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1 Introduction 2 Equations of Motion

The problem of unwanted bandsaw vibrations has attractedThis section is used to formulate the dynamics of the bandsaw
much attention over the last 30 years. The motivation for the®éade shown in Fig. 1. The cutting portion is modeled as a plate
studies is the suppression of unwanted vibrations which detrdgnslating in thex-direction over simply-supporting guides. The
from the quality and efficiency of the cutting process. Early worfliscrete-parameter motion equations will be developed by apply-
modeled the cutting portion of the bandsaw blade as a translatiig the Rayleigh-Ritz technique to the energy expressions devel-
beam and noted the influence of parameter fluctuations on Pieed by Lengoc and McCallion (1995).
system stability (Mote and Naguleswaran, 1966; Naguleswaran! € kinetic energy for a translating plate is given by
and Williams, 1968). Since then structural modeling has grown

. . . 1 b | AW oW 2
progressively more complete and both bending and torsion have T= f f ph[cz n <7 Y 7) }dxdy 1)

been studied in the context of either beam (Alspaugh, 1967; Soler, 2 at X
1968) or plate models (Ulsoy and Mote, 1982; Lengoc and Mc-
Callion, 1995). Here,p is the mass density, b, andh are thexyzdimensionsg¢

Lehmann and Hutton (1996) have presented a detailed plethe translational velocity in tha-direction andw(x, y, t)
the forces involved in contact between the blade and sawn sdordinates are fixed and do not move with the blade. The strain
faces. This formed the basis for a simulation of the cutting proceggergy incurred by small transverse bending of a thin plate is
(Lehmann and Hutton, 1997).

Much of the above work has painted time-varying parameters, 1 b (1 (/92w 92w\ 2
especially blade tension, as major culprits in creating systeldh, = Df J {(W—F?)
instability. The recent detailed study by Lengoc and McCallion y
(1995) has suggested another important mechanism for bandsaw o 2 S
destabilization. There, it is shown numerically that a tangential +2(1— V)[ (37"") 9w aiw} }dxdy @)
cutting force which follows the deformed shape of the blade can axay

T ax? ay?
create dynamic instability. This is a specific instance of the flutter

phenomenon which originates from a circulatory term in the mg\_/hereD_ls t_he plate rigidity and Is Poisson’s ratio. The in-plane
tion equation. stress distribution creates a strain energy given by

In the present work, it is shown that relatively simple feedback 100 [ ) 5
controllers can be designed which eliminate both instability mecly; — = [ N (aﬂ) +2 Iw ow +N (‘M) ] dxdy
anisms. A performance criterion which enforces vibration suppres-° *\ ax Yoox gy N\ ay
sion and a mathematically rigorous model of system uncertainty
encompassing the temporal variation of the blade parameters are @)

established. Controllers are developed using recent advancegyibreN,(x, y, t) and N,(X, y, t) are normal stresses ald(Xx,
robust control theory (Shamma, 1994; Poolla and Tikku, 1995) t) s the shearing stress in the plane of the plate. The simple
which yield robust performance, that is satisfaction of the perfofodel used here models a constant axial tengipand superim-
mance criterion and system stabilization for the time-varying sygosed are the stresses created by a uniformly distributed load along
tem. Although the plant is modeled as linear time-varying, thge cutting edgeg.. Hence

required controllers are linear time-invariant and can be developed

using the well known state-space solutions of Doyle et al. (1989) B ) X

for an appropriatef(.. control problem. Sensor and actuator re- Nx=Go + phC® = qc b? 2 1 1)

quirements consist of a single point velocity sensor and a device

capable of supplying a normal point force on the moving blade. y

2
ny = qc(B) ’ Ny =0 (4)
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w(x,y,t) T=131[mc®+ q™q + cq'Gq + phc’q™Kq] (8)
Uy = 2q"K.q )
Us = 3[(do + phc)q"Koq + 9.0 K 0] (10)

W, = 39 T—aAq + Bou(t) + ry Bygwy(D)],
wy = col{wg} (11)

where the generalized coordinates @re col, g{ q.s}. Given the
energy expressions and boundary conditions, it is readily verified
thatM, K, Ko, andK . are symmetric and positive-definite. Given
the normalizations used for the basis functiobs, = 1. The
gyroscopic matrixG and the circulatory matrixA are skew-
symmetric. The control input matrix is given by, =
col,g{ d.(Xa)¥s(ya)} and the columns oBB,4 are of the same
form with (x,, y.) replaced with &g, Yq). Space considerations
c prevent us from defining the remaining matrices in detail; how-
Fig. 1 Bandsaw blade ever, their construction is relatively straightforward.
Forming the Lagrangiah. = T — U, — U, and applying
Hamilton’s (extended) principle to the energy expressions yields
the equations of motion
This is accounted for by the addition phc? to the tension in the . . R .
expression foN,. MG + (D + cG)q + [K + g.K. + gA]q
Nonconservative influences stem from the control force, distur- - —
bances, and the hypothesis that the cutting force behaves as a = Bau(®) + rw Bigwa()  (12)
follower force on the cutting edge. The virtual work due to thesgherek = K, + q,K, and we have taken the liberty of adding a
influences is structural damping termDg, whose construction is discussed
below. Assumed to be available for control purposes is a single

b | . .
BW,. — J J' f_swdxdy ) icnoglrjl:-pted velocity measurement collocated with the control force
0 0

(1) = W(Xa, Ya, 1) + 1, we(t) = Cof + \r, wy(t).  (13)

where
3 Here,w(t) is sensor noise,, > 0 is a scaling, an&, = B] given
fac(X, Y, 1) = U(t)8(X — Xa, Y = Ya) the collocation assumption.
ng oW For the problem at hand, the number of basis functions em-
+ \ﬂ 2 Wi (1) (X — Xgi, ¥ — Yai) + s (1) m 8(y —b) (6) ployed is typically 50 ¢ = 5, m = 10). In order to design
-1 X low-order controllers, the above equations can be transformed to

) ~modal coordinates and truncated. LEt be the normalized
The control forcau(t) has been modeled as a point load applied &igenmatrix corresponding to the nonmovimg= 0), noncutting
(X, y) = (Xa Ya) and thewq(t) are disturbances which are(q = g, = 0) blade, i.e.E'ME = 1, E'KE = Q = diag {03}
modeled in a similar fashion. The latter are largely fictitious ar\gherewm are the vibration frequencies for this cagenfll denote
used to enforce performance objectives by exciting the blade alopg jdentity matrix of appropriate dimension). It is assumed that
the cutting edgey,; = b). They can be thought of as the effect ofgTHE — diag {2¢s.w0.} Where the,, are modal damping factors
nonhomogeneities in the material being cut. Their magnitude (igjative to the tensioned frequencies. Partition this matrixinte
scaled using,, > 0. The functionaw(x, b)/dx is the linearized £ E ] whereE, denotes the firsN, modes to be retained for
form of the local rotation about thg-axis due to elasticity and controller design. Substituting the truncated modal expansion
d: = g.. Hence, the last term captures the out-of-plane forQﬂt) = E.q(t) into Eq. (12) and premultiplying b§! gives a
created by the follower-force nature @f (Fig. 1). The notational redyced set of equations fgr They maintain the form of (12) with

follower-force effects can be explicitly exhibited. Similarly, theB, matrices on the right-hand side are replaced with
The assumed expansion for the plate deflection is EZB<.). The matrixC, in Eq. (13) is replaced wittC,E.. The
original notation is used with the understanding that Egs. (12) and
R (13) have been replaced by their reduced-order equivalents and
WO, Y, 1) = 2 D Gup (D) ba (0 g () (™) now refers tog.
a=1p=1 The cutting force is assumed to consist of a nominal constant
where &.(x) = V2/m sin [amx/l], m = plbh, satisfies the part and an (uncertain) time-varying component:
geometric simply-supported conditions at= 0 andx = |. (D) = (1) = e + GA (1) (14)

Furthermore, they are the exact eigenfunctionsgfor= q; = 0
and cylindrical bendingdw/ay = 0). They, are the orthogonal where|A (t)] = 1, 0=t = =, and{. is used to scale the size of
polynomials advocated by Bhat (1985). For free-free boundatlye uncertainty. The motion equation (12) and the uncertainty
conditions the first two ares,(y) = 1 andy,(y) = V3 [2(y/ model (14) can be used to form the first-order state-space model
b) — 1] and the remaining ones are generated by a Gram-Schmidt .

type process. These polynomials are, in fact, the classical Legendre X = AX + Bywy(t) + Braw, + Bou (15)
polynomials after mapping the interval [B] onto [—1, 1]. Here, _ _

they are normalized such thf ¢, (9) 4(9)dy = 8.5 wherey = Wy =AMzs(0), A=Al 0=[A(t)]=1 (16)

y/o. zy= Cix(1), Cu=[0 @&(R,+A 17
Substituting the expansion (7) into the energy expressions (1), 2= Cx(®, Cu=[0 &K+ A (7

(2), (3) and (5) gives The following matrices have been introduced:
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= [0]. a-[ 07 KoukA] ot~ [418] e s o

q 1 o]
1 B, (The notational convention of Doyle et al. (1989) has been adopt-
Bu = [O] B, = [ O} (18) ed.) In this case, the system gain is tife-norm of the transfer
matrix:
wyty = [ WO 5, (B, 0, By = | B Il = 89 = sup el Gljw)] (24)
PO = 1w (v | 1p = [Bug ) 1d = 0 . % we[og] m J

(19) whereo ., denotes the largest singular value. If the system (23) is
) ) ) ] ) controllable and observable thdl|. < « is equivalent to the
Consistent with this, the output equation (13) can be rewritten 8Ryenvalues ofA having negative real parts. For a linear time-
- varying systeny(t) = Gu(t), |G| < = implies global asymptotic
y = Cox(t) + Dopywp,  C,=[C, O], stability for the unforcedy = 0) ‘state representation of the system
under the same assumptions. The introduction of the norm in (22)
permits a framework that can simultaneously handle performance

Notice that the time-varying parameters in (15)—(17) have be&fd stability considerations for time-varying systems. _
written in the so-called perturbation feedback format discussed byAnother norm for measuring the size 6{s) is the ¥,-norm:
Doyle and Packard (1993).

D2pl =[0 \/Tv] (20)

In addition, the regulated outputs or performance variables are 2 i - Yt .
required, i.e., those which the controller must keep small: Ielz=5 trace{G"(jw)G(jw)}dw (@5)
A
/qgC t . . .
z,(t) = [ \‘(i/F Jp();)( )] = CyX(1) + Dypu(t), \é\f/henD = 0 in (23), this can be interpreted as the expected value
g ¢ O
c,=| V4 “’], D :[~] 21 1 (7
1p |: (e} 1p2 \/r ( ) lim ? yTydt
T—x 0

Here,q > 0, r > 0 are scalings which allow one to tradeoff the
relative importance of regulating the states and keeping contighen y(t) is zero-mean, unit intensity, Gaussian white noise.

effort small. A suitable choice fo€, is diag {1, Qo} so that  Now consider the block diagram corresponding to the system
x C1,Cypx/2 would measure the energy in the nontranslatingiescribed by (15)—(21):

noncutting case. It is assumed that 84,), (A, B.y), and @, B,)

are controllable pairs andC(,, A), (Ci, A), and C,, A) are z,<«—] W, A | B B B
observable pairs. These are readily satisfied for appropriate choiée G [« Wa L 12 2

of actuator/sensor locatiorx{, y.) and disturbance locations{, Y u C,| O O D,

Ya), i = 1...n, The control problem can be roughly stated as GO = ¢ o o o | @
follows: find a control system with inpyt and outputu so as to 1a

provide system stability for alA given by (16) and reduce the

| ) ) A ¢, |D, O 0
effect ofw, defined in (19) org, in (21).

It has been assumed thgt) andu(t) are related by an LTI system
3 Controller Design H, i.e.,y(s) = —H(s)u(s) whereH(s) is a stabilizing controller

Q be determined. L&t ,,,,(H, A) denote the closed-loop operator

The basic input-output notions required for the controller desi v X
are presented here. The reader may consult the book of Desoerérl,’;rl%‘l Wy(1) 10 2,(1). WhenA = O, the closed-loop system can be

Vidyasagar (1975) for a more complete treatment. Consider %presented by the transfer matrix

systemy(t) = Gu(t) whereG is a (possibly time-varying and/or W T, () T, (S)
nonlinear) operator. The size of time signals can be establish{ip] = Tzw(s){WZ], Tu(s) = [TZ"W“(S) TZPWA(S)] 27)

using their energy as measured by thenorm:
Hence,T,,.,(S) is the transfer matrix corresponding %0,,.,(H,

” 0).
lull? = f uTudt, L= {ulfull; < =} The following control problems for the bandsaw problem will
0 be solved:
A general system with inputi(t) and outputy(t) Gu is I.  #,-Nominal Performance. Find H(s) so as to minimize

Ll

L,-stable if there exist&, 0 < K < o, such thafly||, = K||u]l2, [[Tzuwll2- This is the standard Linear-Quadratic-Gaussian (LQG)
Yu € L,. The smallest such value & is the gain of the system problem and is equivalent to minimizing the expected value of
which can also be defined as

1 T
|Gull, $ = lim TJ’ [gxTC1,Cypx + ru?(t)]dt
0

Gl = sup (22) T

0#uELs [[ull2

which measures the worst-case energy gain over all finite ene@{PICt 0 (15) and (20) under the assumption that= 0 and
inputs. (t) is a zero-mean, unit intensity, Gaussian white noise process.

If G corresponds to the linear time-invariant (LTI) system This standard problem is used to determine reasonable values for
the weighting parameters, r, r,, andr,. This is assessed by
y(t) = Cx + Du, X = Ax + Bu(t) (23) examination of the closed-loop eigenvalues which should exhibit
reasonable damping and estimator speed. The valugsaof r
then Laplace transforms can be used to wyits) = G(s)u(s) were also scaled so thif .,/ for this design was on the order
where the transfer matrigs(s) is given by of unity.
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II.  #.-Nominal Performance. FindH(s) so as to minimize Table 1 Bandsaw parameters

”ThZPWFl”W II? g$neral, this prodblem is so_lve”d bydfin_ding &:15) = 8200kgm?  £=08m b=02m h=L6smm
which makeg T ,,.../|- < v, and systematically reducinguntil no c=—40m/s D=181N-m v=03 g =68kN/m

solution is possible.
P Coo = 0.05 N.=5 2, =0.4a yp = 0.2b

Ill. Robust Stability. Find H(s) so that the perturbed sys-
tem is L,-stable, i.e.,[|T ,uw,(H, A)|| < o for all linear time-
varying (LTV) A such that||A|| = 1. Necessary and sufficient
conditions are as follows:

ITowl-<vy=1 (2g) and from (31),

T T 2 T
The sufficiency of this result is an instance of the multivariable BiB1 = ByBip + d*BuaBiy,

circle criterion reported by Safanov and Athans (1981). The ne- . . ot

cessity in this case means thal{Tf,,...]. = 1, then there exists a CiC1=CyCyp+d°CrCu. (39)
linear time-varyingA with ||A| = 1 which leads to instability
(Shamma, 1994). Note that if (28) holds then stability is guara
teed for any LTV A satisfying the norm bound regardless o
structure. This is a larger class of perturbations than that defined
(15) but leads to a robust performance problem that is analytica
tractable. It also allows for additional unmodeled dynamics in the

Hence, problem 1V is solved by fixing and attempting to solve
ne Riccati equations (35) and (36). In order for condition (30) to
e satisfied by a stabilizing compensator, (35) and (36) must have
ique positive-semidefinite solutions and the following condition
ust be satisfied:

cutting-force loop. By determining the smallest valueyo$uch p(XY) < »? (40)
that (28) is satisfied (call ity,,), one can enlarge the class of
stabilizing perturbations tfA|| = yon. wherep(-) denotes the spectral norm.

) ) For problem I, the¥,-optimal (LQG) solution is obtained by
IV. Robust Performance. Find H(s) so that the system is |etting y — o in Egs. (33)—(38) and ignoring all terms containing
L.-stable and achieves the performance critefi®y,.,(H, A)l| < the subscript\ in Eq. (39). Under the controllability and observ-
y for all LTV A such thafA| = y . Necessary and sufficient apjlity hypotheses that have been made, a unique solutioX for
conditions are as follows: there exists a constant mdrf the  andy exists and the controller (32) stabilizes the nomigaK O)

form system. Note thaZ = 1 in this case.
1 0 For problem Il, the¥.. (sub-) optimal solution is given by the
D= [O dl]' d>o0 (29) above and requires that the Riccati equations (35) and (36) have
unique positive-semidefinite solutions and (40) is satisfied. Again,
such that one ignores thé-terms in (39). Using the controller (32), the two
transfer matrices on the diagonal in (27) are given by
DT W(s)D].. < v (30)
o _ _ A “BKc | By
where T,,, is defined by (27). This result has been derived by T, (s) = | Ko Ac | KDoy |,
Shamma (1994) and Poolla and Tikku (1995). The presence of the e Chp DK, O
constant scaling matri® essentially leads to the following sub- P pee
stitutions: B,, — dB,, and C,, — d 'C,,. The solution of A —B,K, | Bia
problem 1V is then equivalent to solving a standard linear time- Tow(s) = | KL A. | O (41)
invariant¥.. control problem. To this end, define Cu O | o
B;=[By dBnl, Ci=[C], d'Ci, (31)  The optimal solution of problem Il minimises t,-norm of the

The solution of all four problems can be tackled using the san];iéSt transfer matrix.
P 9 Problem Il is also ar¥..-optimization and can be solved using

framework wherein the solutions of problems I-IIl become speci ~ P : _ _ 1
cases of that of problem IV. Using the state-space solutions %\qu (izr) (:06) gugt?:strlnrgﬁ mﬁg’er) S%‘i[hm-o'”d - H:El'm (:ng)
v zw|| = ZAWA|[ %

po;tefl lbyifDitoyI)t(ei ft ?]I. (1282)’”7? controller satisfying (30) fOTn this case, the smallesgtfor which (28) is satisfied yields optimal
generaly (if it exists) has the fo stability robustness, i.e., the largest uncertainty set for which
A, | K, stabilization by an LTI controller is possible. It minimises the
H(s) = K.| O > J€.-norm of the second transfer matrix in (41). Experience has
¢ shown that the optimal form of this problem behaves very poorly

ut) = —Kxo(t), Xc=AX.+ Key(t). (32) from a numerical standpoint; only the solution fpr= 1 will be
. . presented.
The matrices A., K., K) are given by Alternatively, one can analyse any controller of the form (32)
K.=rBIX, K,=2zYCl:! (33) for robustnes; by ca]culating the maximum singglar value of the
transfer matrixT ,,,, in (41). Also note that nominalX = O)
A=A —BXK,— K.C,+ vy ?B;B]X (34) stability for all four control problems is governed by the eigenval-

. i ) ues of the compositeA” matrix in (41), i.e., the upper % 2
Here,Z = (1 — y“YX) " and X and Y are solutions of the partition in each transfer matrix which is designat&din the

algebraic Riccati equations: sequel.
XA +A™X = XSX+Q,=0 (35)
AY + YAT-YSY +Q,=0 (36) 4 Numerical Example
where The controller synthesis is now applied to the model previously
developed for the bandsaw blade. The system parameters intro-
S,=r'B,B] -y ?B,B], Q,=CIC, (37) duced in Section 2 are given in Table 1 and are typical of wide
it et . bandsaws used for cutting timber. Note that the direction of motion
S =r,CC,—y °C,Cy, Qy=BiB; (38) s opposite to the sense of the cutting force on the blade. Although
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Fig. 2 Eigenloci for varying g. = gr= g. (d g. = 0, & g, = 50 kN/m)

Now consider the unforced time-varying system in (15)—(17)
controllers will be designed later on the basis of a five mod&ith an assumed sinusoidal behavior for the cutting force, i.e.,
model, illustrations of the plant behavior will be conducted using.(t) = A, sin Ot, so that
a ten mode “full order” model. A

In order to motivate the controller design approach, the eigen- X = (A + BjyCraA¢ sinQct)x. (42)

values ofA in (18) will be examined. Under noncutting conditions
g. = 0, and the circulatory matriA can be ignored. In this case
it is well known that the eigenvalues éfare purely imaginary (in
the absence of damping) since the equivalent second-order sys,
in (12) is a statically-stable gyroscopic system. The eigenvalues as

The stability of this periodic system can be assessed using Floquet
'theory. Experience has shown that a numerically more reliable
etermination is possible using the method of harmonic balance.
this technique, a solution of the form

a function ofgq, = g; = G, are shown in Fig. 2or a damping ratio No
of £, = 0.05 in all modes. It is clear that the nonconservative X(t) = eM[xo + 2, (X COSiOt + X siniQt)]
nature of the cutting force destabilizes the fifth and tenth vibration =1

modes and eventually the third one. ) ) o
The simplest controller that can be used is a constant gain riie2Ssumed which upon substitution into (42) produces a stan-

feedback: u(t) = —Kgy(t). This effectively adds a term dard eigenproblgm of dimension 2 + 1) times greater than
(—K4B,C,) to theA matrix. It can be readily shown thatwith = that corresponding ta\ alone. Stability of the time-varying

0, this matrix is guaranteed to have negative real eigenvalues fstém is then determined by examining the real parts of each
all possible (constant) values of the system parametei, ¢, A- A stability diagram for various values éi. andA. is shown

ow Go, andq. wheng, = 0. A simple proof use§ + U, + U, N Fig. 4 for the case wherqf_: 01 ie., the_foll_ower:force

as a Lyapunov function. However, with = q. = g. = 50 kN/m,  €ffect is neglected, bui.(t) = 9. + §cA.(t), with §. = . =

one obtains the eigenloci shown in Fig. 3 as a functiorkgf 30 KN/m. A value ofN, = 2 proved to be sufficient. If(t) =
Stabilization is not possible for ark, but for smaller values aj, ~ de(t), then the entire region illustrated in Fig. 4 was unstable
there is a limited range of values for which all ten modes anghich is not unexpected given the destabilization exhibited in

stabilized but the degree of damping added is limited. Fig. 2 for constang; = q_. _ _ o
The sequence of control problems in the previous section is

now treated with a view to obtaining satisfactory performance
in the face of the time-varying follower-force naturemf= q..

300 | The controller design parameters are given in Table 2 and the
! B‘Q first five mode shapes of the (damped) open-loop system under

250 1 f] & cutting conditions are shown in Fig. 5. The design parameters
|

were chosen in such a way that the closed-loop system using the
ten mode model was stable for all four controllers, i.e., spillover
instabilities were avoided. In case Il, we present results for the
optimal case. In case lll, a suboptimal solution for= 1 is
presented. In case IV, a search ogewas made to determine

&} whether a solution existed for = 1. This was not the case, so
results are presented for= 2 andy = 2. Graphs 0fo .. T »
pwp(j®)] @aNd oo T 2awa(jw)] VS.  are given in Figs. @nd 7 for
each controller relative to the design modél (= 5) and in

R200—p—
L
150 U

100{ <5t

50{ o

Im {).}

B I = I

0 T T T T Table 2 Controller design parameters
-30 20 10 O 10 20 30 i | zaifl | Yai/b Design Parameters
Re {)\,} (HZ) 1} 02 1.0 | ¢ =200 r=0.2
2103 ] 1.0 jrp=1 7y =1x107°
Fig. 3 Eigenloci for varying Ky (qc = qs=50kN/m) (O Ky =0,CKy=4 31 08 1.0 | §o=q=T75kN/m ng=3
kN/m/s)
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ment over the LQG design but is more robust. Controller Il yields
close to optimal robustness and provides stability for||Al] <
1/0.569 and hende (t)| < 1.76. ForA exceeding this bound, no
LTI controller can be found which stabilizes the entire perturbation
set. Also, note that performance of this robust controller as mea-
sured by| T,/ is degraded somewhat. In case IV, the correct
trade-off is achieved and both nominal performance and robust-
ness specifications are achieved. Eor= 2, the requirement in
(30) was achieved foty = 2 yielding robust performance for a

Fig. 5 The first five modes under cutting conditions

m ., () (@)

Figs. 8 and 9 relative to the full order plant. The Bode plots for
H(s) in each case are given in Fig. 10. The corresponding
norms are collected in Table 3.

Controllers | and Il yield the best performance for the design
model in the relevant norm but fail to meet the robustness speci-
fication. The optimabt..-design shows only a marginal impreve

max
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Fig. 8 Maximum singular values of T ,,u,(jw) (10 mode plant model)
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Fig. 6 Maximum singular values of T ,,u,(jw) (5 mode plant model)
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Fig. 10 Bode plots for H(s), controller designs |-V 50
reduced specification. The singular value plots in Figs. 6 and 7 01
show that this controller closely achieves the performance levels of
cases | and Il but recovers some of the stability robustness char- 00 02 04 06 08 10
acteristics of case lII. Ao

When the.. performance measure was calculated relative to
the full-order model, the relative ordering was preserved but thg, 12 instability regions for Qo vs. Aq (Go = Go = 68 kN/m, o = 7.5
actual values in Table 3 were smaller. The corresponding stability/m, controller IV) ( OO = unstable)
robustness measure was also smaller in each case and controller IV
outperformed the “optimal” robustness controller. A glance at Fig.

9 shows that the latter controller lost robustness at around 250 Kz IV more closely approximate a constant rate gain at low
owing to spillover. frequency and at higher frequencies case IV acquires the charac-
The Bode plots in Fig. 10 yield great insight into the controllerseristics of the higher performance controllers. The order of all

The 3(.. designs in cases Il and IV have yielded a strictly positivgontrollers is the same as that of the plant model, namily 2
real controller (the phase lies strictly in the rangedpD deg, 90 10.
deg]) which is robustly stable with respect to (constant) perturba-To jllustrate the conservative nature of these designs with re-
tions of all quantities in Table 1 wheqt = 0. This follows from  gpect to the memoryless, diagonal form of the uncertainty in Eq.
collocation of force actuation and rate sensing. The optiial (16), consider the closed-loop systéiiH, A) with A = 1A, sin
design in case Il is close in form to the LQG design with som@t. Stability can be determined by applying the method of har-
reduction in gain at low frequency. The robust designs in cases fonic balance to the system formed by wrappikgn feedback
around the transfer matrik,, ., in Eq. (41). The unforced form is
of the same general form as (42) withreplaced withA andB,,

Table 3 Controller design summary C., replaced with the augmented forms in (41). The resulting
stability diagram is given in Fig. 11 for controller design IV usin
Type || Tzpupllz | (T epwplloo | 1 Tznws lloo the cut);ing ?orce pa%ameters i?w Table 2. Unlike Fig. Ellwhich Wgs
5 mode plant model generated by ignoring the follower-force effect & 0), Fig. 11
I 717 0.941 1.51 was created assumirgg(t) = g.(t) = g. + §.A.(t). Notice that
II 7.38 0.893 1.24
I 28.0 1.20 0.69
v 8.80 0.951 0.93 Table 4 External signals for simulation
10 mode plant model Signal Description | Freq., f (Hz)
I 8.29 0.571 1.26 ws(t) sin 27 fot 50
m| 842 0.571 1.24 wa(t) | 100[1 1 1]7 sin 27 fut 85
| 334 0.988 1.21 A 0.5sin 27 f,t 40
v 9.48 0.579 1.16 Aq(t) 0.15 sin 27 fot 15
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Fig. 13 Simulation results for sinusoidal disturbances and parameter variation
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