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Abstract

In this work, the problem of optimizing the shape of a thin floating plate (sometimes called a dock) to maximize radiation damping is

investigated. The plate is modeled with zero draft and floats on the surface of an irrotational, incompressible ocean of infinite extent. For

simplicity, only rigid heave motions are considered. The flow problem is analyzed using the Chen and Mei variational principle wherein

the potential field inside a hemisphere surrounding the plate is represented using a spherical harmonic expansion and matched on the

hemisphere to an outer field described by distributing sources on the hemisphere. The plate shape is parameterized using a Fourier series

which is suitable for use with the variational principle. Gradients of the damping coefficient with respect to the shape parameters are

developed by solving an adjoint flow problem whose potential is shown to be a scalar multiple of the original flow potential. Optimal

plate shapes are determined using the well-known optimization code NPSOL which makes use of the damping coefficient calculation and

gradients.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Many engineering problems are characterized by struc-
tures interacting with a surrounding fluid. Examples are
aircraft and ships. Efficient operation of these structures
requires an appropriate degree of shape optimization. This
has reached a high degree of maturity in the problem of
airfoil shape optimization; see for example (Nemec et al.,
2004). The optimization of floating structures has been less
studied but there has been some work by Clauss and Birk
(1996) and Ragab (2001, 2004).

Recently, there has been considerable research into very
large floating structures (VLFS) with some focus on
floating airports. Proposed and current structures are
characterized by small draft compared to the horizontal
dimensions of the mat-like structure. Hence, it is defensible
to model them as thin plate structures. The large
dimensions make them considerably flexible and this
mandates hydroelastic analyses. Recent work in this area
is summarized in the survey of Watanabe et al. (2004). An
e front matter r 2007 Elsevier Ltd. All rights reserved.
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analysis of floating circular plates has been done by
Andrianov and Hermans (2005), while Damaren (2001)
has studied the rectangular case.
Suppression of the vertical motions of these structures

requires appropriate sources of energy dissipation. These
include structural damping (including both material effects
and those due to articulations such as joints), viscous fluid
effects, and radiation damping due to the production of
outgoing surface waves. It is the last of these that concerns
us here and we desire to optimize the planform shape of a
thin floating plate to maximize the radiation damping
effect. It is expected that radiation damping will dominate
over the other two effects in applications. The analysis of
Yeung (1982) for the transient analysis of a floating
circular cylinder is consistent with this. That included only
wave effects and the prediction for the free decay of the
motion of a circular cylinder exhibited excellent agreement
with experiment. The damping ratio of the free decay
(approximately 0.18) is considerably larger than that
expected from structural damping alone. In the present
work, for simplicity, we only consider rigid-body heave
motion. Since this does not involve flexible deformation of
the plate, structural damping can be neglected.

www.elsevier.com/locate/oceaneng
dx.doi.org/10.1016/j.oceaneng.2007.06.005
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Fig. 1. Fluid domain with floating plate.
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The plate is assumed to float on the free surface of an
inviscid, incompressible, and irrotational ocean of infinite
depth. The objective is to maximize the radiation damping
in heave for a given prescribed area with constraints on the
perimeter and minimum dimensions. The boundary of the
plate is parameterized using a Fourier series as a function
of angular position in the free surface.

The potential flow problem is solved using the varia-
tional principle developed by Chen and Mei (1974) and
detailed by Mei (1989). The inner field within a hemisphere
encompassing the plate is described using a spherical
harmonic expansion which ideally suits the geometry given
the zero-draft nature of the plate. It also allows integrals
involving the shape of the plate to be performed accurately
and derivatives involving the shape to be carried out
analytically. The outer field is described by distributing
sources on the exterior of the hemisphere and it along with
its normal derivative is matched to those of the inner field
using the variational principle. This methodology was
previously used by Damaren (2001) to study rectangular
plates of fixed dimension.

The shape optimization is carried out using the general
purpose optimization code NPSOL (Gill et al., 1998) which
is based on a sequential quadratic programming algorithm.
The code requires the specification of the objective
function, constraints, and gradients. Although gradients
of the objective function can be determined using finite
difference calculations, this requires multiple evaluations of
the objective function and is prone to subtractive cancela-
tion errors in evaluating the differences. This is particularly
problematic since free-surface hydrodynamic calculations
are usually only accurate to a few significant figures.

In this paper we apply the adjoint approach to
determining the gradients. This was pioneered by Jameson
(1988) in aerodynamic shape optimization and has more
recently been applied to shape optimization of surface
vessels by Ragab (2001, 2004). In the latter works, the
objective was to minimize the wave resistance at forward
speed. However, a potential flow formulation was used.
Our approach has a similar methodology but is made
specific to the time-harmonic treatment of a floating body.
In particular, the gradient of the damping coefficient with
respect to the shape parameters is determined. This is
greatly simplified by the fact that the adjoint potential flow
solution is shown to be a scalar multiple of that of the
original flow problem.

2. Hydrodynamic boundary value problem

Consider the vertical motion of a thin floating plate lying
in the free surface of an irrotational, incompressible ocean
of infinite depth. We use a coordinate system r ¼ ½x y z�T

where the plane z ¼ 0 corresponds to the mean free surface
and the z-axis is vertically upward. The origin corresponds
to the geometric center of the plate which we also assume is
the mass center given a homogeneous mass distribution.
The wetted surface of the plate is denoted by BðaÞ where a
denotes the shape parameters which uniquely define B. The
undisturbed free surface is designated as FðaÞ which is the
surface z ¼ 0 less the plate surface B. The undisturbed fluid
occupies V which is the half-space zp0 less the plate
surface B. It is assumed to be bounded by a cylinder S1
whose radius tends to infinity and whose bottom B1 tends
towards infinite depth (see Fig. 1).
The vertical motion of the plate in heave is given by

wðx; y; tÞ and we consider a single mode with time-
harmonic motion:

wðx; y; tÞ ¼ Refqawaðx; yÞe
jotg, (1)

where wa � 1 (rigid body heave mode) but we explicitly
exhibit it in the development so as to indicate the procedure
for general motions. The motion equation assuming a rigid
plate is given by

s €wðx; y; tÞ ¼ pðx; y; tÞ, (2)

where s is the constant mass density per unit area and
pðx; y; tÞ is the hydrodynamic pressure.
The motion of the fluid is governed by the velocity

potential Fðr; tÞ which in V satisfies Laplace’s equation
r2F ¼ 0. It can be written as

Fðr; tÞ ¼ Refjoqae
jotfaðrÞg, (3)

where the spatial function fðrÞ ¼ faðrÞ satisfies the follow-
ing equations:

r2f ¼ 0 in V, (4)

BðfÞ ¼
qf
qz
� wa ¼ 0 on BðaÞ, (5)

MðfÞ ¼
qf
qz
� kf ¼ 0 on FðaÞ, (6)

AðfÞ ¼
qf
qz
¼ 0 on B1, (7)

TðfÞ ¼
qf
qr
þ jkf ¼ 0 on S1, (8)

where k ¼ o2=g and g is the acceleration due to gravity.
The last of these is recognized as the radiation condition
where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
.
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Fig. 2. Discretization for variational formulation.
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Using Bernoulli’s equation the linearized fluid pressure is
given by

pðx; y; tÞ ¼ �r
qF
qt
� rgz.

When this is substituted into the motion equation in
Eq. (2), we arrive at

�o2ma Refqae
jotg ¼ Reff ae

jotg,

where ma ¼
R
B
sw2

a dS. The (generalized) force coefficient is
given by

f a ¼ �joHaaqa � Kaaqa, (9)

where Kaa ¼ rg
R
B

w2
a dS is the hydrostatic restoring force

stiffness and the radiation impedance is

Haa ¼ jor
Z
B

fwa dS ¼ jomaa þ laa (10)

with

laa ¼ �or
Z
B

wa ImfdS,

maa ¼ r
Z
B

waRefdS.

Here, laa is the damping coefficient and maa is the added
mass coefficient. It is well known that the damping
coefficient is associated with the production of outgoing
wave radiation and the degree of energy dissipation for the
body is proportional to it (Mei, 1989). Hence, our objective
is to determine the shape of plate a which maximizes laa
and we write the objective function as

JðaÞ ¼ laa ¼
Z
BðaÞ

FðfÞdS; FðfÞ ¼ �orwa Imf. (11)

The evaluation of JðaÞ is described in Section 3 and the
determination of the gradient dJ=da is developed in
Section 4.

3. Variational formulation of the radiation problem

We now develop a solution for the flow problem, i.e.,
given a evaluate J. A classic formulation of the problem
distributes sources on the plate but it has been shown that
this approach breaks down when the floating body lies in
the free surface (Damaren, 2001). Here we use the
methodology proposed there, wherein the solution in an
inner region containing the plate is matched to an outer
solution which satisfies the radiation condition (see Fig. 2).
Let S denote the surface of a hemisphere of radius ah which
encloses the plate and is centered at the origin. (The
selection of ah will be discussed in Section 5.) Let eV denote
the interior of S and V̄ denote its complement in V, i.e.,
V̄ [ eV ¼ V. Let eF denote the circular free surface in S less
the plate surface B. The free surface corresponding to V̄ is
denoted by F̄. Hence, F̄ [ eF ¼ F.

For the radiation problem, we seek a solution f ¼ ef in eV
which satisfies Eqs. (4)–(6). In the exterior region, we desire
a solution f ¼ f̄ which satisfies Laplace’s equation, the
free surface condition on F̄, the bottom condition in
Eq. (7), and the radiation condition in Eq. (8). In addition,
the two solutions should be matched on S:

efðrÞ ¼ f̄ðrÞ;
qef
qn
ðrÞ ¼

qf̄
qn
ðrÞ; r 2 S, (12)

where n is the outward normal to the hemisphere.
The variational principle of Chen and Mei (1974) as

detailed by Mei (1989) provides a solution to the problem.
Here, one minimizes the functional

Kðef; f̄Þ ¼ 1

2

Z
eV =ef � =efdV �

1

2
k

Z
eF ef2

dS �

Z
B

efwa dA

þ

Z
S

1

2
f̄� ef� �

qf̄
qn

dS. ð13Þ

This yields a function ef which weakly satisfies Eq. (4) with
Eqs. (5) and (6), and the matching conditions in Eq. (12)
satisfied as natural boundary conditions. It is assumed that
f̄ is selected to exactly satisfy Eqs. (4) and (6)–(8).
Since ef is bounded in eV, including at the origin, it is

proposed that it be expanded in spherical harmonics as

efðrÞ ¼XMs

m¼0

XNs

n¼m

AnmfnmðrÞ þ
XMs

m¼1

XNs

n¼m

BnmcnmðrÞ, (14)

where

fnmðrÞ ¼
R

ah

� �n

Pm
n ðcos yÞ cos mw,

cnmðrÞ ¼
R

ah

� �n

Pm
n ðcos yÞ sin mw.

The spherical coordinates fR; y; wg are chosen such that

x ¼ R sin y cos w; y ¼ R sin y sin w; z ¼ �R cos y

and Pm
n are the associated Legendre functions as defined by

Hulme (1982). On the free surface, R ¼ r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
.

For the potential exterior to the hemisphere, we express
f̄ using a source distribution on S:

f̄ðrÞ ¼
Z
S

Gðr; nÞgðnÞdSx, (15)
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where the source distribution gðrÞ is selected according to

qf̄ðrÞ
qn
¼ �2pgðrÞ þ

Z
S

qGðr; nÞ

qnr

gðnÞdSx. (16)

In practice, S is divided into a number of region Si and gðrÞ
is taken to be constant on each Si with gi ¼ gðriÞ where ri is
the centerpoint of Si. The Green’s function Gðr; nÞ satisfies
Laplace’s equation (except at r ¼ n), the free surface,
bottom, and radiation conditions:

Gðr; nÞ ¼
1

Rx
þ

1

R1
� ke�Y pðY 0ðX Þ þH0ðX ÞÞ

�
þ2

Z Y

0

etðX 2 þ t2Þ�1=2 dt

�
� 2pjke�Y J0ðX Þ þ DGðr; nÞ,

where

rx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xÞ2 þ ðy� ZÞ2

q
,

Rx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x þ ðz� zÞ2

q
; R1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x þ ðzþ zÞ2

q
,

X ¼ krx; Y ¼ �kðzþ zÞ.

J0ðX Þ and Y 0ðX Þ are the Bessel functions of the first and
second kind, and H0ðX Þ is the Struve function. In this
work, Gðr; nÞ and its normal derivative are calculated using
the algorithms of Newman (1984). The perturbation
DGðr; nÞ contains an additional source, dipoles, and wave-
free potentials which prevent the occurrence of irregular
frequencies. These terms are described in more detail by
Damaren (2001) and the approach is based on the work by
Ursell (1981).

The resulting potential and its normal derivative are
taken to be piecewise constant on S with Ū ¼ colff̄ðriÞg

and Ūn ¼ colfqf̄ðriÞ=qng. Defining C ¼ colfgig, Eqs. (15)
and (16) can be approximated by

U ¼ GC; Un ¼ HC,

where

Gij ¼ Gðri; rjÞDSj ; DSi ¼

Z
Si

dS, ð17Þ

Hij ¼ � 2pdij þ
qGðri; rjÞ

qnr

DSj. ð18Þ

Substituting Eqs. (14)–(16) into the functional in Eq. (13)
leads to

KðbÞ ¼ 1
2
bTWb� bTc, (19)

where the interior and exterior fields are completely
determined by

b ¼
A

C

" #
; A ¼

colfAnmg

colfBnmg

" #
; c ¼

g

0

" #
,

g ¼
colfgnmg

colfhnmg

" #
ð20Þ
with

gnm

hnm

( )
¼ Pm

n ð0Þ

Z
B

ðr=ahÞ
n

cos mw

sin mw

( )
wa dS.

The assembling of the matrix W ¼WT is detailed by
Damaren (2001). Minimizing K in Eq. (19) with respect to
b leads to the linear system of equations Wb ¼ c.
Substituting the spherical harmonic expansion in Eq. (14)
into (11) yields the following expression for the damping
coefficient:

J ¼ �or gT ImA, (21)

where both g and A depend on the shape parameters a

which are defined in the next section.
4. Adjoint formulation for shape optimization

The surface B will be written as BðaÞ where a are the
shape parameters. Its boundary is described using polar
coordinates as

rða; wÞ ¼
a0

2
þ
XN

n¼1

an cos nw, (22)

where a ¼ ½a0 a1 � � � aN �
T.

The methodology developed by Ragab (2001, 2004) for
free-surface potential flows will now be used to construct
an adjoint problem which furnishes the gradients of the
cost functional with respect to the shape parameters.
Adjoining the constraints in Eqs. (4)–(8) to the cost
functional in Eq. (11) using Lagrange multipliers yields

Lðf; aÞ ¼
Z
BðaÞ

FðfÞdS þ

Z
V

cr2fdV þ

Z
BðaÞ

bBðfÞdS

þ

Z
FðaÞ

mMðfÞdS þ

Z
B1

aAðfÞdS

þ

Z
S1

tTðfÞdS.

Taking the first variation of this functional yields

dL ¼ d
Z
BðaÞ

FðfÞdS þ

Z
V

cr2dfdV þ d
Z
BðaÞ

bBðfÞdS

þ d
Z
FðaÞ

mMðfÞdS þ

Z
B1

adAðfÞdS

þ

Z
S1

tdTðfÞdS

¼
q
qa

Z
BðaÞ

ðFðfÞ þ bBðfÞÞdS þ

Z
C

mMðfÞdS

�
�

Z
BðaÞ

mMðfÞdS

�
da

þ

Z
BðaÞ

qF
qf

dfdS þ

Z
V

cr2dfdV þ

Z
BðaÞ

b
qB
qf

dfdS



ARTICLE IN PRESS
C.J. Damaren / Ocean Engineering 34 (2007) 2231–2239 2235
þ

Z
FðaÞ

m
qM
qf

df dS þ

Z
B1

a
qA
qf

df dS

þ

Z
S1

t
qT
qf

dfdS. ð23Þ

Here, we have introduced C as the circular region
consisting of F [ B. Note that it does not depend on the
shape parameters a and hence

q
qa

Z
C

mMðfÞdS ¼ 0

in Eq. (23).
Applying Green’s second identity, we haveZ
V

ðcr2df� dfr2cÞdV ¼

Z
BðaÞ

c
qdf
qz
� df

qc
qz

� �
dS

þ

Z
FðaÞ

c
qdf
qz
� df

qc
qz

� �
dS

þ

Z
B1

�c
qdf
qz
þ df

qc
qz

� �
dS

þ

Z
S1

c
qdf
qr
� df

qc
qr

� �
dS.

Incorporating this into Eq. (23) while using the definitions
in Eqs. (5)–(8) gives

dL ¼
q
qa

Z
BðaÞ

FðfÞ þ bBðfÞ � mMðfÞ½ �dS

� �
da

þ

Z
V

dfr2cdV þ

Z
BðaÞ

qF
qf

df dS

þ

Z
BðaÞ

c
qdf
qz
� df

qc
qz
þ b

qdf
qz

� �
dS

þ

Z
FðaÞ

c
qdf
qz
� df

qc
qz
þ m

qdf
qz
� kdf

� �� �
dS

þ

Z
B1

�c
qdf
qz
þ df

qc
qz
þ a

qdf
qz

� �
dS

þ

Z
S1

c
qdf
qr
� df

qc
qr
þ t

qdf
qr
þ jkdf

� �� �
dS.

The adjoint problem for the Lagrange multipliers is
determined by selecting them to suppress the integrals
involving df and its normal derivatives. This yields

r2c ¼ 0 in V, (24)

b ¼ �c;
qc
qz
¼

qF
qf

on BðaÞ, (25)

m ¼ �c;
qc
qz
¼ kc on FðaÞ, (26)

a ¼ c;
qc
qz
¼ 0 on B1, (27)

t ¼ �c;
qc
qr
þ jkc ¼ 0 on S1. (28)
Comparing Eqs. (24)–(28) with Eqs. (4)–(8) shows that the
boundary value problem for the adjoint case is identical
with the original flow problem with the exception of the
boundary condition on the body in Eq. (25).
The gradients for the shape parameters are now available

as

dL

da
¼

q
qa

Z
BðaÞ

FðfÞ � c
qf
qz
� wa

� ���
þc

qf
qz
� kf

� ��
dS

�
¼

q
qa

Z
BðaÞ

½FðfÞ þ cwa � kcf�dS

� �
. ð29Þ

If the objective is to maximize the damping coefficient, then
FðfÞ ¼ �orwa Imf and the boundary condition on B

becomes

qc
qz
¼

qF
qf
¼ jorwa.

Note that this is a scalar multiple of the boundary
condition in Eq. (5) for the original problem. Hence, we
conclude that the solution of the adjoint problem is

cðrÞ ¼ jorfðrÞ; r 2 V,

which satisfies Eqs. (24)–(28). Taking real and imaginary
parts gives

Rec ¼ �or Imf; Imc ¼ orRef. (30)

Since L and a are real, the derivative in Eq. (29) is real.
Hence, we may take its real part. Using the results in
Eq. (30) in conjunction with Eq. (29) gives

dL

da
¼ 2or

q
qa

Z
BðaÞ

ðk ImfRef� ImfwaÞdS

� �
. (31)

The partial derivatives are easily evaluated given the
description for the boundary of B in Eq. (22).
Consider the spherical harmonic expansion in Eq. (14)

for f ¼ ef when R ¼ r and y ¼ p=2, i.e., z ¼ 0. It is clear
that if we restrict ourselves to heaving motions, i.e., wa ¼ 1,
then the integrand of Eq. (31) contains terms of the form

rMgðwÞ. Hence, the partial derivatives are constructed as
follows:

q
qan

Z
BðaÞ

rMgðwÞdS ¼
q
qan

Z 2p

0

Z rða;wÞ

0

rMþ1gðwÞdrdw

¼
q
qan

Z 2p

0

1

M þ 2
rða; wÞMþ2gðwÞdw

¼

Z 2p

0

rða; wÞMþ1
qrða; wÞ
qan

gðwÞdw,

where the boundary of B has been described using Eq. (22).

5. Numerical example

At the outset, it should be emphasized that we
impose a unit area constraint on the plate structure, i.e.,
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using Eq. (22),

A ¼

Z
BðaÞ

dS ¼
a2
0

4
þ
XN

n¼1

a2
n

2
¼ 1m2 (32)

and a ¼
ffiffiffiffi
A
p
¼ 1m. In implementing the variational solu-

tion, the enclosing hemisphere has a radius of ah ¼ 1:25rmax

where rmax ¼ maxw rða; wÞ is the maximum radial dimension

of the plate. This choice is based on the results of Damaren
(2001) where it was determined that ah ¼ 1:25ad was best

for a circular disc of radius ad and ah ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

p þ b2
p

q
was best

for a rectangular plate of dimensions 2ap � 2bp, i.e.,

circumscribing. The optimal choice was made on the basis
of comparison with other published results (i.e., (Miles,
1987) for the disk) and the consistency of identities such as
the Haskind relations and the relationship between
damping coefficients (calculated using a body integral
and the spherical harmonic expansion) and far-field wave
amplitudes (calculated using the panel solution on the
hemisphere). In general, smaller enclosing hemispheres
were better than larger ones at predicting higher frequency
damping coefficients. However, the variational method,
in general, only produces accurate results in the range
0pkap10.

The hemisphere is paneled with a 40 (circumferential) �
12 (radial) array of panels with angular dimensions of Dw ¼
2p=40 and Dy ¼ p=24. For the spherical harmonic expan-
sion in Eq. (14), Ms ¼ 16 and Ns ¼ 20 which leads to a
total (including source panels) of 901 degrees of freedom.
The calculated damping coefficient will be nondimensio-
nalized according to bJ ¼ J=ðorAaÞ.

The values of the damping coefficient are shown in Fig. 3
for a circular plate and a square plate with the same area. In
the square case, N ¼ 40 Fourier coefficients have been used.
Despite the very different nature of the planform shape, the
damping coefficients are quite similar. The values given here
for a circular disc are in good agreement with those presented
by Damaren (2001) which agree with those of Miles (1987)
and Martin and Farina (1997). Note that both shapes exhibit
a maximum value of J at a wavenumber of ka ¼ 1:4. The
close agreement between the damping coefficient of equal-
area circular and square plates at ka ¼ 1:4 is best understood
in terms of the far-field wave behavior: the shape of the out-
going cylindrical wave produced by time-harmonic heaving
motions is of very similar shape in both cases.

Let ac denote the Fourier coefficients for the circular
plate (a0 ¼ 2=

ffiffiffi
p
p

, an ¼ 0; nX1) and as denote those for the
square plate. We can construct a plate that continuously
changes shape from the circular to square case. Its Fourier
coefficients are given by

a ¼ ½ð1� aÞac þ aas�=Ca,

where Ca is a normalization factor that enforces unit area.
For a ¼ 0 we obtain the circular plate whereas for a ¼ 1
the square plate is obtained. The damping coefficient is
shown in Fig. 4 as a function of a.
In an effort to illustrate the matching capabilities of the
Chen and Mei variational principle, let us consider the
following error measure:

E ¼ kef� f̄k2=kefk2; kefk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
S

ef2
dS

s

with a similar expression for the matching error in the
normal derivative. Both error measures are shown in Fig. 5
for the square plate case as a function of wave number for
0pkap5. The matching which is obtained as a natural
boundary condition is enforced within 5%.
For the duration of the study, ka ¼ 1:4. Let us con-

sider the gradients produced by the adjoint method in
Eq. (31). They will be nondimensionalized according to
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ddL=da ¼ dL=da=ðorAÞ. As an independent (but less
accurate) check on the results, they can be compared with
gradients obtained using finite differences. For this latter
calculation, a forward difference is used with a step-size of
Dan ¼ 0:01. The adjoint calculation is compared with those
obtained using finite differences in Fig. 6 for the case of a
square plate approximated with N ¼ 10 Fourier terms.
Good agreement is obtained but it must be realized that the
finite difference calculation is prone to subtractive cancel-
lation errors and approximation errors due to the relatively
large step-size. A similar comparison is made in Fig. 7 for
the case of the optimal plate shape obtained with N ¼ 10
which is described below.

We now consider the shape optimization problem using
the optimization code NPSOL. We seek to maximize JðaÞ
in Eq. (11) subject to the area constraint in Eq. (32). In
addition, a perimeter constraint is imposed:

P ¼

Z 2p

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ða; wÞ þ

dr

dw

� �2
s24 35dwp10m.

It was found that this perimeter constraint improved the
convergence of the optimization algorithm for NX8. It is
also of engineering interest to minimize the shoreline
dimension for a structure representative of a floating
airport. Also, the radial dimension of the boundary at 360
equally spaced value of w is constrained not to be below a
minimum value:

rða; wiÞX0:1m; wi ¼ 2pi=360; i ¼ 1; . . . ; 360.

We consider a series of problems with N sequentially
increased from N ¼ 1 to 12. Note that for N ¼ 0, the area
constraint uniquely determines a0. In each case, a circular
plate is used as an initial guess for the shape parameters.
The optimal value of bJ is shown in Fig. 8 as a function

of N. This is, and must be, monotonically increasing since
the solution for problem N � 1 is admissible in problem N.
In some cases, there is little or no increase in the
performance index. The perimeter constraint was not
active for Np7. We hypothesize that it is impossible for
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Table 1

Optimal Fourier coefficients for N ¼ 10

n an

0 0.8305

1 0.0012

2 �0.1335

3 �0.0044

4 �0.4263

5 0.0064

6 0.2171

7 0.0028

8 0.1631

9 �0.0059

10 �0.1356
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a curve described by Eq. (22) with Np7 to enclose unit
area and have a perimeter as large as 10. This is obvious
when N ¼ 0. The optimal plate shapes for each problem
for N ¼ 1; . . . ; 10 (excluding N ¼ 9 which is very similar to
N ¼ 8) are shown in Fig. 9. The optimal values of the an

for N ¼ 10 are given in Table 1. It is this case whose
gradients are depicted in Fig. 7. With a little imagination,
one can envisage this shape as suitable for a floating airport
given the presence of high aspect ratio lobes which are ideal
for runway location. It is interesting to note that the
replacement of a unit-area circular dock with the optimal
shape for N ¼ 10 only improves the damping coefficient at
ka ¼ 1:4 by 35%.

6. Conclusions

A methodology for optimizing the shape of floating
plates to maximize added damping in heave at a given
wavenumber has been advanced. The flow problem was
solved using a previously developed implementation of the
Chen and Mei variational principle where an outer field
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obtained by distributing sources on an enclosing hemi-
sphere is matched to the field inside the hemisphere
described using spherical harmonics. This analytical
representation for the field on the body was instrumental
in being able to accurately calculate the performance index
and its gradients with respect to the shape parameters. The
gradients were accurately determined through the devel-
opment of an adjoint potential flow problem. Somewhat
surprisingly, the potential solution of the adjoint problem
collapsed down to a scalar multiple of that of the original
flow problem. Derivatives with respect to the shape
parameters were easily performed given that a Fourier
series was used to represent the plate shape.

Future work will address the problem of optimizing
radiation damping in the vibration modes of floating plates.
This is necessarily more complicated since modification of
the shape requires remeshing of a finite element discretization
and the vibration modeshapes become shape dependent.

References

Andrianov, A.I., Hermans, A.J., 2005. Hydroelasticity of a circular plate

on water of finite or infinite depth. Journal of Fluids and Structures 20,

719–733.

Chen, H.S., Mei, C.C., 1974. Oscillations and wave forces in a man-made

harbour in the open sea. In: Tenth Symposium on Naval Research,

Office of Naval Research, pp. 573–594.

Clauss, G.F., Birk, L., 1996. Hydrodynamic shape optimization of large

offshore structures. Applied Ocean Research 18, 157–171.
Damaren, C.J., 2001. The hydrodynamics of thin floating plates. Ocean

Engineering 28, 1145–1170.

Gill, P.E., Murray, W., Saunders, M.A., Wright, M.H., 1998. User’s guide

for NPSOL 5.0: a fortran package for nonlinear programming.

Technical Report SOL 86-1, Systems Optimization Laboratory,

Stanford University.

Hulme, A., 1982. The wave forces acting on a floating hemisphere

undergoing forced periodic oscillations. Journal of Fluid Mechanics

121, 443–463.

Jameson, A., 1988. Aerodynamic design via control theory. Journal of

Scientific Computing 3, 233–260.

Martin, P.A., Farina, L., 1997. Radiation of water waves by a heaving

submerged horizontal disc. Journal of Fluid Mechanics 337, 365–379.

Mei, C.C., 1989. The Applied Dynamics of Ocean Surface Waves, second

ed. World Scientific, Singapore.

Miles, J.W., 1987. On surface-wave forcing by a circular disk. Journal of

Fluid Mechanics 175, 97–108.

Nemec, M., Zingg, D.W., Pulliam, T.H., 2004. Multipoint and multi-

objective aerodynamic shape optimization. AIAA Journal 42,

1057–1065.

Newman, J.N., 1984. Double-precision evaluation of the oscillatory source

potential. Journal of Ship Research 28, 151–154.

Ragab, S.A., 2001. An adjoint formulation for shape optimization in free-

surface potential flow. Journal of Ship Research 45, 269–278.

Ragab, S.A., 2004. Shape optimization of surface ships in potential flow

using an adjoint formulation. AIAA Journal 42, 296–304.

Ursell, F., 1981. Irregular frequencies and the motion of floating bodies.

Journal of Fluid Mechanics 105, 143–156.

Watanabe, E., Utsunomiya, T., Wang, C.M., 2004. Hydroelastic analysis

of pontoon-type VLFS: a literature survey. Engineering Structures 26,

245–256.

Yeung, R.W., 1982. The transient heaving motion of floating cylinders.

Journal of Engineering Mathematics 16, 97–119.


	Hydrodynamic shape optimization of thin floating plates
	Introduction
	Hydrodynamic boundary value problem
	Variational formulation of the radiation problem
	Adjoint formulation for shape optimization
	Numerical example
	Conclusions
	References


