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Abstract

The problem of approximating the dynamics of a floating structure in a transient wave
environment with a set of constant-coefficient differential equations is explored. It is assumed
that the solutions of the corresponding steady-state time-harmonic radiation and diffraction
problems are available. It is proposed to fit the frequency responses associated with the ‘radi-
ation impedance’ and wave-exciting forces with appropriate analytic functions. In the case of
the radiation problem, these possess certain properties corresponding to the passivity of the
radiation mapping. By choosing rational approximations, the transformation from the fre-
quency to the time domain is facilitated. The method is illustrated for both two-dimensional
and three-dimensional problems using a floating cylinder, sphere, and a model of Salter’s Duck
which exhibits hydrodynamic coupling between sway, heave, and pitch motions. 1999
Elsevier Science Ltd. All rights reserved.
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1. Introduction

This paper is concerned with the motion of a floating body which floats on the
surface of an infinitely deep ocean of infinite extent in the presence of surface waves.
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The hydrodynamics is formulated under the assumptions of small body motions and
wave heights and the fluid medium is incompressible, of constant density, inviscid,
and irrotational. It is highly desirable if the mapping from transient wave motion to
body motion can be approximated by a finite-dimensional, linear time-invariant one
which corresponds to a system of constant-coefficient differential equations. Such a
description is useful for simulation and control system design.

The problem was originally studied in the frequency domain in terms of steady-
state harmonic solutions by John (1950) and others. The connection to the transient
time-domain problem was noted by Cummins (1962); Wehausen (1971). The latter
emphasized that inverse Fourier transformation of harmonic solutions was but one
possibility; alternatively, the problem can be formulated directly in the time domain
using a time-varying transient Green’s function. These functions are known from
the work of Finkelstein (1957) and have been used by Yeung (1982); Newman
(1985); Beck and Liapis (1987); Pot and Jami (1991), who studied the radiation
problem for various cylinders and spheres.

The transient motion of a two-dimensional cylinder has been studied by Ursell
(1964); Maskell and Ursell (1970) where properties of the added mass and damping
coefficients were used to infer asymptotic properties of the temporal solution. The
full solution was obtained numerically using inverse Fourier transformation. None
of the above approaches yields an explicit representation or realization of the transi-
ent body response to radiation and diffraction forces which is the subject of this work.

The spatially discretized motion equations of a general flexible body under the
assumptions of small motions and linear elasticity naturally form a second-order
system of constant-coefficient differential equations. These are characterized by sym-
metric mass and stiffness matrices and the latter can be augmented by the hydrostatic
forces. Similar representations are desired for the radiation and diffraction forces.
These are the outputs of linear systems driven by, respectively, the body motion
(which we take as a velocity) and the wave motion (which is interpreted as the free
surface displacement at one spatial location). The first of these is termed the radiation
impedance and the second will be called the diffraction mapping. In the time domain,
these linear systems manifest themselves as convolution operators and the Fourier
transforms of the corresponding impulse responses give rise to the well-known
hydrodynamic coefficients.

The radiation impedance and diffraction mapping can be approximated in the time
or frequency domains. Recently, Yu and Falnes (1995) pursued the first route and
provide a good survey of previous approaches; the work of Jefferys (1980, 1984) is
of particular note. Both sets of authors seem unduly pessimistic on the subject of
frequency domain approximation citing ‘no obvious method.’ Although Jefferys
(1984) fitted single degree of freedom frequency responses, it was suggested that
the technique was not appropriate for the multiple degree of freedom case owing to
the number of parameters that are required. It should be noted that time-domain
fitting procedures typically require the impulse response which must be obtained by
inverse Fourier transformation or experimentally. Furthermore, the resulting least
squares optimization is typically nonlinear in the unknown parameters since it
involves fitting a matrix exponential to the impulse response. Yu and Falnes (1995),
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in addition to considering the single degree of freedom heave radiation problem,
treat the diffraction problem pointing out the dependency of the causality of this
mapping on the wave height datum. The issue was further studied by Falnes (1995).

In this paper, rational approximation of the radiation impedance and diffraction
mappings is treated in the general multiple degree of freedom case which potentially
exhibits hydrodynamic coupling. By using rational (matrix) functions for the approxi-
mation, the transformation from the frequency domain to the time domain is facili-
tated. The radiation approximation relies heavily on the passive (energy dissipative)
nature of the impedance. This imparts the frequency domain transfer function with
the positive real property which greatly constrains the form of the rational approxi-
mation. The fitting procedures all reduce to linear least squares problems. The diffrac-
tion transfer function does not possess the positive real property but good stable
(causal) approximations are shown to be possible for suitable choices of the wave
datum.

The method is illustrated for both two- and three-dimensional problems using a
floating cylinder and sphere. A model of Salter’s Duck is used to illustrate the ability
to model multiple degrees of freedom which are coupled hydrodynamically.

2. Problem formulation

The motions of a floating body@ will be described byw(r ,t) 5 [w1 w2 w3]T where
r 5 [x y z]T with thez-axis vertically upwards and the origin lying in the mean free
surface. A spatial discretization of the form

w(r ,t) 5 ON
a 5 1

ca(r )qa(t) 5 C(r )q(t) (1)

is employed whereC 5 row{ca} and q 5 col{qa}. Included inC are the six rigid-
body motions:

c1 5 310
0
4, c2 5 301

0
4, c3 5 300

1
4, c4 5 3 0

2 z

y
4, c5 5 3 z

0

2 x
4, c6 5 3 2 y

x

0
4

Additional basis functions may be used to discretize elastic deformations in the
case of a flexible body. Letn(r ) denote the components of the outward normal to
the wetted portion of@, 6, and definena(r ) 5 nTca.

If s(r ) denotes the mass density per unit volume andp(r , t) is the fluid pressure,
the ensuing discrete motion equations are given by

Mq̈ 1 Kq 5 f(t) (2)

whereMab 5 E
@

cT
acbs dV, fa 5 2 E

6

p(r ,t)na(r) dS, andKab 5 Kba are the elements
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of the stiffness matrix associated with structural flexibility or the elastic restoring
effects of moorings. The motion of the fluid is governed by the velocity potential
F(r , t) which, in 9 5 { z # 0\@} satisfies

=2F 5 0, r P V;
∂2F

∂t2
5 2 g

∂F

∂z
, r P 6f; lim

z→ 2 `

∂F

∂z
5 0; (3)

∂F

∂n
5 nTẇ 5 ON

a 5 1

na(r )q̇a, r P 6 (4)

Here 6f 5 { z 5 0\@} denotes the free surface andg is the acceleration due to
gravity.

We make the standard decomposition

F 5 FI 1 FS 1 FR, FR 5 ON
a 5 1

fa* q̇a (5)

whereFI describes the incident wave field and * is the temporal convolution product.
The scattered (FS) and radiated fields (FR) satisfy Eq. (3) and are chosen to satisfy
Eq. (4) such that

∂FS

∂n
5 2

∂FI

∂n
,

∂fa

∂n
5 nad(t), r P 6 (6)

In addition, FS and fa are bounded as are their first derivatives asR 5
√x2 1 y2→`. A further decomposition offa is possible which separates memoryless

effects from nonmemoryless ones in the convolution in Eq. (6) as demonstrated by
Cummins (1962). Initial conditions are required to complete the problem and are
discussed later.

For simplicity, the incident wave field is assumed to consist of transient waves
propagating in the positivex-direction, i.e.,

FI 5
1

2p E
`

2 `

f̃Iej(k9a9 1 vt)Ã(v) dv, f̃I 5
jg
v

ekz 2 jk9x, k 5 v2/g,

k9 5 k sgn(v) (7)

anda9 is an appropriately chosen constant whose selection is described below. The
free surface elevation satisfies

h(x,y,t) 5 2
1
g

∂FI

∂t |
z 5 0

5
1

2p E
`

2 `

e−jk9(x 2 a9)Ã(v)ejvt dv (8)

so that we can make the identificationÃ(v) 5 ^{ A(t)} where A(t) 5 h(a9,y,t) and

^{( ·)} 5 (·)
|

denotes the Fourier transform:
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F̃(r ) 5 E
`

2 `

F(r ,t)e−jvt dt (9)

Using Bernoulli’s equation, the (linearized) components off(t) in Eq. (2) stemming
from the fluid forces are

f(t) 5 colHE
6

Sr
∂F

∂t
1 rgzDna dSJ 5 fR(t) 1 fD(t) 2 Ksq(t) (10)

Here, r is the fluid density andKs 5 matrix{Ks,ab} 5 KT
s $ O is the matrix of

hydrostatic restoring coefficients; see Newman (1977) for the rigid-body case. The
radiation and diffraction forces are obtained by substituting Eq. (5) into Eq. (10)
and satisfy

fR 5 col{ fRa}, fRa 5 r ON
b 5 1

E
6

F∂
∂t

(fb* q̇b)naGdS (11)

fD 5 col{ fDa}, fDa 5 rE
6

F∂FI

∂t
1

∂Fs

∂t Gna dS (12)

Introducing Eq. (10) into the motion Eq. (2) yields the dynamics of a floating body:

Mq̈ 1 (K 1 Ks)q 5 fR(t) 1 fD(t) (13)

The problem is now to relate the wave motionA(t) to the body motionq(t) in an
explicit manner.

3. Frequency domain modeling

Taking the Fourier transform of the force expressions in Eq. (11) and Eq. (12)
gives

f̃ Ra 5 2 ON
b 5 1

H̃ab(v)q̇b

|

, H̃ab(v) 5
D

2 jvrE
6

(f̃bna)dS (14)

f̃ Da 5 X̃a(v)Ã(v), X̃a(v) 5
D

jvrE
6

[f̃I 1 f̃S]na dSejk9a9 (15)

where we have writtenF̃I 5 f̃Iejk9a9Ã(v) andF̃S 5 f̃Sejk9a9Ã(v) . Transformation of
the boundary value problem in Eq. (3) leads to
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=2F̃ 5 0, r P 9;
∂F̃

∂z
5 kF̃, r P 6f ; lim

z→ 2 `

∂F̃

∂z
5 0 (16)

Using Eq. (4), the potentialsf̃a, a 5 1,…,N, andf̃S also satisfy the above with
f̃a,n 5 na, f̃S,n 5 2 f̃I,n on 6 in keeping with the Fourier transform of Eq. (6).
These boundary value problems are formally identical to the standard time-harmonic
ones; in this light, the frequency domain radiation and scattered potentials also satisfy
an outgoing radiation condition asR→`.

Both potentials can be obtained in terms of a source distributiong̃(r ) on 6 using

f̃(r ) 5 E
6

G(r ,j)g̃(j)dS (17)

where g̃ is a solution to a Fredholm integral equation of the form

2 2pg̃(r ) 1 E
6

∂G(r ,j)
∂nr

g̃(j)dSj 5
∂f̃(r )

∂nr

(18)

In two-dimensional problems, the factor2 2p is replaced with1 p. Here,G(r ,j)
is Green’s function which satisfies Laplace’s equation and the free surface, bottom,
and radiation conditions. Explicit expressions forG(r ,j) are given by Thorne (1953)
in the two- and three-dimensional cases. Accurate techniques for calculation have
been given by Newman (1984) in the three-dimensional case and are used here. The
form of G(x,z,j,z) used here in the two-dimensional case has not been widely
reported. It is

G(x,z,j,z) 5 log
r
r9

1 2pjek% 2 2Re{ek%E1(k%)}

where r 5 √(x 2 j)2 1 (z 2 z)2, r9 5 √(x 2 j)2 1 (z 1 z)2, % 5 (z 1 z) 2 j|x 2

j|, and E1(%) 5 2 g 2 log % 2 O`
n 5 1

[( 2 1)n%n/(nn!)] (arg{%} , p) is the

exponential integral (g 5 0.57721… is Euler’s constant). In the sequel, such an
approach using constant source panels is employed to determinef̃a andf̃s at discrete
points on6 for several values ofk. Problems associated with irregular frequencies
are handled using the modifications toG(r ,j) outlined by Ursell (1981):

G(r ,j)→G(r ,j) 1 a0G(r ,r0)G(j,r0)) (19)

which effectively adds a source atr 5 r 0; we takea0 5 1 2 j and typicallyr 0 5 0.
It is conventional to describeH̃ab in Eq. (14) in terms of the added damping and

mass coefficients:lab(v) 5 Re{H̃ab}, mab(v) 5 v−1Im{ H̃ab}. It can be shown using
energy considerations thatL 5 matrix{lab} is symmetric and positive-semidefinite
andL→O asv →0 andv →`. The added mass matrixMR 5 matrix{mab} is posi-
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tive-definite in both the low- and high-frequency limits. The values oflab, mab, and
X̃a, are readily determined from Eqs. (14) and (15) using numerical approximations
to the corresponding potential functions obtained using Eq. (17).

Assuming that the motionsA(t) and q(t) start at rest att 5 0, the radiation and
diffraction forces can be written in the time domain as

fDa(t) 5 E
t

0

Xa(t 2 t)A(t)dt, fRa(t) 5 2 ON
b 5 1

E
t

0

Hab(t 2 t)q̇b(t)dt (20)

whereXa(t) andHab(t) are inverse Fourier transforms of the quantities in Eqs. (14)
and (15). It is known thatH̃ab(v) is an analytic function in a region containing the
upper half of the complexv plane thus yielding a causal convolution operator above
for the radiation forces. Arguing on physical grounds, we takea9 in Eq. (15) to
satisfy a9 # minr P S[1 0 0]Tr (the x-coordinate of the wetted portion of the body
first exposed to the incoming wave) so thatXa(t) is causal and henceX̃a(v) is analytic
for Im{ v} > 0. Discussion provided by Falnes (1995) suggests that the ‘diffraction
operator’Xa can be made only approximately causal by such a device.

Our purposes are better served using the Laplace transform+{·}. Setting
Xa(s) 5 +{ Xa(t)}, Hab(s) 5 +{ Hab(t)}, and taking the transform of Eqs. (14) and
(15) gives

fD(s) 5 X(s)A(s), fR(s) 5 2 H(s)q̇(s) (21)

Note thatX(jv) 5 col{X̃a(v)} and H(jv) 5 matrix {H̃ab(v)}. The block diagram
in Fig. 1 illustrates the relationship between the wave height and the body motion.
The transfer matrix describing the body is a rational (matrix) function ofs and gives
rise to the constant-coefficient differential equations in Eq. (2). We seek similar
descriptions forH(s) andX(s) in Eq. (21).

Consider the energy of the floating body described by Eq. (13):

e(t) 5 1
2 q̇TM q̇ 1 1

2 qT(K 1 Ks)q (22)

where the hydrostatic potential energy has been included. Its time derivative in con-

Fig. 1. Block diagram of combined radiation/diffraction problem.
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junction with Eq. (13) givesė 5 (f T
R 1 f T

D)q̇. In the absence of the incident wave
field, we have upon integration

e(T) 2 e(0) 5 E
T

0

f T
R(t)q̇(t) dt # 0, ∀T $ 0 (23)

where it has been argued thate(T) # e(0), ∀T $ 0. The inequality in Eq. (23)
expresses the passivity of the mapping fromq̇ to 2 fR(t) and states that radiation is
a dissipative process. Passive systems have been well studied in the context of electri-
cal networks (see, for example, Anderson and Vongpanitlerd (1973)) and are treated
in general by Zemanian (1965). There it is shown that a passive linear time-invariant
system has a transfer function which ispositive real; that is, for Re{s} > 0: (i) H(s)
is analytic; (ii) H(s) is real for reals; (iii) 1

2 [H(s) 1 HH(s)] $ O.
It will be further assumed thatH(s) andX(s) are continuous on the axiss 5 jv

which excludes the possibility of isolated poles on the imaginary axis. In this case,
condition (iii) above holds on the imaginary axis and implies thatL(v) 5 (1/2) [H
(jv) 1 HH(jv)] $ O . The radiation impedance can be further written as

H(s) 5 Hr(s) 1 sM`, M` 5 matrix { lim
v→`

mab(v)}

Hr(s) continues to enjoy the positive real property, as noted by Newcomb (1966),
but it is strictly proper, i.e.,Hr(s)→O ass→` sinceL→O in this limit. It is assumed
that M` is known; this calculation is feasible using a special limiting form of
Green’s function.

4. Approximation by analytic functions

SinceX(s) andHr(s) are analytic in a region containing the open right-half plane,
they can be uniformly approximated in compact regions of this region by rational
functions with poles in the left-half plane (this is Runge’s theorem; see Rudin
(1987)). We propose to make such an approximation on a finite part of the imaginary
axis then extend the function to the right-half plane (RHP) by analytic continuation.
Standard properties of rational positive real functions are given by Tao and Iaonnou
(1988). In the scalar case, it is interesting to note that all rational PR functions have
necessarily relative degree one so that rational approximations to the added damping
and mass coefficients that are positive real satisfylaa~v−2 and [maa 2
maa(`)]~v−2 asv→`. This is at odds with known asymptotics for these coefficients
but the discrepancy can be pushed to arbitrarily high frequency by increasing the
order of the approximation.

The low-frequency asymptotics are similarly mismatched. For example, in the case
of a two-dimensional heaving cylinder, Ursell (1964) has shown that nears 5 0,
Hr(s) (suitably nondimensionalized) behaves like
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Hr(s) 5
8

p2 3 2 2s log s 1 ( 3
2 2 2 log 2 2 g)s$

1 1 4
p s2 log s 1 $ 4 (24)

and hence has a logarithmic branch point ats 5 0. Much of the hydrodynamical
literature has emphasized the role of the acceleration to force map (Hr(s)/s) which
does not possess the positive real property. The impedanceHr(s) is not only positive
real but partially avoids the problem ats 5 0. Unlike Hr(s)/s on the imaginary axis,
Hr(jv) is continuous atv 5 0; Mergelyan’s extension to Runge’s theorem (Rudin,
1987) permits uniform approximation by rational functions in a compact region
where the function is analytic inside but upon whose boundary the function is
merely continuous.

4.1. Single degree of freedom case

To fix ideas, consider a single degree of freedomq(t), say the heaving motion of
a cylinder in two dimensions. The simplest rational positive real function, without
poles on the imaginary axis, and satisfying Re{Ĥr(jv)} 5 0 in the high- and low-
frequency limits is one of second order:

Ĥr(s) 5
bs

s2 1 2zVs 1 V2 (25)

with b > 0, z > 0, andV > 0. This corresponds to the following relationship between
q̇(t) andfR(t): fR(t) 5 2 M`q̈(t) 1 fr(t) with fr 5 2 q̇r, q̈r 1 2zVq̇r 1 V2qr 5 bq̇. In
general, we propose to approximateHr(s) by

Ĥr(s) 5
b(s)
a(s)

5

On 2 1

i 5 1

bisn 2 i

sn 1 On
i 5 1

aisn 2 i

(26)

A sufficient condition for this to be positive real is that it be expressible as a
combination of terms of the form of Eq. (25).

Given the values of the added mass and damping coefficients atNp discrete fre-
quenciesvi, we propose to minimize the following function with respect to theai

and bi:

) 5 1
2 ONp

i 5 1

|Ĥr(jvi) 2 Hr(jvi)|2, Hr(jvi) 5 l(vi) 1 jvi[m(vi) 5 m(`)] (27)

This is not in the form of a standard least squares problem given the nonquadratic
dependence on theai but can be approximated by the series of problems
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)(m) 5 1
2 ONp

i 5 1

|b(m)(jvi) 2 Hr(jvi)a(m)(jvi)|2|W(m)(jvi)|2, m 5 1,…,M (28)

which are quadratic in theb(m)
i anda(m)

i . Here,W(m)(s) is a weighting function which
we take as 1 form 5 1 andW(m)(s) 5 1/a(m 2 1)(s), m 5 2,3,$,M. In carrying out
the optimization, it may so happen that afterM iterationsa(M)(s) has poles in the
RHP, leading to an unstable approximation. This is remedied by carrying out one
further optimization according to Eq. (27) with a prescribed denominator forĤr(s)
containing the stable poles ofa(M)(s). Typically the resulting approximations are
positive real since the data possess this property. If not, it is possible to further
approximateĤr(s) by the closest positive real function with the same poles using
the algorithm of Damaren et al. (1996).

The constituents ofX(s), Xa(s), can be approximated in the same way but the
positive real and low-frequency conditions are not required. We take

X̂a(s) 5
bDa(s)
aDa(s)

5

On
i 5 1

ba,isn 2 i

sn 1 On
i 5 1

aa,isn 2 i

(29)

and employ Eq. (28) for determiningbDa(s) andaDa(s).

4.2. Multiple degree of freedom case

In this case, it is helpful if the same denominator polynomialaD(s) 5 sn 1
ad1sn 2 1 1 $ 1 adn is used for eachX̂a(s) in Eq. (29). Then, the first mapping in

Eq. (18) can be realized in the time domain as

fD(t) 5 Cdxd, ẋd 5 Adxd 1 BdA(t) (30)

where

Cd 5 matrix {ba,i}, Bd 5 [1 0$0 0]T,

Ad 5










2 ad1 2 ad2 $ 2 ad,n 2 1 2 adn

1 0 $ 0 0

0 1 $ 0 0

: : ¢ : :

0 0 … 1 0 








The denominatoraD(s) can be the product of individual onesaDa(s) optimised for
eachXa(s) and theba,i can be obtained using one final least squares optimization
for eachX̂a using the compositeaD(s). Each of these problems is a standard least
squares problem similar in form to Eq. (27).
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In the multivariable case, we propose to representHr(s) as

Ĥr(s) 5 ON2

k 5 1

Wk

s
s2 1 2zkVks 1 V2

k

, zk > 0, Vk > 0, Wk 5 WT
k (31)

This constitutes a rational matrix function without poles on the imaginary axis,
which is strictly proper, and has a real part vanishing in the low-frequency limit. A
sufficient condition for it to be positive real is thatWk is positive-definite. Thezk

andVk are determined by applying the scalar approach outlined above to the diagonal
termsHr,aa(s). The totality of stable poles fora 5 1…N is forced to be even and
used to calculatezk and Vk. With these parameters then fixed, the quantitiesWk,ab

are determined by approximatingHr,ab(s) with fixed poles according to Eq. (27).
Implicit in this approach is that poles corresponding toĤr,aa can be used to success-
fully approximateHr,ab, aÞb.

The resulting matricesWk can be factored asWk 5 CrkBT
rk where Brk has full

column rank which we denote bymk. The advantage of Eq. (31) with this factoriz-
ation lies in its ability to be realized in a matrix second-order form:

fr(t) 5 2 Crq̇r, q̈r 1 Drq̇r 1 K rqr 5 Brq̇ (32)

whereCr 5 row{Crk}, Br 5 col{Brk}, Dr 5 block diag{2zkVk1mk
}, K r 5 block diag

{ V2
k1mk

}, and 1mk
is the mk 3 mk identity matrix. In other words, taking Laplace

transforms of Eq. (32) yieldsfr(s) 5 2 Ĥr(s)q̇(s) whereĤr(s) is given by Eq. (31).
Note that there areΣmk coordinates inqr.

When the radiation forces are written asfR(t) 5 2 M`q̈ 1 fr(t) and combined with
Eqs. (13), (30) and (32), we have

FM 1 M` O

O 1
G F q̈

q̈r
G 1 FO Cr

Br Dr
G F q̇

q̇r
G 1 FK 1 Ks O

O K r
G Fq

qr
G 5 FCd

O
Gxd (33)

with xd given by Eq. (30). By definingx 5 col{q,q̇,qr,q̇r,xd}, the mapping fromA(t)
to q(t) can be written in the standard form

q(t) 5 #x(t), ẋ 5 !x 1 @A(t) (34)

for appropriate {!, @, #}. This model is of the desired form and the unforced
problem (A(t) ; 0, xd ; 0) as given by Eq. (33) is characterized by symmetric mass,
damping, and stiffness matrices. The corresponding eigenproblem permits the deter-
mination of the coupled body/water ‘hydrodynamic modes’ whose truncation is one
way of further reducing the order of the model.

5. Numerical examples

5.1. The heaving cylinder

Consider the two-dimensional heaving motion of a circular cylinder of radiusa
and drafta. The added damping and mass coefficients obtained with an integral
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equation approach with 200 constant source panels are shown in Fig. 2(a) and (b).
The modification to Green’s function indicated by Eq. (19) was employed to reduce
the effect of irregular frequencies. A single second-order approximation like Eq. (25)
captures the added mass and damping coefficients quite well and forn 5 4 there is

Fig. 2. Results for two-dimensional heave of a cylinder.
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little discernible difference. For all fits,Np 5 100 at equally spaced values in the
range 0, ka # 5.

The real and imaginary parts of the diffraction force coefficient are shown in Fig.
2(c) and (d) where a value ofa9 5 2 6a was used to describe the wave height. Fits
to both functions are shown for various values ofn. The given value ofn corresponds
to the effective value after performingM 5 10 iterations in Eq. (28) and removing
unstable poles. For example, for then 5 11 curve, the initial approximation was of
order 12. It is interesting to note the effect ofa9 on the ability to determine a good
stable approximation. Fora9 5 0, most of the poles in the approximation are typically
unstable. Asa9 is made more negative, the proportion of stable poles tends to increase
but the functionX(jv) becomes more oscillatory and is harder to approximate. The
value ofa9 5 2 6a represents a satisfactory compromise.

The corresponding time behavior of the free decay from a displaced initial con-
figuration is shown in Fig. 2(e) forn 5 4 andn 5 10 in the radiation approximation.
This was obtained by solving the homogeneous form of Eq. (34) (without thexd

states) using the matrix exponential. Our results show excellent agreement with those
of Yeung (1982) and slightly less good agreement with those of Maskell and Ursell
(1970). The latter authors showed that the cylinder free decay was dominated by a
pair of poles located at (2 0.1316 j0.919)√g/a. The dominant eigenvalues of the
unforced system in Eq. (34) forn 5 4 and n 5 10 are given by (2 0.1436
j0.919)√g/a. The corresponding free decay for an initial velocityẇ(0) 5 √ag is

given in Fig. 2(f) with normalization corresponding to that of Maskell and Ursell.
The agreement is quite favorable.

5.2. The heaving sphere

A similar approach was employed for the heaving motion of a (three-dimensional)
hemisphere and good agreement was obtained between the panel solutions and the
accurate solutions of Hulme (1982) for the added mass and damping coefficients.
The latter are shown in Fig. 3(a) and (b) as well as the fit obtained usingn 5 4.
The force coefficients are given in Fig. 3(c) and (d) for an array of 403 12 panels
(linear circumferential spacing and cosine azimuthal spacing) anda9 5 2 4a. The
corresponding rational approximation forn 5 11 (M 5 10 iterations andNp 5 200
points in the range 0, ka # 10) is also shown.

The free decay for an initial displacement and an initial velocityẇ(0) 5 √ag is
shown in Fig. 3(e) and (f) forn 5 4 andn 5 10 in the radiation approximation.
They are virtually identical, indicating the converged nature of the radiation approxi-
mation and show good agreement with the results of Beck and Liapis (1987).

5.3. A multivariable example: Salter’s Duck

Consider the two-dimensional model shown in Fig. 4 representing a partially sub-
merged ‘Salter’s Duck.’ The hydrodynamic properties were considered by Mynett
et al. (1979) in finite depth water. The hydrodynamic coefficients obtained using 300
equal-sized panels for (coupled) sway (1), heave (3), and pitch (5) motions with
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Fig. 3. Results for a heaving sphere.
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Fig. 4. Model for Salter’s Duck.

s 5 0 are given in Figs. 5 and 6. The ‘extra source’ in Eq. (19) was located at
r 0 5 [ 2 a(√2 2 1)/2 0 0]T (along the line of the center of buoyancy). A tenth-order
approximation like Eq. (26) was used to initially fit eachHaa(s), a 5 1,3,5, which
furnished 18 appropriate values for the theVk and zk in Eq. (31) after removing

Fig. 5. Added damping coefficients for Salter’s Duck.
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Fig. 6. Added mass coefficients for Salter’s Duck.

unstable poles and retaining only complex-conjugate pairs. There were also two
stable real poles which were discarded. The entries in eachWk were then obtained
by fitting eachHab(s) with the denominators fixed. The approximations for the added
damping and mass coefficients are also given in Figs. 5 and 6, respectively. The
approximations are very good including those corresponding to the off-diagonal coef-
ficients and show no discernible differences.

The exciting forces corresponding toa9 5 6a are shown in Fig. 7. These were
validated using the Haskind relations,

X̃a 5 jvrE
s

Sf̃Ina 2
∂f̃I

∂n
f̃aDdS (35)

to test their consistency with the radiation potentials. EachXa(jv) was initially fit
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Fig. 7. Diffraction coefficients for Salter’s Duck.

with n 5 20 andM 5 10 iterations. The resulting approximation in Eq. (25) was
of order 51 after combining the individual denominator polynomials and removing
unstable poles. Given in Fig. 7 are the ensuing approximations for the real and
imaginary parts of Re{X̃a} and Im{X̃a}. The combined first-order transient solution
in Eq. (34) is of order 93 and can be used to determine the motion of the body given
the wave history ofA(t) at x 5 2 6a.

6. Concluding remarks

The approach presented here has the ability to approximate transient solutions
arbitrarily closely and provides an alternative methodology upon which comparison
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with other techniques can be made. It is also based on frequency-domain solutions
for which well-established procedures already exist. Most important is the explicit
characterization of the dynamics relating a transient sea to the body motions in terms
of linear constant-coefficient matrix differential equations. This is particularly
important when one contemplates the problem of control system design for large
floating structures.

The success of the method suggests the possibility of using rational approximations
for Green’s function itself so that the radiation and diffraction forces may be formed
directly with their rational dependence on frequency manifested analytically. The
motion equations may then be formulated directly in the time domain without the
need to determine the hydrodynamic coefficients at many frequencies.
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