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Robust Active Vibration Control
of a Bandsaw Blade
An analytical study of a vibrating bandsaw blade is presented. The blade is modeled
a plate translating over simply-supporting guides. Gyroscopic effects due to the blad
axial motion as well as in-plane forces resulting from tensioning and the influence of t
cutting force are included in the model. The latter is modeled as a nonconservat
follower force on the cutting edge of the blade and shown to be destabilizing.
state-space model is developed which includes the effects of time-varying cutting fo
and exogenous disturbances. Feedback control via a collocated force actuator/rate sen
is introduced and recent advances in robust control theory are used develop controll
which achieve robust stability and performance with respect to the time-varying mod
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1 Introduction
The problem of unwanted bandsaw vibrations has attrac

much attention over the last 30 years. The motivation for the
studies is the suppression of unwanted vibrations which detr
from the quality and efficiency of the cutting process. Early wo
modeled the cutting portion of the bandsaw blade as a transla
beam and noted the influence of parameter fluctuations on
system stability (Mote and Naguleswaran, 1966; Naguleswa
and Williams, 1968). Since then structural modeling has gro
progressively more complete and both bending and torsion h
been studied in the context of either beam (Alspaugh, 1967; So
1968) or plate models (Ulsoy and Mote, 1982; Lengoc and M
Callion, 1995).

Lehmann and Hutton (1996) have presented a detailed p
model which includes a deflection model for the cutting teeth a
the forces involved in contact between the blade and sawn s
faces. This formed the basis for a simulation of the cutting proc
(Lehmann and Hutton, 1997).

Much of the above work has painted time-varying paramete
especially blade tension, as major culprits in creating syst
instability. The recent detailed study by Lengoc and McCallio
(1995) has suggested another important mechanism for band
destabilization. There, it is shown numerically that a tangent
cutting force which follows the deformed shape of the blade c
create dynamic instability. This is a specific instance of the flut
phenomenon which originates from a circulatory term in the m
tion equation.

In the present work, it is shown that relatively simple feedba
controllers can be designed which eliminate both instability mec
anisms. A performance criterion which enforces vibration suppr
sion and a mathematically rigorous model of system uncertai
encompassing the temporal variation of the blade parameters
established. Controllers are developed using recent advance
robust control theory (Shamma, 1994; Poolla and Tikku, 199
which yield robust performance, that is satisfaction of the perfo
mance criterion and system stabilization for the time-varying s
tem. Although the plant is modeled as linear time-varying, t
required controllers are linear time-invariant and can be develo
using the well known state-space solutions of Doyle et al. (198
for an appropriate*` control problem. Sensor and actuator re
quirements consist of a single point velocity sensor and a dev
capable of supplying a normal point force on the moving blad
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2 Equations of Motion
This section is used to formulate the dynamics of the bandsaw

blade shown in Fig. 1. The cutting portion is modeled as a plate
translating in thex-direction over simply-supporting guides. The
discrete-parameter motion equations will be developed by apply
ing the Rayleigh-Ritz technique to the energy expressions deve
oped by Lengoc and McCallion (1995).

The kinetic energy for a translating plate is given by

T 5
1

2 E
0

b E
0

l

rhF c2 1 S ­w

­t
1 c

­w

­xD
2Gdxdy (1)

Here,r is the mass density,l , b, andh are thexyz-dimensions,c
is the translational velocity in thex-direction andw( x, y, t)
denotes the distribution of transverse displacements. Thexyz-
coordinates are fixed and do not move with the blade. The strai
energy incurred by small transverse bending of a thin plate is

Ub 5
1

2
D E

0

b E
0

l HS ­ 2w

­x2 1
­ 2w

­y2D 2

1 2~1 2 n!FS ­ 2w

­x­yD
2

2
­ 2w

­x2

­ 2w

­y2GJdxdy (2)

whereD is the plate rigidity andn is Poisson’s ratio. The in-plane
stress distribution creates a strain energy given by

Us 5
1

2 E
0

b E
0

l FNxS ­w

­xD
2

1 2Nxy

­w

­x

­w

­y
1 NyS ­w

­yD
2Gdxdy

(3)

whereNx( x, y, t) andNy( x, y, t) are normal stresses andNxy( x,
y, t) is the shearing stress in the plane of the plate. The simpl
model used here models a constant axial tensionq0 and superim-
posed are the stresses created by a uniformly distributed load alo
the cutting edge,qc. Hence

Nx 5 q0 1 rhc2 2 qc

ly

b2 S2
x

l
2 1D ,

Nxy 5 qcS y

bD
2

, Ny 5 0 (4)

These expressions are the simplest polynomial descriptions for th
in-plane stress distribution which satisfy the boundary conditions
It has been assumed that a counterweight mechanism is used on
bandsaw’s upper pulley to compensate for centripetal acceleratio
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This is accounted for by the addition ofrhc2 to the tension in the
expression forNx.

Nonconservative influences stem from the control force, dist
bances, and the hypothesis that the cutting force behaves
follower force on the cutting edge. The virtual work due to the
influences is

dWnc 5 E
0

b E
0

l

fncdwdxdy (5)

where

fnc~x, y, t! 5 u~t!d~x 2 xa , y 2 ya!

1 Îr w O
i51

nd

wdi ~t!d~x 2 xdi , y 2 ydi ! 1 qf ~t!
­w

­x
d~y 2 b! (6)

The control forceu(t) has been modeled as a point load applied
( x, y) 5 ( xa, ya) and thewdi(t) are disturbances which are
modeled in a similar fashion. The latter are largely fictitious a
used to enforce performance objectives by exciting the blade al
the cutting edge (ydi [ b). They can be thought of as the effect o
nonhomogeneities in the material being cut. Their magnitude
scaled usingr w . 0. The function­w( x, b)/­ x is the linearized
form of the local rotation about they-axis due to elasticity and
qf 5 qc. Hence, the last term captures the out-of-plane for
created by the follower-force nature ofqc (Fig. 1). The notational
independence ofqf from qc will be maintained so that the
follower-force effects can be explicitly exhibited.

The assumed expansion for the plate deflection is

w~x, y, t! 5 O
a51

n O
b51

m

qab ~t!fa ~x!cb ~y! (7)

where f a( x) 5 =2/m sin [apx/l ], m 5 rlbh, satisfies the
geometric simply-supported conditions atx 5 0 and x 5 l .
Furthermore, they are the exact eigenfunctions forqc 5 qf 5 0
and cylindrical bending (­w/­ y 5 0). Thecb are the orthogonal
polynomials advocated by Bhat (1985). For free-free bounda
conditions the first two arec 1( y) 5 1 andc 2( y) 5 =3 [2( y/
b) 2 1] and the remaining ones are generated by a Gram-Schm
type process. These polynomials are, in fact, the classical Legen
polynomials after mapping the interval [0,b] onto [21, 1]. Here,
they are normalized such that* 0

1 c a( ŷ)c b( ŷ)d ŷ 5 d ab whereŷ 5
y/b.

Substituting the expansion (7) into the energy expressions
(2), (3) and (5) gives

Fig. 1 Bandsaw blade
70 / Vol. 122, JANUARY 2000
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(1),

T 5 1
2 @mc2 1 q̇ TMq̇ 1 cq̇ TĜq 1 rhc2q TK̂ 0q# (8)

Ub 5 1
2 q TK bq (9)

Us 5 1
2 @~q0 1 rhc2!q TK̂ 0q 1 qcq TK̂ cq# (10)

dWnc 5 dq T@2qfÂq 1 B̂2u~t! 1 Îr w B̂1dwd~t!#,

wd 5 col$wdi% (11)

where the generalized coordinates areq 5 cola,b{ qab}. Given the
energy expressions and boundary conditions, it is readily verifie
thatM , K b, K̂ 0, andK̂ c are symmetric and positive-definite. Given
the normalizations used for the basis functions,M 5 1. The
gyroscopic matrixĜ and the circulatory matrixÂ are skew-
symmetric. The control input matrix is given byB̂2 5
cola,b{ f a( xa)c b( ya)} and the columns ofB̂1d are of the same
form with (xa, ya) replaced with (xdi , ydi). Space considerations
prevent us from defining the remaining matrices in detail; how
ever, their construction is relatively straightforward.

Forming the LagrangianL 5 T 2 Ub 2 Us and applying
Hamilton’s (extended) principle to the energy expressions yield
the equations of motion

Mq̈ 1 ~D̂ 1 cĜ!q̇ 1 @K 1 qcK̂ c 1 qfÂ #q

5 B̂2u~t! 1 Îr w B̂1dwd~t! (12)

whereK 5 K b 1 q0K̂ 0 and we have taken the liberty of adding a
structural damping term,D̂q̇, whose construction is discussed
below. Assumed to be available for control purposes is a sing
corrupted velocity measurement collocated with the control forc
input:

y~t! 5 ẇ~xa , ya , t! 1 Îr v ws~t! 5 Ĉ2q̇ 1 Îr v ws~t!. (13)

Here,ws(t) is sensor noise,r v . 0 is a scaling, andĈ2 5 B̂2
T given

the collocation assumption.
For the problem at hand, the number of basis functions em

ployed is typically 50 (n 5 5, m 5 10). In order to design
low-order controllers, the above equations can be transformed
modal coordinates and truncated. LetE be the normalized
eigenmatrix corresponding to the nonmoving (c 5 0), noncutting
(qc 5 qf 5 0) blade, i.e.,ETME 5 1, ETKE 5 V0

2 5 diag {v0a
2 }

wherev0a are the vibration frequencies for this case (1 will denote
the identity matrix of appropriate dimension). It is assumed tha
ETD̂E 5 diag {2z0av0a} where thez0a are modal damping factors
relative to the tensioned frequencies. Partition this matrix intoE 5
[Ec Er ], whereEc denotes the firstNc modes to be retained for
controller design. Substituting the truncated modal expansio
q(t) 5 Ecq̂(t) into Eq. (12) and premultiplying byEc

T gives a
reduced set of equations forq̂. They maintain the form of (12) with
each square matrix[ on the left-hand side replaced withEc

T[Ec.
Similarly, theB̂[ matrices on the right-hand side are replaced with
Ec

TB̂[. The matrix Ĉ2 in Eq. (13) is replaced withĈ2Ec. The
original notation is used with the understanding that Eqs. (12) an
(13) have been replaced by their reduced-order equivalents andq
now refers toq̂.

The cutting force is assumed to consist of a nominal consta
part and an (uncertain) time-varying component:

qc~t! 5 qf ~t! 5 q# c 1 q̂cDc~t! (14)

whereuD c(t)u # 1, 0 # t # `, andq̂c is used to scale the size of
the uncertainty. The motion equation (12) and the uncertaint
model (14) can be used to form the first-order state-space mod

ẋ 5 Ax 1 B1pwp~t! 1 B1DwD 1 B2u (15)

wD 5 D~t!zD ~t!, D 5 Dc1, 0 # uDc~t!u # 1 (16)

zD 5 C1Dx~t!, C1D 5 @O q̂c~K̂ c 1 Â !# (17)

The following matrices have been introduced:
Transactions of the ASME
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x 5 F q̇
qG , A 5 F2D̂ 2 cĜ 2K 2 q# c~K̂ c 1 Â !

1 O G ,

B1D 5 F 1
OG , B2 5 F B̂2

OG (18)

wp~t! 5 Fwd~t!
ws~t!G , B1p 5 @B1d O#, B1d 5 F Îr w B̂1d

O G .

(19)

Consistent with this, the output equation (13) can be rewritten

y 5 C2x~t! 1 D2p1wp , C2 5 @Ĉ2 O#,

D2p1 5 @0 Îr v# (20)

Notice that the time-varying parameters in (15)–(17) have b
written in the so-called perturbation feedback format discusse
Doyle and Packard (1993).

In addition, the regulated outputs or performance variables
required, i.e., those which the controller must keep small:

zp~t! 5 F Îq Ĉ1px~t!
Îr u~t! G 5 C1px~t! 1 D1p2u~t!,

C1p 5 F Îq Ĉ1p

O G , D1p2 5 F O
ÎrG (21)

Here,q . 0, r . 0 are scalings which allow one to tradeoff th
relative importance of regulating the states and keeping con
effort small. A suitable choice forĈ1p is diag {1, V0} so that
xTĈ1p

T Ĉ1px/ 2 would measure the energy in the nontranslati
noncutting case. It is assumed that (A, B1p), (A, B1D), and (A, B2)
are controllable pairs and (C1p, A), (C1D, A), and (C2, A) are
observable pairs. These are readily satisfied for appropriate ch
of actuator/sensor location (xa, ya) and disturbance locations (xdi ,
ydi), i 5 1 . . . nd. The control problem can be roughly stated
follows: find a control system with inputy and outputu so as to
provide system stability for allD given by (16) and reduce th
effect of wp defined in (19) onzp in (21).

3 Controller Design
The basic input-output notions required for the controller des

are presented here. The reader may consult the book of Desoe
Vidyasagar (1975) for a more complete treatment. Conside
systemy(t) 5 Gu(t) whereG is a (possibly time-varying and/o
nonlinear) operator. The size of time signals can be establis
using their energy as measured by theL 2-norm:

iui 2
2 5 E

0

`

u Tudt, L2 5 $uuiui2 , `%

A general system with inputu(t) and outputy(t) 5 Gu is
L 2-stable if there existsK, 0 , K , `, such thatiyi 2 # Kiui 2,
@u [ L 2. The smallest such value ofK is the gain of the system
which can also be defined as

iGi 5 sup
0Þu[L2

iGui2

iui2
(22)

which measures the worst-case energy gain over all finite en
inputs.

If G corresponds to the linear time-invariant (LTI) system

y~t! 5 Cx 1 Du, ẋ 5 Ax 1 Bu~t! (23)

then Laplace transforms can be used to writey(s) 5 G(s)u(s)
where the transfer matrixG(s) is given by
Journal of Vibration and Acoustics
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G~s! 5 FA B
C DG 5

‚

C~s1 2 A ! 21B 1 D

(The notational convention of Doyle et al. (1989) has been ado
ed.) In this case, the system gain is the*`-norm of the transfer
matrix:

iGi 5 iG~s!i` 5 sup
v[@0,`#

smax@G~ jv!# (24)

wheresmax denotes the largest singular value. If the system (23
controllable and observable theniGi` , ` is equivalent to the
eigenvalues ofA having negative real parts. For a linear time
varying systemy(t) 5 Gu(t), iGi , ` implies global asymptotic
stability for the unforced (u 5 0) state representation of the syste
under the same assumptions. The introduction of the norm in (
permits a framework that can simultaneously handle performa
and stability considerations for time-varying systems.

Another norm for measuring the size ofG(s) is the*2-norm:

iGi 2
2 5

1

2p E
2`

`

trace$G H~ jv!G~ jv!%dv (25)

WhenD 5 O in (23), this can be interpreted as the expected va
of

lim
T3`

1

T E
0

T

y Tydt

whenu(t) is zero-mean, unit intensity, Gaussian white noise.
Now consider the block diagram corresponding to the syst

described by (15)–(21):

It has been assumed thaty(t) andu(t) are related by an LTI system
H, i.e., y(s) 5 2H(s)u(s) whereH(s) is a stabilizing controller
to be determined. Let7zpwp(H, D) denote the closed-loop operato
from wp(t) to zp(t). WhenD 5 O, the closed-loop system can b
represented by the transfer matrix

F zp

zD
G 5 T zw~s!Fwp

wD
G , T zw~s! 5 F T zpwp~s! T zpwD

~s!
T zDwp~s! T zDwD

~s!G (27)

Hence,T zpwp(s) is the transfer matrix corresponding to7zpwp(H,
O).

The following control problems for the bandsaw problem w
be solved:

I. *2-Nominal Performance. Find H(s) so as to minimize
iT zpwpi 2. This is the standard Linear-Quadratic-Gaussian (LQ
problem and is equivalent to minimizing the expected value o

) 5 lim
T3`

1

T E
0

T

@qx TC 1p
T C1px 1 ru 2~t!#dt

subject to (15) and (20) under the assumption thatwD 5 0 and
wp(t) is a zero-mean, unit intensity, Gaussian white noise proce
This standard problem is used to determine reasonable value
the weighting parametersq, r , r w, and r v. This is assessed by
examination of the closed-loop eigenvalues which should exh
reasonable damping and estimator speed. The values ofq and r
were also scaled so thatiT zpwpi` for this design was on the orde
of unity.
JANUARY 2000, Vol. 122 / 71
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II. *`-Nominal Performance. FindH(s) so as to minimize
iT zpwpi`. In general, this problem is solved by finding anH(s)
which makesiT zpwpi` , g, and systematically reducingg until no
solution is possible.

III. Robust Stability. Find H(s) so that the perturbed sys
tem is L 2-stable, i.e.,i7zpwp(H, D)i , ` for all linear time-
varying (LTV) D such thatiDi # 1. Necessary and sufficien
conditions are as follows:

iT zDwD
i` , g 5 1 (28)

The sufficiency of this result is an instance of the multivariab
circle criterion reported by Safanov and Athans (1981). The
cessity in this case means that ifiT zD wDi` 5 1, then there exists a
linear time-varyingD with iDi # 1 which leads to instability
(Shamma, 1994). Note that if (28) holds then stability is guar
teed for any LTV D satisfying the norm bound regardless
structure. This is a larger class of perturbations than that define
(15) but leads to a robust performance problem that is analytic
tractable. It also allows for additional unmodeled dynamics in
cutting-force loop. By determining the smallest value ofg such
that (28) is satisfied (call itgopt), one can enlarge the class o
stabilizing perturbations toiDi # gopt

21.

IV. Robust Performance. Find H(s) so that the system is
L 2-stable and achieves the performance criterioni7zpwp(H, D)i ,
g for all LTV D such thatiDi # g21. Necessary and sufficien
conditions are as follows: there exists a constant matrixD of the
form

D 5 F 1 O
O d1G , d . 0 (29)

such that

iD 21T zw~s!Di` , g (30)

where T zw is defined by (27). This result has been derived
Shamma (1994) and Poolla and Tikku (1995). The presence o
constant scaling matrixD essentially leads to the following sub
stitutions: B1D 3 dB1D and C1D 3 d21C1D. The solution of
problem IV is then equivalent to solving a standard linear tim
invariant*` control problem. To this end, define

B1 5 @B1p dB1D #, C 1
T 5 @C 1p

T d21C 1D
T # (31)

The solution of all four problems can be tackled using the sa
framework wherein the solutions of problems I–III become spec
cases of that of problem IV. Using the state-space solutions
ported by Doyle et al. (1989), a controller satisfying (30) f
generalg (if it exists) has the form

H~s! 5 FA c K e

K c O G f
u~t! 5 2K cxc~t!, ẋc 5 A cxc 1 K ey~t!. (32)

The matrices (A c, K c, K e) are given by

K c 5 r 21B 2
TX , K e 5 ZYC 2

Tr v
21 (33)

A c 5 A 2 B2K c 2 K eC2 1 g 22B1B 1
TX (34)

Here, Z 5 (1 2 g22YX )21 and X and Y are solutions of the
algebraic Riccati equations:

XA 1 A TX 2 XSxX 1 Qx 5 O (35)

AY 1 YA T 2 YSyY 1 Qy 5 O (36)

where

Sx 5 r 21B2B 2
T 2 g 22B1B 1

T, Qx 5 C 1
TC1 (37)

Sy 5 r v
21C 2

TC2 2 g 22C 1
TC1, Qy 5 B1B 1

T (38)
72 / Vol. 122, JANUARY 2000
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and from (31),

B1B 1
T 5 B1pB 1p

T 1 d2B1DB 1D
T ,

C 1
TC1 5 C 1p

T C1p 1 d22C 1D
T C1D . (39)

Hence, problem IV is solved by fixingd and attempting to solve
the Riccati equations (35) and (36). In order for condition (30)
be satisfied by a stabilizing compensator, (35) and (36) must h
unique positive-semidefinite solutions and the following conditio
must be satisfied:

r~XY ! , g 2 (40)

wherer[ denotes the spectral norm.
For problem I, the*2-optimal (LQG) solution is obtained by

letting g3 ` in Eqs. (33)–(38) and ignoring all terms containin
the subscriptD in Eq. (39). Under the controllability and observ
ability hypotheses that have been made, a unique solution foX
andY exists and the controller (32) stabilizes the nominal (D 5 O)
system. Note thatZ 5 1 in this case.

For problem II, the*` (sub-) optimal solution is given by the
above and requires that the Riccati equations (35) and (36) h
unique positive-semidefinite solutions and (40) is satisfied. Aga
one ignores theD-terms in (39). Using the controller (32), the two
transfer matrices on the diagonal in (27) are given by

T zpwp~s! 5 F A 2B2K c B1p

K eC2 A c K eD2p1

C1p 2D1p2K c O
G ,

T zD wD
~s! 5 F A 2B2K c B1D

K eC2 A c O
C1D O O

G . (41)

The optimal solution of problem II minimises the*`-norm of the
first transfer matrix.

Problem III is also an*`-optimization and can be solved using
Eqs. (32)–(40) but this time withB1p 5 C1p 5 O, d 5 1 in (39)
andr 5 r v 5 e . 0 (a small number) so thatiT zwi` 8 iT zD wDi`.
In this case, the smallestg for which (28) is satisfied yields optimal
stability robustness, i.e., the largest uncertainty set for whi
stabilization by an LTI controller is possible. It minimises th
*`-norm of the second transfer matrix in (41). Experience h
shown that the optimal form of this problem behaves very poo
from a numerical standpoint; only the solution forg 5 1 will be
presented.

Alternatively, one can analyse any controller of the form (32
for robustness by calculating the maximum singular value of t
transfer matrixT zD wD in (41). Also note that nominal (D 5 O)
stability for all four control problems is governed by the eigenva
ues of the composite “A” matrix in (41), i.e., the upper 23 2
partition in each transfer matrix which is designatedA# in the
sequel.

4 Numerical Example
The controller synthesis is now applied to the model previous

developed for the bandsaw blade. The system parameters in
duced in Section 2 are given in Table 1 and are typical of wi
bandsaws used for cutting timber. Note that the direction of moti
is opposite to the sense of the cutting force on the blade. Althou

Table 1 Bandsaw parameters
Transactions of the ASME
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controllers will be designed later on the basis of a five mo
model, illustrations of the plant behavior will be conducted usi
a ten mode “full order” model.

In order to motivate the controller design approach, the eig
values ofA in (18) will be examined. Under noncutting condition
q# c 5 0, and the circulatory matrixÂ can be ignored. In this case
it is well known that the eigenvalues ofA are purely imaginary (in
the absence of damping) since the equivalent second-order sy
in (12) is a statically-stable gyroscopic system. The eigenvalue
a function ofqc 5 qf 5 q# c are shown in Fig. 2for a damping ratio
of z0a 5 0.05 in all modes. It is clear that the nonconservat
nature of the cutting force destabilizes the fifth and tenth vibrat
modes and eventually the third one.

The simplest controller that can be used is a constant gain
feedback: u(t) 5 2Kdy(t). This effectively adds a term
(2KdB2C2) to theA matrix. It can be readily shown that withqf 5
0, this matrix is guaranteed to have negative real eigenvalues
all possible (constant) values of the system parametersr, D, c,
z 0a, q0, andqc whenqf 5 0. A simple proof usesT 1 Ub 1 Us

as a Lyapunov function. However, withqf 5 qc 5 q# c 5 50 kN/m,
one obtains the eigenloci shown in Fig. 3 as a function ofKd.
Stabilization is not possible for anyKd but for smaller values ofq# c

there is a limited range of values for which all ten modes
stabilized but the degree of damping added is limited.

Fig. 2 Eigenloci for varying qc 5 qf 5 q# c (h q# c 5 0, { q# c 5 50 kN/m)

Fig. 3 Eigenloci for varying Kd (qc 5 qf 5 50 kN/m) (h Kd 5 0, { Kd 5 4
kN/m/s)
Journal of Vibration and Acoustics

ed From: http://vibrationacoustics.asmedigitalcollection.asme.org/ on 06/25/2
de
ng

en-
s,
,

stem
s as

ive
ion

rate

for

are

Now consider the unforced time-varying system in (15)–(1
with an assumed sinusoidal behavior for the cutting force, i
D c(t) 5 D̂ c sin Vt, so that

ẋ 5 ~A 1 B1DC1DD̂c sin Vct!x. (42)

The stability of this periodic system can be assessed using Flo
theory. Experience has shown that a numerically more relia
determination is possible using the method of harmonic balan
With this technique, a solution of the form

x~t! 5 elt@x0 1 O
i51

Nb

~xci cos iVt 1 xsi sin iVt!#

is assumed which upon substitution into (42) produces a st
dard eigenproblem of dimension (2Nb 1 1) times greater than
that corresponding toA alone. Stability of the time-varying
system is then determined by examining the real parts of e
l. A stability diagram for various values ofV c andD̂ c is shown
in Fig. 4 for the case whereqf 5 0, i.e., the follower-force
effect is neglected, butqc(t) 5 q# c 1 q̂cD c(t), with q# c 5 q̂c 5
30 kN/m. A value ofNb 5 2 proved to be sufficient. Ifqf (t) 5
qc(t), then the entire region illustrated in Fig. 4 was unstab
which is not unexpected given the destabilization exhibited
Fig. 2 for constantqf 5 qc.

The sequence of control problems in the previous section
now treated with a view to obtaining satisfactory performan
in the face of the time-varying follower-force nature ofqf 5 qc.
The controller design parameters are given in Table 2 and
first five mode shapes of the (damped) open-loop system un
cutting conditions are shown in Fig. 5. The design paramet
were chosen in such a way that the closed-loop system using
ten mode model was stable for all four controllers, i.e., spillov
instabilities were avoided. In case II, we present results for
optimal case. In case III, a suboptimal solution forg 5 1 is
presented. In case IV, a search overd was made to determine
whether a solution existed forg 5 1. This was not the case, s
results are presented ford 5 2 andg 5 2. Graphs ofsmax[T z-

p wp( jv)] andsmax[T zD wD( jv)] vs. v are given in Figs. 6and 7 for
each controller relative to the design model (Nc 5 5) and in

Fig. 4 Instability regions for Vc vs. D̂c (q# c 5 q̂ c 5 30 kN/m, open-loop
system) ( hh 5 unstable)

Table 2 Controller design parameters
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Figs. 8 and 9 relative to the full order plant. The Bode plots
H(s) in each case are given in Fig. 10. The correspond
norms are collected in Table 3.

Controllers I and II yield the best performance for the des
model in the relevant norm but fail to meet the robustness sp
fication. The optimal*`-design shows only a marginal improve-

Fig. 5 The first five modes under cutting conditions

Fig. 6 Maximum singular values of T zp wp(jv) (5 mode plant model)
74 / Vol. 122, JANUARY 2000
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ment over the LQG design but is more robust. Controller III yield
close to optimal robustness and provides stability for alliDi ,
1/0.569 and henceuD c(t)u , 1.76. ForD exceeding this bound, no
LTI controller can be found which stabilizes the entire perturbatio
set. Also, note that performance of this robust controller as me
sured byiT zpwpi` is degraded somewhat. In case IV, the correc
trade-off is achieved and both nominal performance and robu
ness specifications are achieved. Ford 5 2, the requirement in
(30) was achieved forg 5 2 yielding robust performance for a

Fig. 7 Maximum singular values of T zDwD(jv) (5 mode plant model)

Fig. 8 Maximum singular values of T zp wp(jv) (10 mode plant model)

Fig. 9 Maximum singular values of T zDwD(jv) (10 mode plant model)
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reduced specification. The singular value plots in Figs. 6 an
show that this controller closely achieves the performance leve
cases I and II but recovers some of the stability robustness c
acteristics of case III.

When the*` performance measure was calculated relative
the full-order model, the relative ordering was preserved but
actual values in Table 3 were smaller. The corresponding stab
robustness measure was also smaller in each case and control
outperformed the “optimal” robustness controller. A glance at F
9 shows that the latter controller lost robustness at around 250
owing to spillover.

The Bode plots in Fig. 10 yield great insight into the controlle
The*` designs in cases II and IV have yielded a strictly positi
real controller (the phase lies strictly in the range [290 deg, 90
deg]) which is robustly stable with respect to (constant) pertur
tions of all quantities in Table 1 whenqf 5 0. This follows from
collocation of force actuation and rate sensing. The optimal*`

design in case II is close in form to the LQG design with som
reduction in gain at low frequency. The robust designs in case

Fig. 10 Bode plots for H(s), controller designs I–IV

Table 3 Controller design summary
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and IV more closely approximate a constant rate gain at lo
frequency and at higher frequencies case IV acquires the char
teristics of the higher performance controllers. The order of a
controllers is the same as that of the plant model, namely 2Nc 5
10.

To illustrate the conservative nature of these designs with r
spect to the memoryless, diagonal form of the uncertainty in E
(16), consider the closed-loop system7(H, D) with D 5 1D̂ c sin
Vt. Stability can be determined by applying the method of ha
monic balance to the system formed by wrappingD in feedback
around the transfer matrixT zD wD in Eq. (41). The unforced form is
of the same general form as (42) withA replaced withA# andB1D,
C1D replaced with the augmented forms in (41). The resultin
stability diagram is given in Fig. 11 for controller design IV using
the cutting force parameters in Table 2. Unlike Fig. 4 which wa
generated by ignoring the follower-force effect (qf 5 0), Fig. 11
was created assumingqf (t) 5 qc(t) 5 q# c 1 q̂cD c(t). Notice that

Table 4 External signals for simulation

Fig. 12 Instability regions for V0 vs. D̂0 (q# 0 5 q̂ 0 5 68 kN/m, qc 5 7.5
kN/m, controller IV) ( hh 5 unstable)

Fig. 11 Instability regions for Vc vs. D̂c (q# c 5 q̂ c 5 7.5 kN/m, controller
IV) (hh 5 unstable)
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stability is guaranteed for 0# uD c(t)u # 3.1 when D c(t) is
restricted to being periodic.

The previous results have assumed that the blade tensionq0,
was constant. In practice, this will also vary and it is importa
that the controller exhibit robustness with respect to the
variations. To this end considerq0(t) 5 q# 0(1 1 D̂ 0 sin V 0t)
with q# 0 assuming the nominal value. Stability in this case can
tested as above using the method of harmonic balance. Here
nontrivial partition in C1D in Eq. (17) must be replaced with
q# 0K̂ 0. The resulting stability diagram developed using contr-
ler IV is given in Fig. 12 and demonstrates stability robustne
with respect to tension variations within625 percent. The time
domain behavior of the closed-loop system can be gaged
simulating Eqs. (12) and (13) with the loop closed using co
troller IV. The sensor noise (ws(t)), the blade disturbance
(wd(t)), and the temporal variations in the cutting force a
blade tension, are taken to be sinusoidal signals with the c
acteristics given in Table 4. The closed-loop behavior of
blade deflection at the sensor location (xa, ya) is shown in Fig.
13 with and without tension variation.

5 Concluding Remarks
An analytical study has been presented which shows h

recent advances in robust control theory can be used to supp
unwanted bandsaw vibrations. The single-input/single-out
LTI controllers presented achieve prescribed performa
bounds and stability with respect to a family of time-varyin
perturbations which also exhibit follower-force behavior. F
ture work will address controller development for more co
plicated uncertainty descriptions (time-varying cutting for
and blade tension) as well as experimental implementat
Current research focuses on the development of suitable n
contacting force actuation.
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