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Abstract This paper introduces a novel tumbleweed rover design that employs a pendulum–
generator system to harvest electrical power from the wind. First, the dynamics of this multi-
body system are developed, including the internal pendulum dynamics, resistance (damping)
provided by the electrical generators, external wind force, and rolling constraints between
the sphere and the ground. Second, the stability of the system (without wind) is studied and
it is shown that it is stable in the sense of Lyapunov. Finally, simulation results are provided
that verify the system will roll stably downwind while generating power.

Keywords Multibody dynamics · Tumbleweed rover · Pendulum · Planetary exploration

1 Introduction

The twin Mars Exploration Rovers (MER), Spirit, and Opportunity, have been an over-
whelming success. These two rovers, which landed in early 2004, have vastly exceeded
their 90-day life expectancy. As a result of using these ground-breaking tools, humankind
has learned more about the geology, mineralogy, and meteorology of Mars in the last 5 years
than in all of previous history. Despite these monumental achievements, it has taken an av-
erage of 4 months for a MER rover to drive 1 kilometer. To truly understand scientific
properties on a planetary scale, it is desirable to acquire scientific data across as large an
area as possible.

One approach to achieving large-scale exploration is to continue to advance the on-board
autonomy techniques that allow conventional six-wheeled rovers to make decisions on their
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own. The MERs showed that autonomous operations could increase the amount of time
spent carrying out science [1], as compared to the 1997 Sojourner rover (which had very
limited autonomy). In particular, the MERs employed stereo cameras to help detect and
avoid rocks and hazards when driving between scientific sampling locations. However, this
capability has only been enabled for 25% of the distance traveled by the two rovers, in
large part because it is overly conservative when deciding what terrain is safe. For the
other 75% of the distance traveled, human operators on Earth have laboriously uploaded
commands based on images downloaded from Mars during the infrequent communication
windows.

Another approach to covering larger distances is to reduce the dependence on solar
power, as this limits the operations that can occur within a given sol. The next six-wheeled
rover, Mars Science Laboratory (MSL), will be approximately twice as large as the MERs,
will employ a nuclear power source, and will start its mission with the latest autonomy
capabilities afforded to the MERs. These advantages together will potentially increase the
distance covered by MSL as compared to the MERs. However, this will likely not result in
a rover that can travel hundreds, even thousands of kilometers.

A more radical approach to large-scale exploration is to completely change the design of
the rover. In this paper, we consider a wind-powered tumbleweed rover. The idea is simple;
an inflated ball is blown by the Martian winds, much like a tumbleweed is blown across a
terrestrial desert. In its most basic form, as the rover is blown and rolls along with the wind,
it collects data such as temperature, pressure and surrounding light intensity and transmits
it back to Earth. The impetus to use a tumbleweed rover is its simplicity; a rover that uses
the surrounding environment as propulsion requires less equipment such as motors, power,
motion control, etc. In turn, with the mass reduction of the rover, more science experiments
can be added, creating missions with more objectives, which translates to higher scientific
yield. Field trials on Earth with tumbleweed prototypes have shown the ability for these
systems to travel over 100 kilometers fully autonomously [2].

Tumbleweed rovers have been studied by a handful of organizations in the past including
the NASA Jet Propulsion Lab [3] and NASA Langley Research Center [4]. In this paper,
we introduce and study a novel tumbleweed rover design that enjoys a number of potential
advantages over its competitors:

1. It employs an internal pendulum-generator system to produce electrical power as a result
of being blown by the wind. This removes the need for solar panels while providing
abundant power for the avionics and payload.

2. By varying the amount of electrical power harvested, this provides a means to regulate
the speed of the rover.

3. By storing the electrical power generated in times of high winds in a battery (likely
located in the pendulum for ballast), the rover can reverse the flow of electricity and use
the generators as motors to self-propel in times of low winds.

4. With the pendulum laterally fixed, the rover is naturally stable and will roll downwind
about its preferred axis. This provides a stable platform to potentially carry camera sys-
tems or other sensors with pointing requirements.

5. With the pendulum laterally controlled, the rover is able to steer itself both in the presence
and absence of wind. This opens the possibility for hazard avoidance and visiting specific
sites of interest.

One conceptual design of our tumbleweed rover is shown in Fig. 1.
The purpose of this paper is to present a first-principles approach to three-dimensional

dynamic modeling of our tumbleweed rover concept including such effects as the internal



Dynamic modeling and stability analysis 415

Fig. 1 One possible implementation of the tumbleweed rover discussed in this paper

pendulum dynamics, resistance (damping) provided by the electrical generators, external
wind force, and rolling constraints between the sphere and the ground. This is an important
step as it allows us to prove out the basic stability of our concept and to select key design
parameters (e.g., masses, lengths) before building a prototype. To this end, we use our model
to consider the case in which the payload pendulum is laterally fixed and prove the tumble-
weed is naturally stable. We validate these findings through dynamic simulations. We begin
with a brief discussion of related work.

2 Related work

Tumbleweed rovers have been proposed for various Mars missions including to study gully
formations in such locations as Dao Vallis [5–7] and to measure small-scale magnetic anom-
alies in the Southern Highlands [8]. The commonality between the various concepts is that
they all propose to harness the wind to propel a large round vehicle long distances across
the surface. However, there is quite a bit of variability in the concepts that have been pro-
posed.

NASA Jet Propulsion Laboratory has focused on a large inflatable sphere design with a
central cylindrical payload [3, 9]. This design has been field tested in Greenland [2], Antarc-
tica, and sites within the United States [10]. The design has performed extremely well, al-
lowing measurements such as temperature and pressure to be gathered over distances greater
than 100 kilometers. The inflatable design is promising in that it offers a built-in deployment
mechanism and possibly also a landing mechanism (i.e., it serves as its own airbag). One
downside is that the inflatable nature of the design means that it is subject to puncturing and
requires periodic pumping to maintain internal pressure. The current JPL design does not
attempt to provide a means to steer the ball, but experiments have shown that it rotates about
the preferred payload axis in high winds. There is also no way to slow down the vehicle
other than to deflate. Most of the field deployments to date have used a battery to provide
electrical power to the avionics and payload. There have also been some investigations into
using flexible solar panels affixed to the exterior of the inflatable ball [10]. This would cer-
tainly have negative implications for deployment/landing and it would be difficult to protect
the solar arrays during movement. The design we study in this paper is related to the JPL
design in that it would most likely make use of an inflatable outer shell.
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NASA Langley Research Center (with collaborators from Orbital Research Inc., North
Carolina State University, and Case Western Reserve University) has been developing tum-
bleweed concepts in parallel to the JPL work [4]. Their designs are partially inspired by
the Russian thistle [11], a natural tumbleweed. Several concepts have been investigated in-
cluding Wedges, Box-Kite, Dandelion, Eggbeater Dandelion, and Tumble-Cup [12]. The
baseline design selected for further testing was the Box-Kite [13, 14]. Various deployment
and solar array concepts were examined [15], with a gimbaled central payload selected for
the Box-Kite with an upward-looking solar panel. The Box-Kite design is appealing in that
it has a higher drag coefficient than a solid ball, is not susceptible to punctures, and does
not require continual pumping to maintain pressure. However, the design does not offer a
large payload area and deployment could be complicated. The frame to support the sails
could also become lodged on rocks. To slow the vehicle down either a set of offset masses
could be used or the sails could be lowered [6], but both these methods require additional
mechanisms thereby increasing complexity.

The tumbleweed rover we study in this paper is different from the JPL inflatable tum-
bleweed and Langley Box-Kite in several important ways: (i) we generate power internally
using the pendulum–generator concept, (ii) we regulate the speed of the vehicle by remov-
ing energy from the system through our power generation concept, (iii) the presence of the
pendulum offers orientation stability at low speeds and also the ability to steer, and (iv) we
have a means to propel the vehicle when the winds are low.

The most similar concept to our design is the steered tumbleweed, called Thistle, devel-
oped at the Helsinki University of Technology for the European Space Agency [16]. This
rover is blown by the wind, and has a pendulum that enables it to steer and propel itself
when winds are low. However, it does not have the capability to harvest power from the
wind and as a by-product regulate speed. Moreover, driving tests showed the motion of the
vehicle to be “quite clumsy and somewhat chaotic”. This provides important motivation for
the dynamic modeling and stability analysis in this paper. We seek to prove out our concept
and select appropriate design parameters through simulation, prior to building a prototype.

In terms of dynamic modeling of tumbleweed rovers, there has been some prior work.
Both [4] and [11] conduct two-dimensional quasi-static and dynamic analyses of tumble-
weeds (with no pendulum) to draw conclusions about obstacle negotiation and slope climb-
ing capabilities. Rock distribution models are used to predict the distance a tumbleweed
will be able to travel before encountering a rock too large to surmount. In [10], there is
some discussion of dynamic modeling, particularly of the aerodynamics of the tumbleweed
scenario, but little is presented in the way of a dynamic model that could be used for three-
dimensional simulation and stability analysis. In [17], a detailed three-dimensional dynamic
model is presented that includes bouncing effects. This model is clearly targeted at the Lan-
gley Box-Kite tumbleweed design; it is not capable of simulating an internal pendulum with
electrical resistance or rolling constraints between the sphere and the ground. In [6] a com-
mercial modeling package is used to conduct dynamic simulations, but this does not allow
for any analytical stability analyses to be carried out.

In summary, there has been little discussion of wind-driven tumbleweeds that incorporate
a pendulum and none that have generated power by this means. As such, there has also been
little presented in terms of dynamic modeling of this tumbleweed design. For a more detailed
review of tumbleweed designs, see [18] and for a historical perspective on ball-shaped robots
see [16].
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Fig. 2 Tumbleweed rover with payload pendulum

3 Model setup

Consider the tumbleweed rover depicted in Fig. 2. A reference frame, F→s, is fixed to the

sphere1 with its origin at the center. The nominal rotation of the sphere is about the s→2-axis.
Normally, the s→2-axis of the sphere frame is parallel to the i→1–i→2 plane (which represents
the nominal ground plane) of the inertial frame, F→i. The sphere has a ‘central rod’ passing
through it along the s→2-axis. Hung from the center of the central rod is a mass, called the
‘payload’. In practice, the payload could include avionics, batteries, and scientific instru-
ments. The rod connecting the payload to the central rod will be called the ‘pendulum’. We
attach a third reference frame, F→p, to the payload (and pendulum), whose origin is again at
the center of the sphere. In the case that the pendulum is fixed laterally, s→2 and p→2 will be
coincident; in the case that the pendulum is free to move laterally, this will no longer be true.

The main feature of this rover design is the presence of mechanical resistance, in the
form of a torque about the s→2-axis created by an electrical generator, between the pendulum
and the central rod. As the sphere is blown by the wind, the generator will resist rotational
motion, causing the payload to rise up (rotate about the s→2-axis), thus regulating the speed of
the sphere as it rolls. If the mechanical resistance created via power generation is controlled,
the velocity of the sphere can also be controlled. Therefore, not only can the velocity of the
sphere be controlled, but in doing so power is generated.

4 Notation

In order to concisely describe the dynamic equations of motion, a standard notation set will
be defined.

4.1 General

We elect to use Vectrix notation, which is described in [19]. Briefly, we have the following:

1We will use the terminology ‘sphere’ and ‘tumbleweed’ interchangeably.
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v→ a vector, which is independent of reference frame

F→a = [ a→1 a→2 a→3]T a vectrix of basis vectors forming a reference frame

va = [v1 v2 v3]T a column containing the coordinates of a vector with respect to the basis
vectors in a particular reference frame

Using the above definitions, we have that

v→=F→
T
a va = v1a→1 + v2a→2 + v3a→3.

In Vectrix notation, the cross product of two vectors v→ and u→, where va = [v1 v2 v3]T and

ua = [u1 u2 u3]T, is expressed using a 3 × 3 skew-symmetric matrix

v→×u→=F→
T
a

⎡
⎣

0 −v3 v2

v3 0 −v1

−v2 v1 0

⎤
⎦

⎡
⎣

u1

u2

u3

⎤
⎦ = F→

T
a v×

a ua

where

v×
a :=

⎡
⎣

0 −v3 v2

v3 0 −v1

−v2 v1 0

⎤
⎦ .

4.2 Physical parameters

The following parameters describe the physical characteristics of the dynamic system and
its surrounding environment:

g gravitational acceleration
r radius of sphere
ms mass of sphere
Js second moment of mass of sphere, expressed in F→s

br damping coefficient associated with rolling friction
bs damping coefficient associated with spin friction
mp mass of pendulum rod and payload
Jp second moment of mass of pendulum rod and payload combined, expressed in F→p

cp first moment of mass of pendulum rod and payload combined, expressed in F→p

l length of pendulum
bp damping coefficient associated with payload as a result of on-board power generation

4.3 Miscellaneous

It will also be useful to define x := [1 0 0]T, y := [0 1 0]T and z := [0 0 1]T.

5 Kinematic relations and constraints

5.1 Angular and translational velocities

To describe the ball and pendulum motions, we require their respective angular velocities.
The angular velocity of the sphere with respect to the inertial frame is ωsi

s where the su-
perscript denotes ‘sphere frame with respect to inertial frame’ and the subscript denotes
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‘expressed in frame F→s’. The angular velocity of the payload with respect to the inertial

frame is ω
pi
p where the superscript denotes ‘payload frame with respect to inertial frame’

and the subscript denotes ‘in frame F→p’. The orientations of the frames F→s and F→p with
respect to F→i are described by the rotation matrices Csi and Cpi, respectively.

In general, the orientation of each body can be described by any general Euler angle
sequence (e.g., a 3-1-2 sequence). The Euler angles defining the rotation matrix Csi are
denoted θ si, and those defining the rotation matrix Cpi are denoted θpi. We will often make
use of the following relationships between Euler angle rates and angular velocities

ωsi
s = Ssi

s θ̇
si
, ωpi

s = Spi
p θ̇

pi

where Ssi
s and Spi

p are the appropriate mapping matrices between the Euler angle rates and
the angular velocities [19]. Recall that ωsi

s and ω
pi
p are each expressed in terms of quasi-

coordinate rates.2

5.2 System constraints

Non-holonomic constraints are those which are non-integrable. The tumbleweed rover sys-
tem is constrained by two non-holonomic constraints: one related to the rolling motion, and
the other related to the pendulum motion.

5.2.1 Rolling constraint

Consider the tumbleweed rover, as shown in Fig. 3, where the pendulum is not drawn. As-
suming the sphere rolls without slipping, we can express the sphere’s translational velocity
in term of its angular velocity.

We can write the position of the sphere’s contact point (with the ground) as the sum of
the distance from the inertial frame, F→i, to the sphere frame, F→s, to the contact point as

r→
ci = r→

si + r→
cs

Fig. 3 Sphere rolling (pendulum
not drawn)

2Quasi-coordinates are those which are not integrable, and a general angular velocity such as ωsi
s is not

integrable, that is,
∫ t

0 ωsi
s (τ ) dτ �= θ si(t) − θ si(0).
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where r→
si = F→

T
i rsi

i , rsi
i = [x y z]T, r→

cs = F→
T
i rcs

i , rcs
i = [0 0 − r]T and r is the radius of the

sphere. The time derivative of the position of the contact point is

ṙ→
ci = ṙ→

si + ṙ→
cs

= ṙ→
si +ω→

si
s ×r→

cs

= F→
T
i

(
ṙsi

i + (
CT

siω
si
s

)×
rcs

i

)

= F→
T
i

(
ṙsi

i + rz×CT
siω

si
s

)

where Csi is the rotation matrix from F→i to F→s. The instantaneous velocity of the contact

point is zero, i.e., ṙci
i ≡ 0. Therefore, we have

ṙsi
i = −rz×CT

siS
si
s θ̇

si = −rz×CT
siω

si
s . (1)

Equation (1) is the relation between the sphere’s Euler angle rates θ̇
si

and translational ve-
locity ṙsi

i . It is also the relation between ωsi
s and ṙsi

i . It is a non-holonomic constraint that
must always be satisfied.

5.2.2 Pendulum constraint

Consider the angular velocity of the payload frame with respect to the sphere frame:

ωpi
p = ωps

p + Cpsω
si
s ⇔ ωps

p = ωpi
p − Cpsω

si
s (2)

where Cps = CpiCT
si. As previously mentioned, the pendulum will be constrained such that

the s→2-axis of the sphere frame and the p→2-axis of the payload frame are coincident. This
constraint implies that the angular velocity of the payload with respect to the sphere is
zero in the p→1 and p→3 directions and non-zero about p→2. Therefore, ω

ps
p,1 = ω

ps
p,3 = 0, and

ω
ps
p,2 �= 0. Employing (2), the constraint on the pendulum’s angular velocity can be expressed

mathematically as

[x 0 z]ωps
p = 0

⇔ (−[x 0 z]Cps [x 0 z])
[
ωsi

s

ω
pi
p

]
= 0. (3)

The pendulum constraint is also non-holonomic.

5.2.3 Combining the non-holonomic constraints

We can combine the rolling constraint and the pendulum constraint as follows:

[
1 rz×CT

siS
si
s 0

0 −[x 0 z]CpsSsi
s [x 0 z]Spi

p

]

︸ ︷︷ ︸
Ξ

⎡
⎢⎢⎣

ṙsi
i

θ̇
si

θ̇
pi

⎤
⎥⎥⎦

︸ ︷︷ ︸
q̇

= 0 ⇔ Ξ q̇ = 0. (4)
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The column matrix q will be referred to as the dependent generalized coordinates. Note that
q̇ lies in the Null space (or Kernel) of Ξ . The matrix Ξ has a dimension of 6 × 9, and is of
rank 5.

5.2.4 Properties of the non-holonomic constraints

The pendulum constraint forces the pendulum and the sphere’s central-rod to remain perpen-
dicular to each other at all times. It follows that the corresponding rotation matrix from the
sphere frame to the payload frame is simply a single rotation about the s→2-axis, Cps ≡ C2(φ),
where the angle φ is the rotation angle [19].

Knowing that there is only one rotation that distinguishes F→p from F→s we can express

ω
pi
p in terms of ωsi

s and φ̇:

ωpi
p = yφ̇ + Cpsω

si
s ⇔ θ̇

pi = Spi
p

−1
yφ̇ + Spi

p
−1

CpsSsi
s θ̇

si
(5)

where yφ̇ = ω
ps
p . Although we can express the system in terms of the dependent generalized

coordinates, we can also express the system in terms of a set of reduced, or independent

generalized coordinates by observing that ṙsi
i depends on θ̇

si
, and θ̇

pi
depends on θ̇

si
and φ̇.

By augmenting (1) and (5), we have

⎡
⎢⎣

ṙsi
i

θ̇
si

θ̇
pi

⎤
⎥⎦ =

⎡
⎢⎢⎣

−rz×CT
siS

si
s 0

1 0

Spi
p

−1
CpsSsi

s Spi
p

−1
y

⎤
⎥⎥⎦

︸ ︷︷ ︸
Υ

[
θ̇

si

φ̇

]

︸ ︷︷ ︸
˙̂q

⇔ q̇ = Υ ˙̂q (6)

where q̂ will be referred to as the independent generalized coordinates and Υ is the map-
ping between the independent generalized coordinates and the dependent generalized coor-
dinates.

A key feature of Υ and Ξ which will be exploited in the future is the following relation:

Ξ q̇ = ΞΥ ˙̂q = 0 ⇒ ΞΥ = 0 ⇔ Υ TΞT = 0. (7)

The above result can be shown by straightforward algebra, and is left to the reader. The
matrix Υ has a dimension of 9 × 4, and is of rank 4. Note that rank(Ξ) + rank(Υ ) = 9,
which is equal to the number of dependent generalized coordinates.

5.3 Other useful kinematic relations

In the interest of keeping our dynamic derivation concise, we will define various augmented
kinematic relations. To start, the augmented dependent velocities can be written as

ṙ :=
⎡
⎢⎣

ṙsi
i

ωsi
s

ω
pi
p

⎤
⎥⎦ =

⎡
⎢⎣

1 0 0

0 Ssi
s 0

0 0 Spi
p

⎤
⎥⎦

︸ ︷︷ ︸
S̄

⎡
⎢⎢⎣

ṙsi
i

θ̇
si

θ̇
pi

⎤
⎥⎥⎦ ⇔ ṙ = S̄q̇
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where S̄ is the augmented mapping matrix. We will also define

ṙ× :=

⎡
⎢⎢⎣

ṙsi×
i 0 0

0 ωsi
s

× 0

0 0 ω
pi
p

×

⎤
⎥⎥⎦

which is the augmented cross matrix of the augmented dependent velocities. Expressing (1)
and (5) in terms of angular velocities (rather than in terms of Euler angle rates as we did
in (6)), we can write

⎡
⎢⎣

ṙsi
i

ωsi
s

ω
pi
p

⎤
⎥⎦ =

⎡
⎢⎣

−rz×CT
si 0

1 0

Cps y

⎤
⎥⎦

︸ ︷︷ ︸
Π

[
ωsi

s

φ̇

]

︸ ︷︷ ︸
ω̂

⇔ ṙ = Πω̂ (8)

where ω̂ are the augmented independent velocities and Π is the map between the augmented
independent velocities and the augmented dependent velocities. The relation between ω̂ and
˙̂q is

[
ωsi

s

φ̇

]
=

[
Ssi

s 0

0 1

]

︸ ︷︷ ︸
Ŝ

[
θ̇

si

φ̇

]
.

It can be shown that Υ = S̄−1ΠŜ. The temporal derivative of (8) will also be needed in the
future:

r̈ = Π̇ω̂ + Π ˙̂ω (9)

where

Π̇ =
⎡
⎢⎣

−rz×ĊT
si 0

0 0

Ċps 0

⎤
⎥⎦ =

⎡
⎢⎣

−rz×CT
siω

si
s

× 0

0 0

−φ̇y×Cps 0

⎤
⎥⎦ .

In the above simplification, we have used Poisson’s equation which relates the temporal
derivative of a rotation matrix to angular velocity:

Ċsi + ωsi
s

×
Csi = 0, Ċpi + ωpi

p
×

Cpi = 0, Ċps + φ̇y×Cps = 0.

6 The method of virtual work and the generalized forces and torques

We will consider three external forces: tf, tw, and tp which represent the generalized rolling
resistance, induced wind force, and power generation torque. In order to calculate these
forces, we will use the method of virtual work, which will concern us with virtual displace-
ments associated with rsi

i and virtual angular displacements associated with θ si and θpi.
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6.1 Rolling friction

We will first consider rolling friction, which can be modeled as viscous damping. We will
separate the rolling friction into translational damping and spin damping.

The translational damping will be modeled as follows

f→
r =F→

T
i

(−brṙsi
i

) =F→
T
i f r

i

where br is the translational, or rolling damping factor and ṙsi
i = −rz×CT

siω
si
s , as presented

in (1). The virtual work done due to translational damping is then

δW = f→
r · δr→

si = f r
i

T
δrsi

i =
[
δrsiT δθ siT δθpiT

]
︸ ︷︷ ︸

δqT

⎡
⎢⎢⎣

1 0 0

0 Ssi
s

T 0

0 0 Spi
p

T

⎤
⎥⎥⎦

⎡
⎣

f r
i

0
0

⎤
⎦

︸ ︷︷ ︸
f r

= δqTS̄Tf r = δqTtr

where tr = S̄Tf r is the generalized force due to translational damping.
The above expression for translational damping mostly has a dissipating effect on the first

two elements of ωsi
s (i.e., ωsi

s,1 and ωsi
s,2) through the constraint ṙsi

i = −rz×CT
siω

si
s . To ensure

that the ball is sufficiently damped, we must include some sort of ‘contact patch’ friction, to
ensure that the system will be damped if the ball-pendulum system were to have significant
angular velocity in the i→3 direction of the F→i frame.3 Consider the following torque created
via ‘spin damping’

τ→
s =F→

T
s Csiz

(−bszT
)
CT

siω
si
s =F→

T
s

(−bsCsizzTCT
siω

si
s

) =F→
T
s τ s

s

where bs is the spin damping coefficient. The virtual work done due to spin damping is then

δW = τ→
s · (F→

T
s Ssi

s δθ si) = δθ siTSsi
s

T
τ s

s = δqTS̄T

⎡
⎢⎣

0

τ s
s

0

⎤
⎥⎦

︸ ︷︷ ︸
τ s

= δqTS̄Tτ s = δqTts

where ts = S̄Tτ s is the generalized force due to spin damping.
Therefore, the total damping induced is

tf = tr + ts = S̄Tτ f

where τ f = f r + τ s is the generalized damping force due to friction.

6.2 Wind force

To simplify our analysis we assume that the force applied to the ball as a result of wind can
be modeled by the simple aerodynamic drag associated with a sphere in a fluid [20]

f→
w =F→

T
i

(
1

2
ρACdv

2v̂i

)
=F→

T
i fw

i

3Note that z×z = 0 and Rank z× = 2, that is z× has a Null space of dimension one. Any angular velocity

parallel to z, that is any ωsi
i = CT

siω
si
s ∈ Ker(z×), will not be dampened by f r.
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where ρ is the density of the surrounding fluid, A is the frontal area of the ball, Cd is the
drag coefficient, v is the velocity of the fluid relative to the ball’s motion, and v̂i is a unit
vector representing the direction of the wind’s velocity. In this paper, we will neglect any
sort of ‘ground effect’ the fluid may have due to interaction with the ground, and assume
that the force associated with the wind is applied directly at the center of the ball.

The virtual work done due to the induced wind force is then

δW = f→
w · δr→

si = δrsi
i

T
fw
i = δqTS̄T

⎡
⎣

fw
i

0
0

⎤
⎦

︸ ︷︷ ︸
fw

= δqTS̄Tfw = δqTtw

where tw = S̄Tfw is the generalized induced wind force.

6.3 Power generation

As the sphere rolls, a torque about the p→2-axis is created as a result of on-board power gen-
eration. The amount of power generated will be proportional to the relative angular velocity
between the payload and sphere about the p→2-axis and said torque. The torque created about
the p→2-axis is

τ→
p =F→

T
p

⎡
⎣

0
−bpφ̇

0

⎤
⎦ =F→

T
p τ p

p.

If we note that ω
ps
p = Spi

p θ̇
pi − CpsSsi

s θ̇
si

, then it follows that the virtual work done due to
on-board power generation is

δW = τ→
p · (F→

T
p Spi

p δθpi −F→
T
p CpsSsi

s δθ si)

= δθpiTSpi
p

T
τ p

p − δθ siTSsi
s

T
CT

psτ
p
p

= δqTS̄T

⎡
⎢⎣

0

−CT
psτ

p
p

τ
p
p

⎤
⎥⎦

= δqTS̄Tτ p

= δqTtp

where tp = S̄Tτ p is the generalized force due to on-board power generation.

7 Deriving the equations of motion

7.1 Kinetic energy

7.1.1 Kinetic energy of sphere

We will assume that the sphere has a uniform thickness, and we will ignore the mass and
inertia associated with of the sphere’s central rod. Consider a small mass element of the
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Fig. 4 Tumbleweed rover side view, mass elements dms and dmp

sphere, dms, shown in Fig. 4(a). The position of dms is

r→
s = r→

si + r→
r =F→

T
s

(
Csirsi

i + rr
s

)
.

The velocity of the mass element is then

ṙ→
s = ṙ→

si + ṙ→
r =F→

T
s

(
Csiṙsi

i − rr
s
×ωsi

s

)
.

The kinetic energy of the ball can then be written as

Ts = 1

2

∫
B

ṙ→
s · ṙ→

s dms = 1

2

[
ṙsiT

i ωsi
s

T][
ms1 0

0 Js

][
ṙsi

i

ωsi
s

]

where Js = − ∫
B rr

s
×rr

s
× dms and the integral is evaluated over the body, B. Note that∫

B rr
s dms = 0, that is to say there is no first moment of mass, cs, associated with the sphere.

7.1.2 Kinetic energy of pendulum/payload

Next, consider a small mass element of the payload, dmp, shown in Fig. 4(b). The position
of the point mass dmp is

r→
p = r→

pi + r→
l =F→

T
p

(
Cpir

pi
i + rl

p

)
.

The velocity of the mass element is then

ṙ→
p = ṙ→

pi + ṙ→
l =F→

T
p

(
Cpiṙ

pi
i − rl

p
×
ωpi

p

)
.

The kinetic energy of the payload is then

Tp = 1

2

∫
B

ṙ→
p · ṙ→

p dmp = 1

2

[
ṙpiT

i ωpi
p

T][
mp1 −CT

pic
×
p

c×
p Cpi Jp

][
ṙpi

i

ω
pi
p

]

where cp = ∫
B rl

p dmp and Jp = − ∫
B rl

p
×rl

p
×

dmp.
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7.1.3 Kinetic energy of system

The total kinetic energy of the system is

T = Ts + Tp

= 1

2

[
ṙpiT

i ωsi
s

T
ωpi

p
T]

⎡
⎢⎣

(ms + mp)1 0 −CT
pic

×
p

0 Js 0

c×
p Cpi 0 Jp

⎤
⎥⎦

︸ ︷︷ ︸
M(θpi)

⎡
⎢⎣

ṙpi
i

ωsi
s

ω
pi
p

⎤
⎥⎦

= 1

2
ṙTM

(
θpi)ṙ

= 1

2
q̇TS̄TM

(
θpi)S̄q̇. (10)

Note that the mass matrix is symmetric and positive definite (i.e., M(θpi) = MT(θpi) > 0).

7.2 Potential energy

Assuming the system is rigid, the only source of potential energy is the gravitational poten-
tial energy associated with the pendulum. In this paper, we will assume that the sphere is
rolling along a flat surface and, therefore, does not contribute any potential energy to the
system.

Consider an infinitesimal amount of potential energy

dU = −g→· r→
p dmp

where g→:= F→
T
i [0 0 − g]T = F→

T
i gi is the gravitational acceleration vector, and r→

p is the
vectorial position of a mass element dmp as shown in Fig. 4(b). Expanding the infinitesimal
potential energy expression gives

dU = −F→
T
i gi ·F→

T
p

(
Cpir

pi
i + rl

p

)
dmp

= −(
gT

i rpi
i + gT

i CT
pir

l
p

)
dmp.

Integrating over the payload/pendulum and noting that g ≡ −gz, zTrpi
i = r , and rsi

i ≡ rpi
i

yields the following

U = −mpgT
i rpi

i − gT
i CT

picp

= gmpzTrsi
i + gzTCT

picp.

7.3 Lagrange’s equation

Having developed expressions for the kinetic and potential energy of the unconstrained sys-
tem, we can define the Lagrangian

L = T − U = 1

2
q̇TS̄TM

(
θpi)S̄q̇ − gmpzTrsi

i − gzTCT
picp.
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We may now employ Lagrange’s equation

d

dt

(
∂L

∂q̇

)T

− ∂L

∂q

T

= ΞTλ + tf + tw + tp (11)

where the q are the dependent generalized coordinates and tf, tw, and tp are the generalized
forces/torques associated with sphere damping as a result of rolling friction, the wind blow-
ing the sphere, and pendulum damping (also considered energy dissipation/damping due
to power generation), respectively. Note that the partial derivative of the Lagrangian with
respect to the generalized coordinates, for example, yields a row

∂L

∂q
= row

{
∂L

∂qi

}
.

The matrix ΞT is a 9×6 matrix, and λ := [λ1 λ2 λ3 λ4 λ5 λ6]T are the Lagrange multipli-
ers associated with the constraints. The reader may quickly realize that λ should only be a
5×1 column matrix; there are three constraints associated with the rolling of the sphere, and
two constraints associated with the pendulum motion, summing to a total of five constraints.
Although it is true, there are only five constraints, by using Cps within our definition of Ξ

(see (3) and (4)), we have forced ΞT to have a 9 × 6 structure, rather than a 9 × 5 structure
as it naturally should. This, however, is not a problem if one realizes that the fifth row of the
matrix Ξ , or equivalently the fifth column of ΞT, is composed of zeros, which renders λ5 to
be of no influence on the equations of motion. The remaining Lagrange multipliers are the
ones we are concerned with, but we include all six for the convenience of notation it affords.

Omitting the details for brevity, (11) gives

S̄T
(
M

(
θpi)r̈ + ṙ×M

(
θpi)ṙ + a

) = ΞTλ + S̄T
(
τ f + fw + τ p

)
(12)

where

a =

⎡
⎢⎢⎣

−CT
piω

pi
p

×
c×

p ω
pi
p + ṙsi×

i CT
pic

×
p ω

pi
p + gmpz

0

−ω
pi
p

×
c×

p Cpiṙsi
i − (Cpiz)×cpg

⎤
⎥⎥⎦ .

Equation (12) could be expanded into nine coupled, non-linear differential equations repre-
senting the dynamic motion of the ball rover. We, however, have conveniently been able to
express the nine coupled differential equations in matrix form.

8 Expressing the motion equations in terms of the independent generalized
coordinates

Having developed the dynamic equations of motion in terms of the dependent generalized
coordinates ṙ, we will now determine the constrained motion equations in terms of the inde-
pendent generalized coordinates, ω̂. We will employ the null space method [21, 22], which
exploits the null space relation of the matrices Υ and Ξ as presented in (7). We are interested
in expressing the equations of motion in terms of ω̂ for two reasons: (1) fewer states need to
be integrated during simulation, (2) we can avoid calculating the Lagrange multipliers, λ.
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Recall from (7) that Υ TΞT = 0. This relation is the main tool which will allow us to
reduce the dynamic equation of motion. By premultiplying (12) by Υ T, the term Υ TΞTλ

drops out

Υ TS̄T
(
M

(
θpi)r̈ + ṙ×M

(
θpi)ṙ + a

) = Υ TS̄T
(
τ f + fw + τ p

)
. (13)

The number of equations has been reduced from nine to four. Recall that the physical in-
terpretation of Lagrange multipliers are that they are forces/torques applied such that the
constraints are satisfied. In the above, we have avoided the presence of the Lagrange multi-
pliers themselves, but have not avoided their constraining effect. We have merely rearranged
the form of the equations such that the algebraic terms associated with the constraints enter
into the dynamic equations of constrained motion in a different way.

Before continuing, let us expand and simplify Υ TS̄T

Υ TS̄T =
⎡
⎣Ssi

s

TCsiz×r 1 Ssi
s

TCT
psS

pi
p

−T

0 0 yTSpi
p

−T

⎤
⎦

⎡
⎢⎢⎣

1 0 0

0 Ssi
s

T 0

0 0 Spi
p

T

⎤
⎥⎥⎦

=
[

Ssi
s

T 0

0 1

][
Csiz×r 1 CT

ps

0 0 yT

]

︸ ︷︷ ︸
Δ

= ŜTΔ. (14)

By substitution of (8), (9), and (14) into (13), we have the following

ŜTΔM
(
θpi)Π ˙̂ω + ŜTΔ

(
M

(
θpi)Π̇ω̂ + (Πω̂)×M

(
θpi)Πω̂ + a

) = ŜTΔ
(
τ f + fw + τ p

)
.

Each term in the above equation is premultiplied by ŜT which is an invertible matrix (pro-
vided singularities are avoided). By premultiplying each side by Ŝ−T, we can simplify fur-
ther

ΔM
(
θpi)Π ˙̂ω + Δ

(
M

(
θpi)Π̇ω̂ + (Πω̂)×M

(
θpi)Πω̂ + a

) = Δ
(
τ f + fw + τ p

)
. (15)

The first term will be written as

M̂
(
θ si, φ

) ˙̂ω := ΔM
(
θpi)Π ˙̂ω

while the second term will be written as

τ̂ non := Δ
(
M

(
θpi)Π̇ω̂ + (Πω̂)×M

(
θpi)Πω̂ + a

)
.

The terms associated with damping, wind, and power generation can also be written in a
condensed form:

τ̂
f := Δτ f, τ̂

w := Δfw, τ̂
p := Δτ p.

Perhaps the most interesting term is the Δτ p term, which reduces as follows:

τ̂
p = Δτ p =

[
Csiz×r 1 CT

ps

0 0 yT

]⎡
⎢⎣

0

−CT
psτ

p
p

τ
p
p

⎤
⎥⎦ =

[
0

yTτ
p
p

]
=

[
0

−bpφ̇

]
. (16)
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It follows that one may estimate the amount of power generated by employing (16)

P = τ̂
pT

ω̂ = [0 − bpφ̇]
[
ωsi

s

φ̇

]
= −bpφ̇

2.

This expression for power is with respect to the sphere-pendulum system, that is power is
being ‘lost’ to the sphere-pendulum system, but power is being ‘gained’ by the electrical
storage system on board the tumbleweed rover.

Combining the above yields the forced, coupled, non-linear differential equations repre-
senting the dynamic motion of the ball rover. These motion equations can be written strictly
in terms of the independent generalized coordinates

M̂
(
θ si, φ

) ˙̂ω + τ̂ non = τ̂
f + τ̂

w + τ̂
p
. (17)

9 Stability in the sense of Lyapunov

Having completely described the dynamic equations of motion of the system, we now seek
to determine if the system is stable. Stability is of concern if our tumbleweed rover is to be
a robust platform for exploration. Let us first review the definition of stability in the sense
of Lyapunov [23].

Lemma 1 A dynamical system with states x has a stable equilibrium x = 0 if a continuously
differentiable function, V : D → R, called a Lyapunov function can be defined such that

1. V (0) = 0
2. V (x) > 0, ∀x ∈ D, x �= 0 (i.e., V (x(t)) is positive-definite in the domain D)
3. V̇ (x) ≤ 0, ∀x ∈ D, x �= 0

Simply stated, for a dynamical system to be stable one needs to show that a Lyapunov
function V (x) satisfies conditions 1 through 3 of Lemma 1.

Theorem 1 Consider the constrained, damped motion of a tumbleweed rover described

by (17) with τ̂
w = 0. The dynamic system with states xT = [θ siT φ ωsi

s
T

φ̇] is stable if br > 0,
bs > 0 and bp > 0.

Proof First note that x = 0 is an equilibrium of (17) when τ̂
w = 0 where θ si = [γ β α]T.

Consider the following Lyapunov function candidate

V (x) := 1

2
ṙTM

(
θpi)ṙ + gmprzTrsi

i + gcT
p CpsCsiz − gmp

(
r − 1

2
l

)

where cp := − 1
2 mplz. The above function is the system Hamiltonian minus a constant related

to the potential energy of the system when θ si = 0, φ = 0. We are writing V in terms of ṙ
deliberately. We will define the domain of the Lyapunov function to be

D =
{
−π

2
< γ,β,α,φ <

π

2
,−ωsi

s
′
< ωsi

s < ωsi
s

′
,−φ̇′ < φ̇ < φ̇′

}

where ωsi
s

′
and φ̇′ are finite, positive angular velocities.
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It is straightforward to show that V (0) = 0 and V (x) > 0, ∀x ∈ D, x �= 0. Consider the
temporal derivative of V

V̇ (x) = ṙTM
(
θpi)r̈ + 1

2
ṙTṀ

(
θpi)ṙ + gmprzT−−−−−−−→0

ṙsi
i + gcT

p Ċpiz

= ṙT
(−ṙ×M

(
θpi)ṙ − a + S̄−TΞλ + τ f + τ p

) + 1

2
ṙTṀ

(
θpi)ṙ − gcT

p ωpi
p

×
Cpiz. (18)

In the above expansion, we have used (12). After simplification, it can be shown that

V̇ (x) = −r2br ω
si
s

T
Csiz×

︸ ︷︷ ︸
jT

(
Csiz×)T

ωsi
s︸ ︷︷ ︸

j

−bs ω
si
s

T
Csiz︸ ︷︷ ︸

fT

(Csiz)Tωsi
s︸ ︷︷ ︸

f

−bpφ̇
2 ≤ 0.

Thus, V̇ is negative semi-definite. If, for example, we let bs = r2br we can simplify further:

V̇ (x) = −bsω
si
s

T
ωsi

s − bpφ̇
2 ≤ 0

where we have used the identity −z×z× ≡ 1 − zzT. Therefore, conditions 1 through 3 of
Lemma 1 are satisfied, and the system is stable. �

For a system to be asymptotically stable V (0) = 0, V (x) > 0, ∀x ∈ D, x �= 0, and
V̇ (x) < 0, ∀x ∈ D, x �= 0. Our Lyapunov function satisfies all these criteria but the last
one, that being the requirement that V̇ (x) < 0. We have only shown that V̇ (x) ≤ 0. It should
be clear that V̇ is negative definite in ω̂, but only negative semi-definite in x, which is why
we can only conclude stability, rather than asymptotic stability of the system.

In some situations, asymptotic stability can be concluded by the LaSalle’s invariant set
theorem. Because our Lyapunov function is continuously differentiable and positive definite
in D, we can use a well-known corollary of the more general LaSalle’s invariant set theorem.
Given V̇ (x) ≤ 0, ∀x ∈ D, x �= 0, define the invariant set as M = {x ∈ D | V̇ (x) = 0}. If M

contains only x = 0 the system is asymptotically stable. It is insightful for us to investigate
our system’s invariant set; consider when V̇ (x) = 0:

V̇ (x) = 0 ⇒ ω̂ = 0 ⇒ ˙̂ω = 0.

When ω̂ = 0 and ˙̂ω = 0 the ball is stationary, and (17) simplifies as follows:

Δa = 0

⇔
[

Csiz×r 1 CT
ps

0 0 yT

]⎡
⎢⎣

gmpz

0

−(Cpiz)×cpg

⎤
⎥⎦ = 0

⇔
[

1
2mplg(Csiz)×CT

psz
1
2mplgyTCps(Csiz)×CT

psz

]
= 0.
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Using a 3-1-2 Euler angle parameterization [19] for Csi, that is Csi = C2(α)C1(β)C3(γ ),
and knowing Cps = C2(φ) the above simplifies further:

⎡
⎢⎢⎢⎣

sinβ cosφ

cosβ(cosα sinφ + sinα cosφ)

− sinβ sinφ

cosβ(cosα sinφ + sinα cosφ)

⎤
⎥⎥⎥⎦ = 0. (19)

If γ = β = α = 0 and φ = 0 (and thus x = 0), the above equality will hold, but the equality
will hold for other values of γ , β , α, and φ as well. First, γ does not appear anywhere in (19),
thus γ may take on any value. When γ �= 0, the ball has ‘twisted’ about the i→3-axis. The first
element of (19), sinβ cosφ, will be zero if β = 0, thus φ may take on any value. When β = 0
the central rod is parallel to the ground (that is, the pendulum is hanging straight down).
From the second element of (19), given that β = 0, we have cosα sinφ + sinα cosφ =
sin(α + φ) = 0, which implies φ = −α. When φ = −α �= 0 the ball has rolled forward or
backward. The third and forth elements of (19) are satisfied given β = 0 and φ = −α. Thus
γ �= 0, β = 0, α �= 0, φ �= 0, and ω̂ = 0 satisfies (19). Similarly, γ = 0, β = 0, α �= 0, φ �= 0,
and ω̂ = 0 satisfies (19) as well.

Clearly, we see that the set invariant set M associated with V̇ (x) = 0 does not strictly
contain x = 0 and, therefore, the system is not asymptotically stable. However, the solution
within the invariant set does match the physical solution we would expect. The ball has
stopped moving (ω̂ = 0), the central rod is parallel to the ground (β = 0), the ball may have
rolled forward or backward (α = −φ �= 0), and may also have twisted about i→3-axis (γ �= 0).
Therefore, the solution we have arrived at physically makes sense, and although we are not
able to prove asymptotic stability it is clear why it is not possible to do so.

10 Simulation results

Having developed the dynamic equations of motion for the tumbleweed rover, a simple sim-
ulation was implemented in order to validate the dynamics model. The physical parameters
used to model the system are shown in Table 1. The simulated motion is in terrestrial air,
which has a density of ρ = 1.2 kg/m3 at sea level, temperature of 20°C, and 1 atm.

The simulation was executed in MATLAB using the integrator ode15s, a solver de-
signed for numerically integrating functions that are ‘stiff’, such as those with time- and
state-dependent mass matrices. To propagate the system’s differential equations, both the
angular velocity and the Euler angle rates must be integrated. Thus, the full state to be inte-
grated during simulation is

[
ω̂

q̂

]
.

By rearranging (17), ˙̂ω can be isolated. Similarly, by rearranging ω̂ = Ŝ ˙̂q, ˙̂q can be isolated:

˙̂q =
[

Ssi
s

−1
0

0 1

]
ω̂.

At each time step, the updated value of ω̂ and q̂ will be available and, therefore, all rotation
matrices and angular velocity to Euler angle rate mappings (i.e., Ssi

s
−1

) are computable.
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Table 1 Physical properties of system

Length of Pendulum l 0.9 m

Width of Pendulum Rod w 0.025 m

Height of Payload (Cube) h 0.1 m

Mass of Pendulum Rod mr 5 kg

Mass of Payload (Cube) mc 30 kg

First Moment of Mass of Rod cr − 1
2 mrlz kg m

Second Moment of Mass of Rod Jr diag( 1
12 mr(4l2 + w2), 1

12 mr(4l2 + w2), 1
6 mrw

2) kg m2

First Moment of Mass of Payload
(Cube)

cr − 1
2 mclz kg m

Second Moment of Mass of
Payload (Cube)

Jc diag( 1
6 mc(h

2 + 6l2), 1
6 mc(h

2 + 6l2), 1
6 mcw

2) kg m2

First Moment of Mass of Pendulum cp cp = cr + cc

Second Moment of Mass of Rod Jp Jp = Jr + Jc

Pendulum Damping Coefficient bp 1.5 kg m2

s
Radius of Sphere r 1 m

Mass of Sphere ms 5 kg

Second Moment of Mass of Sphere Js
2
3 msr

21 kg m2

Sphere Damping Coefficient br, bs br = 3.5 kg m2

s , bs = r2br

Similarly, once ωsi
s is known, (1) can be used to determine the translational velocity of the

system over time, which can be integrated to yield the position of the ball over time.
First, we will show the simulation results for the nominal case of wind blowing down

the i→1-axis at a velocity of vave = 30 km/h. The wind velocity will be governed by v(t) =
vave(1 − et/2); the wind velocity will initially be zero and increase to the average wind
velocity over a relatively short period of time. Recall θ si = [γ β α]T; the rover will start
with all Euler angles initially zero (including φ) and an initial angular velocity of ωsi

s =
[0 5 0]T rad/s, φ̇ = 0 rad/s. Figures 5 and 6 show the angular velocity and the Euler angles
as functions of time. Figures 7 and 8 show the translational velocity and position of the rover
as it rolls.

It is interesting to see that for approximately the first 20 s or so of the simulation, the
pendulum is ‘wobbling’ forward and aft, thus causing the sphere to wobble forward and aft
as well. Eventually enough energy is damped out of the system so that the ball finally rolls
smoothly along the i→1-axis.

Next, we will present results for initially non-zero Euler angles (i.e., non-zero attitude).
The initial angular velocity will be ωsi

s = [0 2 0]T rad/s, φ̇ = −1 rad/s, and the Euler angles
will be θ si = [γ β α]T = [5◦ 10◦ 0]T and φ = −10◦. Shown in Figs. 9 and 10 are the angular
velocity and the Euler angles as a function of time. In Figs. 11 and 12 are the translational
velocity and position of the rover as it rolls. In Fig. 13 is the wind force as a function of
time, showing how the wind force changes as the ball speeds up.4

In Figs. 9 and 10, it can be seen that the ball is initially oscillating in a ‘side-to-side’
manner about β and a ‘twist’ manner about γ due to the initial non-zero angle β . After 10 s
to 15 s the oscillation dampens, and the ball rolls smoothly down the i→1-axis. Due to the non-
zero initial conditions, the system acquires a velocity in the i→2 direction which is eventually

4Recall that wind force is a function of the relative velocity between the wind and the ball.
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Fig. 5 Angular velocity, ωsi
s and φ̇

Fig. 6 Euler angles, α, β , γ and φ



434 J.R. Forbes et al.

Fig. 7 Translational velocity in i→1 and i→2

Fig. 8 Translational position in i→1 and i→2
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Fig. 9 Angular velocity, ωsi
s and φ̇ (nonzero Euler angles at t = 0)

Fig. 10 Euler angles, α, β γ and φ (non-zero Euler angles at t = 0)
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Fig. 11 Translational velocity in i→1 and i→2 (non-zero Euler angles at t = 0)

damped out as shown in Fig. 11. This leads to an translational offset in the i→2 direction as
shown in Fig. 12, as well as a small force as shown in Fig. 13, which eventually subsides
as the velocity in i→2 decreases to zero. This simulation shows that our design is able to roll
stably downwind (with the pendulum laterally fixed) while generating power.

11 Conclusions and future work

We have presented a new concept for a tumbleweed rover that incorporates an internal
pendulum-generator system, primarily as a means to generate electrical power. The focus
of the paper was to present a first-principles development of the dynamics of this complex
system including such effects as the internal pendulum dynamics, resistance (damping) pro-
vided by the electrical generators, external wind force, and rolling constraints between the
sphere and the ground. It also specialized the model to the case of the pendulum being lat-
erally fixed and it was shown both theoretically and through simulations that the design is
stable.

The fact that this tumbleweed is stable is perhaps not surprising for the case of rolling
downwind. The reason is that the pendulum swings backwards, thereby shifting the center
of mass aft. This induces a situation similar to a ‘weather helm’ in sailing vessels. With the
center of mass aft, the wind always helps point the tumbleweed downwind. Still, the model
is very useful as it allows us to simulate motion for a variety of parameter values and wind
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Fig. 12 Translational position in i→1 and i→2 (non-zero Euler angles at t = 0)

Fig. 13 Wind force in i→1 and i→2 (non-zero Euler angles at t = 0)
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conditions. This is an important stepping stone on the path to prototyping the pendulum
tumbleweed design, which is our next logical step.

Feedback control of our platform is also an area of future investigation. By regulating
the amount of power removed from the system, it should be possible to control the speed of
the rover. Actively steering the rover in the presence of wind is also of interest. This could
dovetail nicely with the fact that the pendulum provides a stable platform that could be used
to house cameras and other sensors that look ahead to detect hazards.

Although the model does a good job, primarily of helping us understand the complex
attitude dynamics of the tumbleweed, there are certainly several effects that we have de-
liberately neglected including asphericity of the ball, bouncing, collisions with obstacles,
and ground effects (i.e., the rover is rolling in a fluid boundary layer). As part of our future
work, we hope to extend our model to incorporate some of these effects, but others will be
investigated through experiments.
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