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An analytical solution of Euler’s equation is exhibited using the Volterra series theory in the frequency domain.
Based on the Volterra series, the nonlinear output frequency response functions of Euler’s equation are formulated by
anumerical algorithm to reveal an energy-transfer phenomenon. The output responses of Euler’s equation have some
higher frequency parts than those of the inputs. It provides motivation to design a finite-frequency controller for
Euler’s equation to accommodate the high-frequency parts of the outputs. A hybrid passive/finite gain control scheme
fused with the generalized Kalman-Yakubovich-Popov lemma is used to generate a controller that is effective for
stabilizing the angular velocities of Euler’s equation. Additionally, quaternions are considered in the proposed hybrid
finite-frequency controller to stabilize the attitude of spacecraft. Simulation results are demonstrated to validate the

effectiveness of the proposed control schemes.

I. Introduction

HE attitude motion of a rigid-body spacecraft has been

described using Euler’s equation for a long time. It is a principal
dynamic model in spacecraft attitude control problems. Because of
mutual-coupled angular velocities, Euler’s equation should be cat-
egorized as anonlinear system’s differential equation. In approaching
this nonlinear system, seeking the solution of Euler’s equation would
be helpful for analyzing it. One of the analytical solutions of Euler’s
equation for angular velocities is given in the form of Jacobian elliptic
functions in [1]. Another solution for it can be developed using the
well-known Runge—Kutta method, which is an iterative method to get
approximate solutions of ordinary differential equations. These two
solutions, however, are all implemented in the time domain. There is
little available literature to discuss the solutions of Euler’s equation in
the frequency domain. Hence, the frequency domain characteristics
of Euler’s equation still pose a challenge. In this case, the Volterra
series theory is an alternative method to obtain the frequency domain
representation of Euler’s equation. Primitively, the Volterra series has
been used to approximate nonlinear systems such as communication
systems [2]. It can capture nonlinearities from input—output dynam-
ics with an infinite sum of multidimensional convolution integrals
[3]. This method has been extended to identify the nonlinear dynamic
model of aerodynamic systems [4] and aerodynamic output re-
sponses [5]. The Volterra series kernels were also developed to
predict the frequency behavior of a nonlinear flight system in the
time domain [6] and the frequency domain [7]. The Volterra series
representation for a nonlinear system with quadratic terms was
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introduced in [§]. Coincidentally, Euler’s equation has quadratic
terms with respect to the angular velocities and is assumed to be
approximated by the Volterra series in the frequency domain.

For linear systems, the theory of frequency response representa-
tions is well developed. It is noted that the frequencies from inputs to
outputs in linear systems are identical. In nonlinear systems, output
frequency ranges are usually much richer than those of the input.
Hence, qualitative analysis is necessary to predict the frequency
behaviors of nonlinear systems. As the extension of transfer functions
for linear systems, the nonlinear output frequency response functions
(NOFRFs) can predict the frequency behaviors of nonlinear systems
in a similar manner. To facilitate it, the Volterra series has been used to
generate NOFRFs for several nonlinear systems [9—11]. This concept
was used in [9] to address the energy-transfer phenomenon in a
single-input—single-output (SISO) nonlinear oscillator system in
which the output frequency ranges are different from the frequencies
of the input excitation. In [10], the NOFRFs were extended to in-
vestigate a multi-input-multi-output (MIMO) nonlinear system and
its energy transfer in the frequency domain. Therefore, it is assumed
that the NOFRFs can also be applicable to predict the nonlinear
frequency behavior of Euler’s equation in which the energy transfer
phenomenon might still exist.

Attitude control is crucial in space missions. As this problem has
been discussed in [12], it has become a subject undergoing intense
study by many researchers. A number of related control schemes
have been proposed in the literature, such as optimal control [13],
variable structure control [14], and adaptive control [15]. A strictly
positive real (SPR) controller for angular velocities was employed in
[16,17] to stabilize a passive spacecraft dynamic system using the
passivity theorem as well as the Kalman—Yakubovich—Popov (KYP)
lemma. A benefit of the SPR controller is its robustness to modeling
errors. However, most of available controllers for spacecraft attitude
are mainly built in the time domain rather than the frequency domain.
As the fusion of the hybrid passive/finite gain theorem (“hybrid”
means that the controller based on this theorem is passive in the low-
frequency domain and has finite gain in the high-frequency domain)
and the generalized Kalman—Yakubovich—Popov (GKYP) lemma,
the controller was developed in [18] to stabilize a single-link manipu-
lator. The GKYP lemma provided a set of schemes to generate
controllers at distinctive frequency ranges using linear matrix in-
equalities (LMIs) [19,20]. It provides motivation to develop a finite-
frequency controller using the hybrid passive/finite gain theorem
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with the GKYP lemma to accommodate the possible energy transfer
for spacecraft attitude control problems.

This paper first presents the Volterra series frequency representa-
tions of Euler’s equation. Based on that, the NOFRFs for Euler’s
equation are established by a numerical algorithm to demonstrate its
energy-migration phenomenon. To accommodate this phenomenon,
a hybrid finite-frequency strictly passive/finite gain controller for
angular velocities based on the GKYP lemma is implemented on
Euler’s equation. Performance comparison between an SPR control-
ler designed by the KYP lemma and a hybrid frequency controller
designed by the GKYP lemma is given. Additionally, quaternions are
involved in the hybrid frequency controller for solving the spacecraft
attitude control problem. Simulations are shown at the end to dem-
onstrate the effectiveness of the proposed hybrid frequency control
schemes.

II. Rotational Dynamics

The attitude motion of a rigid-body spacecraft is governed by
Euler’s equation [1]

Io +w*lo =u €))

where I is the moment of inertia matrix defined in the body frame F,,
0 = [w,, oy, w.]" is the angular velocity of the spacecraft, and u =
[y, uy, u,]" is the total external torque vector applied about the center
of the spacecraft. The matrix @* is given by

0 -0, o,
0=\ o, 0 -w, 2
-0, 0

It is assumed that the moment of inertia matrix

I, 0 0
I=|0 1, 0
0 0 I,

is diagonal. Hence, the scalar equations of Eq. (1) become

Lo+ I, - 1))o,0, = u,
Lo, + U, -1 )o.0, = u,

Lo, + (Iy - Ix)wxwy =u; 3)

It is noted that Eq. (3) can be written as a quadratic-form state-
space equation:

x"Ex
Xx=Ax+ | x"E,x | + Bu, y=0Cx “4)
x"E;x

where x = [wy, @, w.]" is the state vector of the system, and
A= 03)(3’

B = diag{I;'. I;', 17"} ®)

Here, the angular velocities are chosen as the outputs of the system;
hence C = 1343, where 1 is an identity matrix. The quadratic param-
eters E|, E,, and E; are given by

0 0 0 0 _Ix_lz
1.-1, 21,
0 -2 )
E, = 2l |, E;= 0 0 0 ,
1.—1, I.—-1
0 -+ 22 - 0 0
i 21, ] 21,
- . -1, 0_
21,
E = [ —[,(
3 7y ) 0 (6)
21,
| 0 0 0]

There are two different types of solutions of Eq. (3). Generally, a
commonly used solution is obtained from the well-known Runge—
Kutta method. This solution is usually available for arbitrary control
inputs. Based on some special inputs like impulse functions, an
analytical solution can be produced for Euler’s equation in the form
of Jacobian elliptic functions [1]. However, these solutions are all
implemented in the time domain instead of the frequency domain.
The frequency domain characteristics of Euler’s equation cannot be
exploited by the above two solutions but might be developed and
predicted with the Volterra series.

III. Nonlinear Approximation Based on Volterra Series

In this section, the Volterra series will be used to approximate
Euler’s equation and yield its analytic solutions in the frequency
domain. The simulations of the approximation are conducted to seek
the minimal truncation order that can capture the nonlinearity of
Euler’s equation by the Volterra series.

A. Preliminary for Volterra Series
Consider a general nonlinear system

X =f.x(@0),u(),  y@) =gt x(0),u) (M

where x € R" is the state vector, u € R™ denotes the input vector,
and y € R¥ is the output vector. The functions f and g contain
nonlinearities. The input—output relation can be approximated by
the theory of Volterra series as

y(z‘):X:/oo /w /w hi(rl,fz,...,ri)l_[u(t—fj)drj ()
R j=1

where h;(z|,7,,...,7;) is the ith-order Volterra kernel in the
time domain. Taking the multidimensional Fourier transform of

hi(zy, 75, ..., 7;) yields the ith-order Volterra kernel in the frequency
domain:
. . L © s3]
Hi(]wl,--wai):/ / / hi(ty,79,...,7;)

X expd@nttom) gz dr, ©))

When the complex frequency is denoted by s, Eq. (9) becomes

H,-(Sl,...,s,»)Z/ / "'/ hi(Tl,Tz,...,T,')

X exp~Gint e FsTdr, L dyy (10)

There are several methods to determine the Volterra kernels, such
as the canceling-system approach [§] and the growing exponential
approach [21,22]. Compared with the growing exponential approach,
the canceling-system approach is more intuitive to understand and
formulate. Given that Euler’s equation is a quadratic MIMO non-
linear state-space equation, the canceling-system approach is easier
for getting its Volterra model [8]. The canceling-system approach is
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Fig.1 Canceling-system for u — x.

implemented by building a null system as illustrated in Fig. 1 to
determine the Volterra kernel of Euler’s equation.

In Fig. 1, the Volterra kernel { H,,} shows the connection between
the input u and the state x. Since the output y = Cx, the Volterra
kernel foru — y becomes {H,,} = C{fAIm}. In Fig. 1, the right part
(dashed line square) includes three branches, which are added
together to form a “0” output. It means that Volterra series {ﬁ ) N
the left part is canceled by the right part (dashed line square). Hence, it
is named the “canceling-system approach.” Based on the method
introduced in [8], a brief algorithm is given to facilitate the formu-
lation of Volterra kernels in Algorithm 1.

Algorithm 1:  Steps to obtain H ,,(sq,. . . ,S,,)
via canceling-system approach [8]

1: Based on Egs. (Al) and (A3) in the Appendix, the middle branch in the
right part (dashed line square) represents the subsystem S, ;_ 4, Whose
corresponding kernel is [(s;+ -+ +s,,)1 — A]H,, (s{,...,S,)-

2:  Based on Eq. (A2) in Appendix, the top branch of the right part
(dashed line square) stands for the quadratic subsystem
Sum—xTE,x (n = 1,2, 3). Its corresponding kernel is

Wt Hi(sto oo 80 TE Hyy g (St 00 8,) (0 =1,2,3).

3:  The inferior branch indicates the subsystem S, p,, . Its corresponding
kernel is B for m = 1 and 0 for m > 2, as S, g, has no explicit
dependence on x.

4:  Adding all kernels of the three branches and following Eq. (A1), the

Volterra kernel matrices H,,(sy, . . ., 5,,) of Euler’s equation are given as
Egs. (11-13).
H,=CH,,

H,(s1,....5,) = [(s;+ - +s,)1 = A" T, (sy.....s,) (11

Ji(s;) =B (m=1) (12)

m—1 Hk(sl""’sk)TEle—k(Sk-%—l7"'7sm)
Jm(sl""’sm):Z ﬁk(sl,...,Sk)TEzfAIm_k(Sk_*_l,...,Sm) (mZZ)
k=1 ~ A
H (s v--~vsk)TE3Hm—k(Sk+lv~-~vsm)
(13)

B. Simulation of Euler’s Equation Using Volterra Series

The Volterra series for Euler’s equation in Eqs. (3—6) is now studied
using the canceling-system approach. The realization of the Volterra
model of Euler’s equation is implemented using the MATLAB/Simu-
link with the instruction provided in [8]. The simulation parameters are
set as follows: the moment of inertia I = diag{15, 50, 35} kg - m” and
the initial angular velocity @, = [0.15,0.15,0.15]" rad/s. Before
demonstrating the simulation results, the convergence condition
of the Volterra series for a MIMO quadratic nonlinear system is
worth discussing. The convergence condition stated in [8] is

max{Re(1{A})} <0, where 1{A} denotes the eigenvalues of the
matrix A. To satisfy this condition, an equivalent form is used by
adding a term I to the right-hand side of Eq. (1) and then subtracting it
at the end as

I = —Iw—-o*1lw +u + Iw (14)

Taking the special derivations, the matrix A in Eq. (4)
becomes A = —133.

Figure 2 exhibits the time response of angular velocities using the
Runge—Kutta method, linear-based model, the second-order Volterra
models, and the third-order ones, respectively, when the input is of the
formu = A, sin(w,f) - [1,1,1]T with A, = 1, @, = 1 rad/s. From
the simulation results, it is explicit that the third-order Volterra series
can capture the nonlinearity of Euler’s equation accurately. The
truncation order of the Volterra series at N = 3 will be used in the
next section.

IV. Nonlinear Output Frequency Response Functions
for Euler’s Equation with Volterra Series

A dominant characteristic of a linear system’s frequency response
is that the frequencies of the input and output signals remain identical.
This feature cannot be simply extended to the nonlinear case. For a
nonlinear system, as it was developed in [9], the output frequencies
are different from those for the inputs, which is the so-called energy
transfer. In this section, the energy transfer from inputs to outputs in
Euler’s equation will be studied.

A. Energy Transfer Properties of Euler’s Equation in the Frequency
Domain
Consider the scalar equations of Euler’s equation as shown in

Eq. (3). The moment of inertia I is set as the same value as them
used in the simulation in the last section. The input signals are
changed to

sin(z) — sin(0.77) sin(0.7¢) — sin(0.37)
Ml T ——Y M2 = N

t t
sin(0.3¢) — sin(0.1¢)

uy = ; 15)

The numerical simulations for Eq. (3) are performed when the
input signals in Eq. (15) are used. The vector ¥ = [Y;,Y,, ¥5]T
denotes the Fourier transform of the output y = [y;, y,, y3]" speci-
fied in Eq. (4). The frequency ranges of the inputs signals u, u,, and
us are set as [0.7,1], [0.3,0.7], and [0.1,0.3] rad/s, respectively.
Figure 3 shows the spectra of the input signals. Figure 4 depicts the
spectra of the output y. It is noted that some energy migrates beyond
the upper bound of the input frequency range (1 rad/s). A further
interpretation of this phenomenon will be made from the theory of the
NOFREFs in the next subsection.

B. NOFRFs for MIMO Volterra Series Model

For linear systems, the frequency domain analysis plays a domi-
nant role in the design of controllers. The characteristics of linear
systems can be clearly demonstrated using the frequency response
function H(jw). If U(jw) and Y(jw) are assumed to denote the
spectrum of a linear system’s time responses of inputs u(z) and
outputs y(#) respectively, the relation between input spectrum and
output spectrum can be expressed by

Y(jw) = H(jo)U(jw) (16)

Considering the nonlinear system in Eq. (7), its Volterra series
model in the time domain is given by Eq. (8). The analogous
definition of the output frequency response in Eq. (8) has been
provided in [23] based on the theory of Volterra series in the fre-
quency domain:
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wy, (rad/s)
o o
5] (]
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w; (rad/s)
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Fig.2 Time response for angular velocities.

u G i) TTE iw:)do;
2 0.04 , — : G(i)(jw):fw1+4.~+w,:szU“’1"";J“’l)l—_ljzl U(jw))do;, (18)
E fw1+m+w,:(unj:1 U(ij)daiw
=002 m 1
<¢E 0 J ! ‘ s where
0 1 2 3 4 5
U, ) i
£ 0.04 , : : : U9 (jw) = / [[vGo)) doi, #0 (19)
E o+ Foi=w j=1
= 0.02F 1
;:5 0 " s L s Hence, the output frequency response in Eq. (17) is equivalent to
0 2 3 4 5
U N .
2 0.04 : S R : Y(io) = Y GO (w)U® () (20)
B i=1
=002 |
5 0 ‘ ‘ ‘ ‘ This input—output relation in the frequency domain for nonlinear
0 1 2 3 4 5 system is illustrated in Fig. 5 to compare with its linear counterpart
Frequency(rad/s) [10]. Note that the NOFRFs G (jw), G® (jow), ... represent the

frequency domain gains for the higher moments of the frequency
domain inputs.

Euler’s equations have three inputs and three outputs, which are
w=[u;,uy,us]" and y = [y, y,, y3]" in the time domain and U =

. u O [Uy,U,,Us]" and Y = [Y,,Y,, Y3]" in the frequency domain. As an
Y(jo) = ZY (j). extension of the SISO case shown in Egs. (16-20), the MIMO
= Volterra series approximation applied to the pth output of Euler’s
equation in [10] is given by

Fig. 3 Spectra of input signals.

: 1 L
Y(’)Gw)=%/ H;(jo,...,jo;) | | UGw;) do;
(2”)1_1\/; W+ o= l 1 ' Jl:! ! ¢ 3
. 1 . .
an Y, ()= Gy, (@)U, ()]
k=1
where N is the maximum order of the system nonlinearity, 303
Y;(jw) denotes the ith order of the output frequency response, + Z Z Gf}q 1, (@)U, (o) Uy, (jo)] -
flererw:w(*) do;, is the integration of (x) over the hyperplane ky=1ky=k
w1+ -+ +w; = w, and H;(jo,,...,jo;) has the same form as 3 3 -
Eq. (9). Based on the above results, the definition of nonlinear output + Z Z G iy (ONU (j) - Uy (o)] - (21)
frequency response function G (jw) was introduced in [9] as k=1 k=k
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UG [ ) o | Y 0) where
: (1) (3) T
U(jw) - Y (jw) . . . . [Gp] =[G 100) G 111 ] (25)
H(jw) U (jw) @) Y@ (jw) Y (jw) M
G (jw) Y 19-term NOFRFs
UDGw) [ am o LY 6w) , , . N
G (jw) Assuming that Euler’s equations are excited by the input signals
a) Linear b) Nonlinear u;(t) = au;(t) (i =1,2,3), the corresponding frequency-domain

Fig. 5 Input-output relation in the frequency domain for a) linear
system b) nonlinear system.

where  the  term Gg,)klk,..kN (ky + kot o +hy =i,

i=1,2,...,N) denotes ith-order NOFRFs and N is set as the same
truncated order as the Volterra kernel from Sec. IIL.B (which was set

as N = 3). The subscript of ani.)k, & ...k, generally denotes

(n) N —
GP.I e 12 -..23 ... 3(.'“)) - G(P‘P|:N1‘P::N2‘P3:N3) (22)

where N,,(m = 1, 2, 3) represents the N,,th input involved into this
system. According to the formula [Eq. (35) in Ref. [10]], in Euler’s
equation’s case, the number of terms contained in Eq. (21) is 19.

Specifically, the 19-term pth-order NOFRFs {G, } include GE;)_IOO),
O 1) @ ) @ () (2

G0y Gipoony Gpa00> Gipony Gipoy Gipanoy Cipony
(2 (3) 3) (3) 3) (3) (3)

G(P-101)’ G(P»300)’ G(P-030)’ G(P-003)’ G(P¢120)’ G(ﬂ-210)’ G(P1012)’

) @ 3 3)
Gp021): Gpa0): Gipaony A Gy -

For the input frequency-domain form Uy (n = 1,2,...,N),
Uy, (o) - Uy, (jw)]
=[U,Gw) -+ Ui(jw)X -+ xUs(jo) --- Us(jw)]  (23)
et e N —————
N, N;

Hence, Eq. (21) is of the form

Y, (jw) = [U). U, Us, U3, U3. U3, U U, Uy Us, U U3, UYL U3 U3,
U\U3, UiU,, Uy U3, U3U3, U, U3, UT U5, U U, U (G
24)

forms are U;(jw) = aU;(jw), i = 1,2,3. Substituting these new
input signals into Eq. (24), we can have

Y],(jCU) = [aUlvaU27aU3va2U%ﬁ azU%, ang, a2U1 U2,a2U2U3,
azUl U3,a3U?,a3U%,a3U§,a3U| U%,a3U%U2,a3U2U%,
a3U%U3,a3U|UZ,CZ}U%US,(X:;U]Ung][GP] (26)

To formulate the NOFRFs [G,], Euler’s equation should be
excited by different sets of #&;(1) = au;(1)(i =1,2,3and

q =1,2,...). This number of g can also be calculated from [10].

As aresult, there are different output frequency responses Y, (jo) =
col{¥'?(jw)}(q = 1,2....) given by

Yy (jo) aUy = ayUs - qUi -+ aqU,U, U5
Y3 (o) aUp o aqUs - U - U, UsUs
=T T T e
Y(q)(jco) a.Ui - aUs - BU3 - BUUU
P qY1 q~3 q-1 g~ 17253
27
After defining
alUl a1U3 G?U? a:;,UlUZU3
a2U1 (le3 a;U? a%U1U2U3
A= . (28)
aqu aqU3 G;U} GZU1U2U3

Equation (27) can be written as
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Y,(jw) = A[G)] (29)
Finally, the pth-order NOFRFs [G ] are given by

(G, =[AT AI"'ATY,(jo) (30

C. Simulation for NOFRFs of Euler’s Equation

The point of exploiting the NOFRFs of Euler’s equation is to
explain the energy-transfer phenomenon illustrated in Figs. 3 and
4. All parameters for simulations are the same as the last subsection.
In Eq. (26), the cross-product terms U2, U3, U2, U, U,, U, U3, U Us,
U3, U3, U3, U U3, U3U,, U,U3, U3Us, U U3, U3Us, and U U, Us
are likely to be the source of high-frequency components while the
frequency ranges of U, U,, U; are all less than 1 rad/s. Some of the
cross-product terms are shown in Fig. 6. Following the numerical
algorithm, some of the amplitudes of NOFRFs {G ,} are illustrated
in Fig. 7.

From these simulation results, the energy-transfer phenomenon
exists in all three orders of NOFRFs. In the low-frequency domain,
some responses still remain because all the frequency ranges of input
signals are less than 1 rad/s. However, there are still some responses
beyond 1 rad/s. Accommodation of the response existing at the
higher frequency range is the motivation for the next section.

2 2
-3 u u
1 2
g 10 0.01
g6 <
=] =
= =
24 3, 0.005
g g
< 2 <
0 0
0 1 2 3 4 5 0 1 2 3 4 5
Frequency(rad/s) Frequency(rad/s)
2
-3 U -3 U, xU
3 1 2
6 x10 4 x10
[ ﬂ) 3
ER E
) g
< <1
0 0
0 1 2 3 4 5 0 1 2 3 4 5
Frequency(rad/s) Frequency(rad/s)
Fig. 6 Spectra of U2, U3, U%, and U,U,.
el asy,
30 1,100 4 2,020
o © 3
R E
10 g,
o L SAARA bbb
0 2 4 6 8 10 0 2 4 6 8 10
Frequency(rad/s) Frequency(rad/s)
ay) Gy
0.15 3,210 0.2 3,111
2 2 0.15
2 2
2 £ o
g g
< < 0.05
fh ;
0 2 4 6 8 10 0 2 4 6 8 10
Frequency(rad/s) Frequency(rad/s)

. 1 . 2 . 3 . 3 .
Fig.7 |G{}o(j®@)], 1G )0 (j@), 1GS)0(j@)], and |GS); (j).

Remark 1: The order N of NOFRFs in Eq. (17) is a crucial
parameter to predict the frequency behaviors of a nonlinear system.
However, there have been few guidelines available about the selec-
tion of this parameter N. Since the NOFRFs approach is extended
from the Volterra series, we use N = 3, which is the minimal trun-
cated order to capture the nonlinearity of Euler’s equation.

V. Hybrid Frequency Control for Euler’s Equation

From the simulation results of the NOFRFs, some frequency
responses migrate to the high-frequency domain when the input
signals are in the low-frequency range. This motivates that a con-
troller can be designed based on the distinctive frequency domain
properties of Euler’s equation. In this section, Euler’s equation with a
prewrap term will be shown to have finite gain. Then, the hybrid
passive/finite gain theorem is implemented to design a controller that
can maintain passivity (and high gain) in the low-frequency domain
and have finite small gain in the high-frequency ranges, and thus
attenuate the frequency response migration. Note that NOFRFs were
used to illuminate the energy migration to higher frequency but will
not be used as a model for controller design. Our controller design
will use a linear model of the attitude dynamics (and kinematics), but
the energy migration phenomenon motivates gain reduction at higher
frequency.

A. Preliminary

For the sake of clarity, the notation y(jo) represents the Fourier
transform of a time-domain function y(f). Recall the concepts of
L, space and its extension L,,, namely, y(¢) € L, when

V ey (0)y(r)dit< oo and y(1) €Ly, when o/ [£y] (1) yr(1)di< oo,
0<T<o(yr(t) =y(),0 <t <Tandy; = 0,7 > T). According
to Parseval’s theorem [24], one can write f o Yy ()y()dt =

1/Q2n)Re [=_yH(jw)y(jo) do.

For a general system y = Ge with the operator G: £,, — L,,, the
input e € £,,, and the output y € £,,, a hybrid passive/finite gain
system G is defined in [25] as satisfying

%/_‘: Y (0)0(w)yr(jw) dw + %Re /00 YW(iw)S(w)er(jw) dw

+ % / M (jw)R(@)er(jw) do > 0 31)

where

0(0) = —fea(@) + (1 - a(w))]1,
R(w) = [r(1 - a(@) - da(w)]1 (32)

S(w) = %a(a})l,

The passivity of the system G is revealed by the constant param-
eters 6 and ¢, and the finite-gain property of the system G determines
y. The frequency variable « is given by

1, —o.<w<ow,

(@) = {o, 0| > ,

where @, is the critical frequency. The entire frequency range can be
split into two subranges by w.. By considering the passive region
(a(w) = 1) and the finite-gain region (a(w) = 0), Eq. (31) can be
satisfied if

(passive region)

(finite gain region) (33)

1 W,
—Re/ Y(w)er(jw) do
2 —o,

" e(ioer(o) o (34)

-,

€ [o X . 1)
> / W)y (o) doo + >
7T J o, 2

and
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u + e Y1
— g1
Y2 Ga

Fig. 8 A negative feedback system.

1 o 0o
[ty <L [" oo 69

Y Jo,

We say that the system is a hybrid passive/finite-gain system.

Consider the two hybrid passive/finite-gain systems G;: £,, —
Ly, and G,: Ly, — L,, interconnected with negative feedback as
illustrated in Fig. 8.

The stability of these two interconnected negative feedback sys-
tems can be guaranteed by the hybrid passivity/finite-gain theorem
[25] as follows.

Theorem 1 (hybrid passivity/finite gain theorem): Assume these
two systems are hybrid passivity/finite gain systems with correspond-
ing parameters as G;: 81, €, 71 and G,: 6y, €5, 7, satisfying Egs. (34)
and (35). The interconnected system with G, and G, is £, stable if
61 +€ >0,6,+€ >0,and y;y, < 1.

For a proof, see [25].

Remark 2: Note that, in particular, a linear controller G, with
0, > 0, €, > 0, and small y, designed using a linear model of the
plant G; can stabilize a nonlinear system G; with §; > 0, ¢; > 0, and
72 < 1/y,. We are particularly motivated by the use of a small value of
7, to accomplish high-frequency gain reduction.

B. Finite Gain for Euler’s Equation with a Prewrap Term

A crucial prerequisite of the hybrid passivity/finite gain theorem is
that the plant system should have finite gain. Thus, it is impossible to
apply the hybrid passivity/finite gain theorem directly to Euler’s
equation, because it does not have finite gain. However, it becomes
possible when a prewrap term is added into Euler’s equation. Before
demonstrating the finite-gain nature, a lemma is given at first to show
that the mapping G of Euler’s equation shown in Eq. (1) from the
input u to the angular velocity @ is passive.

Lemma 1: Gp:u — o is passive.

Proof: Consider Euler’s equation shown in Eq. (1). Its kinetic
energy is H(t) = (1/2)w" Iw > 0. Taking the time derivative, one
arrives at

H=0"lo =0 (-0*lo +u) =0'u 36)

Integrating both sides gives
T
/ o udt = H(T) — H(0) > —H(0) 37)
0

Hence, G is passive. O
The finite-gain characteristic of G5 with a prewrap term is guar-
anteed by the following theorem.
Theorem 2: The new map from the input # to the output @ has finite
gain when adding a prewrap term —¢w into Eq. (1):
Io + o*Io = —(w +u (38)

where & > 0 is an arbitrary small number.
Proof: Rewrite Eq. (38) like

Io + o™l + éw =u (39)
Multiply both sides of Eq. (39) with @, and it becomes

o'l + 0 o*lo + o o =o'u (40)

Gr

fw

Fig. 9 Euler’s equation with the prewrap term.

Since " w* = 0,

df1
T [szlw] +éw'w=0"u 41)
As depicted in Fig. 9, the error vector is defined as e = —¢w + u.

According to Lemma 1, the passivity of G leads to
T T
/ o'edt = / o (o +u)dt >0 42)
0 0
Then
T T
/ o udt> f/ o odt (43)
0 0

This implies that the system shown in Eq. (38) will maintain passivity
from input u to output @. Using the Cauchy—Schwarz inequality, we

have
T T 1/2( [T 1/2
/ o' udt < (/ o' dt) (/ u'u dt) 44)
0 0 0

Substituting Eq. (43) into Eq. (44), we can get

T T 12/ [T 12
5/ o'wdt < (/ o'w dl) (/ u'u dl) (45)
0 0 0

This implies that

T 1/2 T 1/2
f(/ o'w dt) < (/ u'u dt) (46)
0 0

Letting 7' — oo and assuming # € L,, one has

@]y < & ull, 47
which means
® 1
IGell, = loll, 1 (48)
O#uel, lull, = &
[
C. Controller Synthesis
Consider a controller
x,=Ax.+ B.u,, y. =C.x, 49)

where x,. is the controller’s state, and y,. is the controller’s output. The
control block is illustrated in Fig. 10. Because of the negative feedback
connection, y. = —u and y = u,.. Given that the Euler’s equation with
the prewrap term is a passive system and has a finite gain, it can be
stabilized by interconnecting a strict passive controller as a negative
feedback, which is stated in the passivity theorem [26]. A strictly
passive controller is provided by the next lemma.
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To+w lw+éw=u

\/

Ye &.= A.x.+ B.u, U
Ye = Ccmc

Fig. 10 Control block.

Lemma 2 (KYP lemma): Consider a system given in Eq. (49) as
G.(s) = C,(s1 — A,)"'B,. The matrices A, B, C, form a mini-
mal state-space realization. Assuming that A . is Hurwitz, this system
is SPR if and only if there are real matrices P, = P] > Oand Q. =
Q7 > 0 that satisfy the conditions

PcAc + AIP(‘ = _Qc
P.B,=CT (50)

For a proof, see [27]. If G.(s) = C.(s1 — A,)"'B, + pu1 for an
arbitrarily small p > 0, the SPR system G_(s) corresponds to a
strictly passive system with finite gain.

To synthesize the controller, Eq. (38) can be linearized via the
small angle and rate assumption @ = 6 as follows:

B[ o] o

—————— ——— ~——
A x; B, C

Following the algorithm in [28], the matrix C. can be formulated as
a state-feedback gain from the linear quadratlc regulator (LQR)
algorithm with suitable selection of the weight matrices Q Q >
0 and R = R" > 0 along with the matrices B; and C; in Eq. (51).
A Hurwitz matrix A, = A; — B,C, is obtained. Then, the matrices
P_ and B, can be obtained from Eq. (50) with a suitable selection of
Q. = Q! > 0. Hence, the standard KYP lemma generates an SPR
controller G, xyp(s) = C.(s1 - A,.)"'B..

This synthesis process is conducted in the time domain. Therefore,
it can maintain passivity over the entire frequency range. Considering
the energy migration from the low- to high-frequency ranges, it is
supposed that a hybrid frequency controller might be more effective
than G xyp(s) designed based on the standard KYP lemma. Moti-
vated by this assumption, first, the generalized KYP lemma is taken
to design a hybrid passive/finite gain controller for Euler’s equation
with the prewrap term. Then, this assumption is extended to the
spacecraft attitude control problem in which quaternions are taken
into account with the prewrap Euler’s equation.

1. Case A: Hybrid Passive/Finite Gain Controller for the Prewrap
Euler’s Equation

In this case, the entire frequency range is split by the critical
frequency @, into two parts, which are low- and high-frequency
ranges. The approach to formulate the matrices A . and B, is consistent
with those in the synthesis of G xyp(s). The controller’s output gain
C. in Eq. (49) is renamed as K. The hybrid frequency controller is
denoted by G, (s) = K(s1 — A.)"! B... The formula of the matrix K
involves the hybrid passive/finite gain theorem and the GKYP lemma,
which is given as follows.

Lemma 3 (GKYP lemma [20]): Consider the system G(s) =
C(s1—A)"'B and a given matrix IT = IT". The following two
statements are equivalent:

1) Frequency domain condition:

[G(iw) ]HH[G(JI'w)] <0 (52)

2) Linear matrix inequality: There are two matrices, P = PT and
0 = Q" >0, such that

A B B c 0|5 _[C 0
4 STureft 8)o[5 3Tolg s o

Here, the function L(P, Q) depends on the matrices P and Q.
It has particular forms in different frequency ranges, which is
described below.

Following Theorem 1, the controller G, is SPR over —w,. < @ <
. when Eq. (34) is satisfied. The equivalent form of the GKYP
lemma uses

To -1 -0 P
(4] o[ k)

in Eq. (§3). Hence, the controller G, has passivity over —@w, < @ <
. when the following inequality is satisfied:

A. B.JH[-Q, P, A, B, KOJH[ 0 -17[K 0
+ <0

A A A
(54)

where P, = P| and Q; = Q] > 0. The variables in the LMI are K,
Pl’ and Ql

In the high-frequency range |w| > @, the gain y, of the controller
G, should be finite, which implies that the controller system is
bounded real. Because the prewrap Euler’s equation has finite gain
y1 < 1 /£, the gain y, of the controller G, is determined as y, < £ in
Theorem 1. The equivalent bounded-real form of the GKYP lemma
over |w| > @, is obtained by substituting

1 0
m=lo )

into Eq. (53) to yield

A, B.J[Q, P A, B.] [KOJH[1 0 [K o0
ST e [ S a6 ]

L(P.Q) = [% _a‘;Q]

(55)
The Schur complement is used to transform Eq. (55) into
AlQA +P A+ AP, ~w;Q, AlQ;B.+P,B. KT
sym BlQ, -1 0 | <0
sym sym -1
(56)

which does not contain a nonlinear term with respect to K in Eq. (55).
The matrices K, P, = P],and @, = Q] > 0are the variables in the
LMI (56).

The hybrid controller G, is SPR in the low-frequency range and
has finite gain in the high-frequency range if the gain K satisfied
LMIs (54) and (56). However, a feasible solution of LMIs (54) and
(56) might not be unique. We take an optimization approach to find an
exclusive K. An appropriate objective function is set as

J=u{(K-C.)(K-C.)T] (57)

This objective function will produce a controller designed with the
GKYP lemma to mimic the controller from the standard KYP lemma
but also one with small high-frequency gain y,.
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Using a similar approach as [18] for solving the LMIs, an
additional variable Z = ZT > 0 is introduced, and two additional
constraints are employed as

tZ1<J (58a)
(K - Cc)(K - C(_‘)T <Z (58b)

These additional constraints are logical since minimal J implies
minimal tr[Z] as (K — C,)(K — C.)" is being minimized. Because
the left-hand side of Eq. (58b) is nonlinear in K, the Schur comple-
ment is used to transform it as

Z (K-cC)7
_[sym 1 ] <0 59

The optimal gain K can be determined from following optimiza-
tion problem:

min J(K,P,,0,P,,0,2Z) (60)
subjectto LMIs in (54), (56), (59)

Up to here, a hybrid SPR/finite gain controller G, =
K(s1— A,)"'B, has been accomplished using the GKYP lemma
and the optimization. The recipe for synthesis of the controller G, (s)
is given in Algorithm 2.

Algorithm 2:  Steps to synthesize controller
GCZ(S) = K(SI - Ac)ich

1: Form the linear plant model G, (s) = C;(s1 — A;)~' B, where A;, B,,
and C, are given in Eq. (51).

2: Formulate C.. as a state-feedback gain from the LQR algorithm with
suitable selection @ = Q7 > 0 and R = R > 0 along with the
matrices A, B;, and C, in Eq. (§1).

3: Calculate B, from Eq. (50) with a suitable selection of @, = Q! > 0.
Calculate A, from A, = A; — B,C,, where A, and B, are formed from
Eq. (51).

5:  Determine gain K by solving the optimization problem shown in
Eq. (60). [The problem shown in Eq. (60) must satisfy Eq. (54) and
Eq. (56), which are derived from the GK'YP lemma in frequency domain.
The controller G, (s) will maintain passivity in the low-frequency range
and has small finite gain in the high-frequency range.]

Remark 3: Note that Algorithm 2 produces a controller with passive
characteristics at low frequency (i.e., G, (jw) + G (jw) > 0, w < w,.)
and small gain at high frequency (e, G (jw)G.,(jow) < ¥31,
® > w,). These two characteristics are facilitated by the GKYP lemma
with the two LMIs in Eqs. (54) and (56).

Remark 4: For the controller G ,, we use a linear model of the plant
to design a linear controller. However, the hybrid passivity/finite gain
theorem in Theorem 1 guarantees that it will stabilize the original
nonlinear system.

Remark 5: As a competitive controller, G xyp is formulated using
the KYP lemma in the time domain. Its frequency domain properties
cannot be manipulated directly. However, the frequency domain
properties of the controller G, are determined by the GKYP lemma
[i.e., Eq. (§4) and Eq. (56)]. The selection of a small value of y, in
Eq. (56) enables G, to accommodate the energy transfer phenome-
non in the high-frequency domain.

The moment of inertia I and the initial values of the angular
velocities are set as the same as those in Sec. III. The weights of
the LQR algorithm are set as Q = 3.3 x diag{1, 1, 1, 10, 10, 10},
0. =20xdiag{l,1,1,10,10,10}, and R =2.3 x 1, where 1 is
an identity matrix with suitable size required by the LQR algorithm.
The prewrap parameter in Eq. (38) is set as £ = 0.01. The critical
frequency is @, = 6 rad/s. Figure 11 shows the time response of the
angular velocities under the controllers G, xyp and G,, respectively.
The performance under the controller G, is better than that under the
controller G, gyp. From Fig. 12, the control inputs from G, are
smaller than those from G, xyp. Figure 13 illustrates the frequency
responses of the maximum singular value of G xyp(jw) and G, (jo),
where the maximum singular value of G(jw) is defined as

5(G(jw)) = /A[GM(jw)G(jw)] when A[x] are the eigenvalues of a
matrix [*]. At the low-frequency ranges, the gain of the controller G .,
is larger than that from the controller G xyp and becomes smaller
than that from the controller G, xyp in the high-frequency ranges.
This feature can lead the low-frequency components of the state to
decay to equilibrium faster. Moreover, the high-frequency compo-
nents are applied with lower gains, which means that less control
efforts are consumed. The special consideration to accommodate
energy transfer for the high-frequency domain in the control scheme
is effective.

2. Case B: Hybrid Passive/Finite Gain Controller for the Spacecraft
Attitude Control Problem

From the above simulation results, it is intuitive to suppose that the
controller G, = K(s1 — A,.)~' B, might be still more efficient on
the spacecraft attitude control problem than the controller based on
the standard KYP lemma when quaternions are also taken into
consideration. As for the spacecraft attitude control, the quaternions
[e, ] are selected as attitude parameters to describe the rotation of
the spacecraft. The kinematic equations of arigid-body spacecraft are
given by

. 1 . 1
e:E(nl—l—ex)w, 0= —EeTa) 61)

For the prewrap Euler’s equation and the quaternions kinematic
equation, consider a new controller

u, =u,+u (62)

where u, = —ke(k > 0). The other part u is formulated as almost
same as the controller design in case A except the linearized form
of Eq. (38) when Eq. (62) is substituted into Eq. (38) and then
linearized as

03 0.2
—_ KYP
—GKYP
0-2 0.15
%\ 0.1 g
B . E od
S Y/ =
3 o/ 3
o 0.05
02 0
0 500 1000 0

Time(s)

0.2
—_KYP —_KYP
—GKYP —GKYP
»
~
<
£
3
= -0.2
500 1000 0 500 1000
Time(s) Time(s)

Fig. 11 Time response of .
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0.05 0 — 0.1
— — KYP — —KYP
——GKYP —— GKYP
\ -0.02
— 0 \ 7 — — — KYP
g & —__GKYP
5 \%-0.04 J
3 .0.05 3
-0.06
-0.1 -0.08 -0.1
0 500 1000 0 500 1000 0 500 1000
Time(s) Time(s) Time(s)
Fig. 12 Time response of u.
-5 0 1
— — KYP [g]— _1_1() —I'¢ [g] +[I(—)1]"’ yl:M[Z]
-10 —GKYP|| 2 —_ ——— C
X B,
A
15 ] (63)
-20 1 All parameters are the same as those in case A except that the
controller parameters in the LQR algorithm are changed as Q =
-25 1 0.8 x diag{1,1,1,10,10,10}, Q.= 2xdiag{l,1,1,10,10, 10},
and R = 2.3 x 1. The initial values of the quaternions are selected
30 : as €y = [-0.5,0.5,0.5]", 57, = —0.5. The proportional constant in
the controller u, is setas k = 0.1 N - m. Figure 14 indicates the time
35 ] response of the angular velocities. The time responses of control
efforts are shown in Fig. 15. Figure 16 depicts the time response of the
‘ ‘ R quaternions. Compared with Fig. 13, in this case, both controllers’
'4?0_2 107 109 10! 102 gains are different from case A as displayed in Fig. 17. At the low-

Frequency(rad/s)

Fig. 13 Maximum singular values of two controllers.

frequency range, the angular velocities will converge to zero quickly.
At the high-frequency range, the gain from the controller G, is still
smaller than that from the controller G xyp. The proposed hybrid

0.3 0.2 0.2 —_—
— — KYP — — KYP — — KYP
— GKYP . — GKYP
0.1 =
z = Ca
g g g
] ) ]
= Na) =
3 3 5 -01
-0.2
. -0.2 -0.3
0 500 1000 0 500 1000 0 500 1000
Time(s) Time(s) Time(s)
Fig. 14 Time response of .
0.2

— — KYP

uy(N - m)

-0.3 -0.2

0 500
Time(s)

1000

0 500 1000

Time(s)

1000 0 500
Time(s)

Fig. 15 Time response of u.
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Fig. 16 Time response of quaternions.
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Frequency(rad/s)

Fig. 17 Maximum singular values of two controllers.

frequency controller for the spacecraft attitude control problem is still
effective.

Remark 6: As mentioned in [9], the NOFRFs {G , } yielded by the
numerical algorithm depend on the property of the nonlinear system
as well as the frequency of the input signals. Besides, the energy
transfer property is obtained from the open-loop situation, which
might not be equivalent to the closed-loop case. However, in Euler’s
equation’s case, the output’s frequency has three possibilities: the
energy is transferring to the lower frequency domain, remaining at the
same frequency as the inputs, or migrating to the higher frequency
domain. The results of the NOFRFs {G, } show that the energy from
the low-frequency inputs would transfer to the higher frequency
ranges in the outputs, which is the worst case. The hybrid frequency
control is motivated by this worst case to guarantee the stability of the
closed-loop system and the effectiveness of the controller.

VI. Conclusions

The first contribution of this paper is the solution of Euler’s
equation using the Volterra series as presented in the frequency
domain. The nonlinear behavior of Euler’s equation is analyzed by
formulating its NOFRFs to show the difference between the input
frequencies and the output frequencies, which shows the energy
transfer from the low- to high-frequency ranges. A hybrid passive/
finite gain frequency controller based on the GKYP lemma has been
implemented on Euler’s equation to stabilize angular velocities.
Compared with the controller based on the KYP lemma, this hybrid

S TFEy e -
©)

Fig. A1 Interconnection of two systems with a) sum, b) product, and
¢) cascade.

frequency controller is more efficient because its gain is larger in the
low-frequency ranges, which can drive the angular velocities to
equilibrium points with less time. The gain of hybrid controller
becomes smaller in the high-frequency ranges, which can accommo-
date the energy transferred from the low-frequency ranges and con-
sume less energy to achieve similar performance. This feature still
remains in the hybrid frequency controller for the attitude control of
spacecraft when quaternion feedback is added to the hybrid fre-
quency controller. The effectiveness of the proposed controllers is
validated by numerical simulations.

Appendix : Interconnections of Volterra Kernels [8]
Consider that {F,,} and {G,,} are the Volterra kernels of two
systems. Combine these two systems to form a new system using
three interconnection manners, which are sum, product, and cascade.
The new system’s Volterra kernel {H,,} is determined as follows:
a) Sum (Fig. Ala):

H,(s1,....8,) = F,(s1,....8.) +G,(s1,...,5,) (AD)

b) Product (Fig. Alb):

m—1

Hm(sl’ ey Sm) = ZFk(Sl’ ey Sk)Gm—k(Sk-Hv ey Sm) (A2)
k=1

c¢) Cascade (Fig. Alc):

H,(s1,....8,) =Gi(si+ - +5,)F,(51,...,5,) (A3)
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