopted by Damaren
(2001) for examining the hydroelastic properties of a rectangular
plate. Details of the method are found there but the main ideas
are summarized here for completeness. Here, S denotes the
surface of a hemisphere of radius ah which encloses the plate and
is centred at the origin. The fluid region ~V denotes the interior of S
and V denotes its complement in V, i.e., V [ ~V ¼V. The free
surface of ~V is ~F which is a circular region less the plate surface B.
The free surface corresponding to V is denoted by F. Hence,
F [ ~F ¼ F.

The solution to the flow problem will be constructed using the
variational principle of Chen and Mei (Mei, 1989) where the
solution fb ¼

~fb in the inner region ~V containing the plate is
matched on S to an outer solution fb ¼fb in V which satisfies the
radiation condition.

Mei (1989) demonstrates that minimization of the functional

Kð ~fb;fbÞ ¼
1

2

Z
~V
= ~fb �=

~fb dV

�
1

2
k

Z
~F

~f
2

b dSþ

Z
S

1

2
fb �

~fb

� �
@fb

@n
dS�

Z
B

~fbwb dA ð28Þ

yields a function ~fb which weakly satisfies Eq. (10) with Eqs. (11)
and (12) satisfied as natural boundary conditions. If fb is selected
to exactly satisfy Eqs. (10), (12)–(14), then the following matching
conditions are obtained as natural boundary conditions:

~fbðrÞ ¼fbðrÞ;
@ ~fb

@n
ðrÞ ¼

@fb

@n
ðrÞ; rAS ð29Þ

where n is the outward normal to the hemisphere.
Yu et al. (1978) show that the solution of the diffraction

problem ~fD ¼
~fIþ

~fS can be determined by minimizing the
following functional:

J ð ~fD;fSÞ ¼
1

2

Z
~V
= ~fD �=

~fD dV

�
1

2
k

Z
~F

~f
2

D dSþ

Z
S

1

2
fS �

~fD

� �
@fS

@n
dSþ

Z
S

~fI

@fS

@n
� ~fD

@ ~fI

@n

 !
dA

ð30Þ

This also yields a function ~fD which weakly satisfies Eq. (10) with
Eqs. (12) and (15) satisfied as natural boundary conditions. If fS is
selected to exactly satisfy Eqs. (10), (12)–(14), then the following
matching conditions are obtained as natural boundary conditions:

~fDðrÞ ¼fSðrÞþ
~fIðrÞ;

@ ~fD

@n
ðrÞ ¼

@fS

@n
ðrÞþ

@ ~fI

@n
ðrÞ; rAS ð31Þ

Since ~f, i.e., ~fb or ~fD, is bounded in ~V, including at the origin,
it is expanded in spherical harmonics as

~fðrÞ ¼
XMs

m ¼ 0

XNs

n ¼ m

AnmfnmðrÞþ
XMs

m ¼ 1

XNs

n ¼ m

BnmcnmðrÞ ð32Þ

where

fnmðrÞ ¼
R

ah

� �n

Pm
n ðcosmÞcosmw; cnmðrÞ ¼

R

ah

� �n

Pm
n ðcosmÞsinmw

The spherical coordinates fR;m;wg are chosen such that

x¼ Rsinmcosw; y¼ Rsinmsinw; z¼ � Rcosm
and Pm
n are the associated Legendre functions as defined by Hulme

(1982). On the free surface, R¼ r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

p
.
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For the potential exterior to the hemisphere, we express f, i.e.,
fb or fS, using a source distribution on S:

fðrÞ ¼
Z
S

Gðr; nÞgðnÞdSx ð33Þ

where the source distribution gðrÞ is selected according to

@fðrÞ
@n
¼ � 2pgðrÞþ

Z
S

@Gðr;nÞ

@nr
gðnÞdSx ð34Þ
M
11^

M
22^

M
33

^
M

44^
M

55^

ka

circle
square
optimal

0.0
0.1
0.2
0.3
0.4
0.5
0.6

0

0.0

0.1

0.2

0.3

0.0
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0.0

0.1

0.2

0.0

0.1

0.2

0.3

1 2 3 4 5

ka
0 1 2 3 4 5
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0 1 2 3 4 5
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0 1 2 3 4 5

ka
0 1 2 3 4 5

Fig. 10. Added mass coefficients for the
The Green’s function Gðr; nÞ satisfies Laplace’s equation (except at
r¼ n), the free surface, bottom, and radiation conditions and is
described in Damaren (2007).

The discretization of Kð ~fb;fbÞ and J ð ~fD;fSÞ and subsequent
minimization with respect to the Anm, Bnm, and the source
strengths comprising gðrÞ is straightforward. The integrals
corresponding to the first term in Eqs. (28) and (30) can be done
analytically (Damaren, 2001) and the second and third terms are
simple when the source distribution, the potential fb or fS and
their normal derivatives, and the Green’s function are taken to be
M
66^

M
77

^
M

88
^

M
99^

M
10

,1
0

^

0.0

0.1

0.2

0.0

0.1

0.2

0.0

0.1

0.2

0.0

0.1

0.2

0.0

0.1

0.2

ka
0 1 2 3 4 5

ka
0 1 2 3 4 5

ka
0 1 2 3 4 5

ka
0 1 2 3 4 5

ka
0 1 2 3 4 5

circular, square, and optimal plates.
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piecewise constant on S. For the last term in Eq. (28), the integral
involves products of spherical harmonics and the finite element
trial function in Eq. (23). These are performed using 13-point
Gauss quadrature for triangles (Bathe, 1995). A similar technique
is used to calculate the added mass, damping, and diffraction
force coefficients.
5. Numerical example

The finite element meshes used for each shape are given in
Fig. 6. The vibration mode shapes obtained are given in Figs. 7–9
along with the corresponding natural frequencies where we have
D
11

^
D

22
^

D
33

^
D

44
^

D
55^

ka

circle
square
optimal

0.0

0.1

0.2

0.3

0

0.00
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0.04
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0.08

0.10

0.0

0.1

0.2

0.0

0.1

0.2

0.0

0.1

0.2

1 2 3 4 5

ka
0 1 2 3 4 5

ka
0 1 2 3 4 5

ka
0 1 2 3 4 5

ka
0 1 2 3 4 5

Fig. 11. Damping coefficients for the ci
nondimensionalized according to ô2
a ¼ ðsA2=DÞo2

a. Note that the
first three modes in each case are the zero frequency modes
corresponding to heave, pitch, and roll.

Given the area A, let us define a¼
ffiffiffi
A
p

. The hydrodynamic
coefficients introduced in Eqs. (18)–(21) will be nondimensiona-
lized according to

M̂aa ¼
m

ra3
maa

D̂aa ¼
m

ora3
laa
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Fig. 12. Diffraction force coefficients for the circular, square, and optimal plates.
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F̂ Da ¼
m

rgA
jfDaj

where m is the mass of the plate. These quantities are presented
as a function of nondimensionalized wave number ka in
Figs. 10–12 for each of the three shapes. It is very clear that the
damping coefficient for the optimal shape is substantially greater
than the baseline circular and square plates although the optimal
plate shape was optimized for rigid heave at only one wave
number. The diffraction forces for the optimal plate are increased
over the baselines for modes 1, 2, 5, 6, and 9.

At each frequency, the modal coordinates can be determined
from Eq. (22) which can be substituted into Eq. (7) to determine
the amplitude of the plate deflection. Substituting from Eq. (7)
into Eq. (3) yields the amplitude of the bending moments. We
shall nondimensionalize these quantities according to

Ŵ ¼
jwð0;0; tÞjmax

z

M̂x ¼
jMxð0;0; tÞjmaxA

Dz

M̂y ¼
jMyð0;0; tÞjmaxA

Dz
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Fig. 13. Plate deflection and bending moment amplitudes.
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Here, jð�Þjmax denotes the amplitude of the corresponding expres-
sions in Eqs. (3) and (7) which exhibit time dependence of the
form ejot . Note that these quantities are evaluated at the origin
(mass centre) of each of plate shapes. It is understood that not all
modes will contribute in this case, but it is the only location that
can be used for a meaningful comparison between the disparate
shapes.

The following nondimensional parameters specify the mass
and stiffness properties of the plate: D=ðrA2gÞ ¼ 0:001 and
s=ðraÞ ¼ 0:01. For this case, the deflection and bending moments
are plotted against nondimensional wave number in Fig. 13. It is
interesting to note that, although the optimal plate exhibited
considerably greater radiation damping than the other shapes, it
leads to greater plate deflection and bending moment about the
x�axis. This is somewhat surprising but not completely
unexpected given the increases in the diffraction forces for the
optimal plate. The bending moment about the y�axis is reduced
somewhat.
6. Conclusions

This paper has examined the hydroelastic properties of the
vibration modes of a thin plate floating on the surface of an
incompressible, inviscid, irrotational ocean of infinite extent.
Circular and square plates have been examined along with a
plate whose shape has been optimized for maximum radiation
damping for rigid heave motions at one wave number. The results
demonstrate that, although structural flexibility was not taken
into account in the optimization, the vibration modes exhibit
large damping coefficients compared to the circular and
square cases. This is expected to lead to increased damping
of transient responses such as those produced by landing aircraft
on a floating runway. However, the steady-state plate deflection
in response to incident waves actually increases for the
optimal plate due to an increase in the magnitude of the
diffraction forces. A similar trend was observed for the bending
moment about the x�axis but that about the y�axis was
moderately reduced.
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