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This paper delves into the structural and attitude dynamics of a cord-mat square solar sail being controlled by two-

degree-of-freedom tip-vane actuation. The paper’s main goal is to simulate and analyze the behavior of a solar sail

under a tip-vane attitude control scheme using a geometrically nonlinear elastic finite element method model of the

sail. The controller/structural interaction is of particular interest, as the control solution of the two-degree-of-freedom

tip-vane actuation is based on a flat, inflexible sail. The sail structure is further augmented by a wrinkling model for

handling the membranes under negative strain. Themodel is further augmented by the disturbance forces produced

by the reflective sail membrane itself. A combined, dynamic simulation of all of the aforementioned are performed to

analyze the performance of the control system as a whole.

Nomenclature

A = area of the reflected surface
a, b = material state parameters for the stress–strain consti-

tutive relationship
â, φ = coefficients of axis-angle representation
Cij = rotation matrix from frame i to frame j
Ci;α = principal rotation of angle α about i axis
D = damping matrix
E = Young’s modulus
E = stress–strain constitutive relationship matrix
F = coordinate frame
f = forcing column matrix
fα = generalized elastic stiffness force associated with shape

function of element α
f = forcing vector
fideal = ideal solar radiation pressure force
Gi = torque along i axis
Ĝ = normalized solar radiation pressure torque
h = membrane thickness
I = area moment of inertia of beam cross section
K = stiffness matrix
Kd = derivative control gain matrix
kp = proportional control gain
L = distance between two ends of the support cord, m
Ls = distance betweenedgeofone support cord to thenext,m
M = mass matrix
�M�× = cross-product operator
m, k = damping parameters
ni = vane i normal vector component
n̂ = unit normal vector for reflective surface
P = pressure exerted on the surface by the solar radiation

pressure
p = vertex
~pi = point i of convex hull set
q = composite state variables

qe = column matrix of the elastic generalized coordinates
qn = components of quaternion
R, Q = parameters ofwrinkledmembrane stress–strain consti-

tutive relationship matrix
R = absolute position vector
Sα, Cα = sine and cosine of angle α
ŝ = unit vector from the sun to a point on the surface
ui = deformation of node i of the triangular element in body

frame
uj = first derivative of x-axis deformation function with

regard to j
ujk = second derivative of x-axis deformation function with

regard to j and k
u = deformation of unit mass
V = volume
v = components of the absolute velocity vector
vi = location of node i of the triangular element in body

frame
α, β = cone and clock angle of sun vector
Γ = ratio between inward camber and distance between

two ends of the support cord
γij = shear strain function with regard to i and j
Δ = ratio between depth and distance between one end of

support cord to other
δ = infinitesimal positive number
ϵ = vector component of quaternion
ϵ = strain
η = scalar component of quaternion
θi = desired orientation in Euler angles about i axis
ν = Poisson’s ratio
ξ = rigid state variables
ρ = density
ρi = original location of node i of the triangular element in

body frame
ρ = body frame displacement of unit mass
ς1, ς2 = parameters for material state criteria determination
τ = stress
ϕi, θi = vane rotations
χ = control input
ψα = shape function of element α
Ω = ratio between depth and distance between edge of one

support cord to the next
ω = components of the angular velocity vector
13 = 3 × 3 identity matrix

I. Introduction

T HE concept of solar sailing, which is a propulsion method that
harnesses the momentum carried by the light photons via large

reflective surfaces, has waxed and waned in its popularity over
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the century. With the success of the Japan Aerospace Exploration
Agency’s Interplanetary Kitecraft Accelerated by Radiation of the
Sun (IKAROS) experimental sailcraft in the recent years, the interest
in solar sailing has once again waxed, prompting renewed work. In
particular, NASA’s Sunjammer project is of great interest, with its
traditional square sail setup with boom deployment and vane-based
attitude control scheme.
This paper focuses on a design of a solar sail similar to that of the

Sunjammer, with the key goal of simulating its dynamical behavior
and applying a vane control scheme designed by the authors to this
dynamic model. Considerations such as overall mass, membrane
packing, and sail deployability drive the sail to be very thin and flex-
ible. Since the sail’s capability to produce thrust is directly affected by
the shape of the reflective surface, the structural dynamics and the
associated changes in the sail thrust are of great interest. Also, with
the goal of applying a vane control scheme designed for attitude
control, the sail’s rotational dynamics are of interest. In this research,
combined rigid and structural dynamics equations of motions are
used to simulate the sail’s dynamic behavior in space, accounting for
the effect of rigid dynamics on the elastic dynamics and vice versa. A
method for estimating the forces produced by the sail shape predicted
by the dynamicsmodel is used to predict its effect on the sail’s attitude
as the simulation progresses.
In addition to the aforementioned, other considerations unique to a

solar sail are explored as well. One such consideration is the sail
wrinkling: simulating the dynamics of a membrane is not an easy
endeavor due to its tendency to behave nonelastically by wrinkling
and slacking. Simulating the behavior of wrinkling membranes is an
active area of research, and numerous papers with methods of handl-
ing this problem are available. One such method, modified to handle
slacking cases as well, is presented in this paper and used in the
simulation.
The second consideration is the effect of shadowing on the sail.

Certain pathological orientations and placement of other components
of the spacecraft may cast a shadow upon the sail, which then no
longerproduces thrust as longas the shadow remains.Predictingwhere
and how such shadowing occurs adds another level of fidelity to the
simulation. In this paper, amethod of determining the shadowed region
on the sail surface is presented, using the method to show how a
spacecraft bus and the sail surface can cast shadow upon the sail at
certain orientations.
Apart from the aforementioned, the vane control scheme designed

by the authors is briefly introduced; then, it is combinedwith a generic
proportional-derivative (PD) control law to provide attitude control
over the sail. The dynamics model with all the augmentations from the
preceding are combined with this control law using angular velocity
and quaternion (Euler parameter) feedback to show its capabilitywith a
number of attitude pointing maneuver simulations. Special attention is
given to the sail behavior, the produced control, and disturbance
torques, as well as the performance of the controller in terms of the
settling time and the severity of the vane angle changes.
Our major contribution is to explore the potential for control-

structure interactionwhen tip vanes are used to implement the control
torques. In this case, the noncollocation of the applied control influ-
ences and the sensed variables (the angular velocity and sail attitude)
raises the possibility of destabilization of the control law. We note

that previous studies of the attitude control of solar sails [1–5] have
employed rigid sail models, and hence could not address this point.
Furthermore, we employ two-degree-of-freedom tip vanes, whereas
previous studies have employed single-degree-of-freedom tip vanes
(which do not render the sail fully controllable and need to be aug-
mented by other actuation).

II. Cord-Mat Solar Sail Model

A common design found in the literature is that of a square solar
sail, where the thin reflective membranes are stretched between
four equal-length support booms [1–14]. Here, a variant design of
the square sail is used: a cord-mat solar sail model, introduced by
Greschik [8] and illustrated in Fig. 1. This design is notable in that it
inherently does not stretch the sail membrane but, instead, it is
“spread onto” (and attached to) a set of cords suspended between the
support booms. Due to the nature of the design, some billowing
occurs with the sail, but the shape and the size of the billow would
be controlled by the cords. Any loading onto the support boom is
restricted to that from the cords, allowing for more predictable
loading on the booms. However, the membrane slackness has an
inherent downside to it, which is that it makes the prediction of the
sail membrane dynamics and the resulting solar radiation pressure
(SRP) force a complicated matter.
It is assumed that the suspension cords, under a slack, stable initial

statewith very small uniform lateral external loading, form a catenary
sag in the direction of the loading. A quadrant of the sail in such an
initial state is shown in Fig. 1b. The key preconstructed sags in the sail
surface geometries are noted in this figure.
These sags are described as follows: first, the support cords are

sagged in the out-of-plane direction in a gradually deepening set of
catenaries, such that, at the edge of the quadrant, the depth of the sag
is described by a unitless quantity Δ, which is the ratio between the
actual depth and the distance between the one end of the cord to the
other. The catenary itself is described by the following equation:

y � Δ
L
x2 − LΔ (1)

where L is the distance between the two ends of the cord, x is any
point along this distance, and y is the depth. It is assumed that, at one
end of the cord, x � y � 0 and, at the other end of the cord, x � L
and y � 0.
The other two sags are described in a similar fashion as before. An

inward sag is imposed upon the outer sail edge, noted by the unitless
parameter Γ in the diagram: a ratio between the actual inward camber
and L. This, noted by Greschik in his paper [8], is due to a small
amount of inward tension applied to the cord due to the membrane.
Although this camber can be spread out among the outer cords, for
simplicity, it is assumed that the inward camber exists only for the
outermost cords.
Lastly, the sail membrane in between the cords is assumed to be

slack; hence, a catenary is formed here as well. It is worth noting that
the depth of this film billow is measured from the cord, which is also
curved. Hence, the resulting portion of sail membrane forms a
curvature, with its shape defined byΩ andΔ (andΓ aswell in the case

a) Cord-mat solar sail with tip vanes b) Sail quadrant with preconstructed sag

Fig. 1 Cord-mat solar sail.
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of the outermost portion of themembrane). Here,Ω is a ratio between
the actual depth and the distance between the edge of one cord to the
next Ls.

III. Unconstrained Nonlinear Dynamics of the Sail

To analyze the effect of the flexible sail on its attitude dynamics, a
geometrically nonlinear finite element method (FEM) model and its
simulation system are developed. Only the generalized equations of
motion and the FEM model are described here, with the derivation
and implementation details of the equations, the model, and the
simulator omitted due to their complexity. These details are available
in Choi’s thesis [15] for perusal.
The dynamics of a flexible object, such as the one given in Fig. 2,

are derived from the absolute positionvectorR; Newton’s second law
of motion ZZZ

V
fe dm �

ZZZ
V

�R dm (2)

and its cross-multiplied variantZZZ
V
�ρ� u� × �R dm �

ZZZ
V
�ρ� u� × fe dm (3)

where ρ and u are the body frame displacement and the deformation
of a mass dm; and the equilibrium of the generalized elastic forcesZZZ

V
ψTαfe dm �

ZZZ
V
ψTα �R dm� fα; α � 1; 2; 3; : : : (4)

where ψα is a shape function, fe is the external forcing, and fα refers
to the generalized elastic stiffness force associated with the shape
function ψα. After a lengthy derivation process that does not assume

small deformations, one can combine, expand, and rewrite the pre-
ceding expressions as the following equations of motion:

�
Mrr�qe� Mre�qe�
MT
re�qe� Mee

�� _ξ

�qe

�
�
� 0 0

0 Kee�qe�

�

×
� γ

qe

�
�
�
fT;r�q; χ �
fT;e�χ �

�
�
�
fI;r�q�
fI;e�q�

�
(5)

or

M�q� �q� K�q�q � fT�q; χ � � fI�q; _q� (6)

where the state variables ξ � � vT ωT �T , _q � � ξT _qTe �T , q �
� γT qTe �T , v, and ω are the components of the absolute velocity
vector and the angular velocity vector of the body frame F b with
respect to the inertial frame F i; and qe is the column matrix of the
elastic generalized coordinates. The column γ is a dummy variable
chosen to satisfy _γ � ξ. The matrixM is the mass matrix, composed
of the rigid-body mass matrixMrr, the rigid-body mass matrixMee

and Mre which are the coupling terms between the rigid-body and
elastic-body behaviors. The matrix K is the stiffness matrix
composed of zero matrices representing the rigid body and the coupl-
ing terms; and Kee, which is the elastic-body stiffness matrix.
Column matrices fT and fI are the external and the inertial forcing
column matrices, composed of the rigid-body and the elastic-body
forcing terms denoted by the subscripts r and e, respectively. Al-
though the linear counterparts to these terms are constants, the
resulting expressions from assuming large deflections result in most
of the terms depending on the states. The external forcing also de-
pends on the control input, defined as χ here to reflect how the angular
orientations of the tip vanes produce the control input.
The sail is represented as a simple FEMmodel composed of three

element types, for which the equations describing the aforemen-
tioned matrices are derived. One such sail FEM model is shown in
Fig. 3, where the sail sags described in Sec. II are incorporated as
well. The three element types are as follows: Hermitian beam ele-
ments to represent the four booms, a modified natural coordinate
triangular plate elements to represent the reflective sail, and a modi-
fiedHermitian beamelement to represent the supporting cords. These
modifications will be explained in the next section. The Hermitian
beam element has the following strain-displacement relationship:

ϵxx � ux − yvxx − zwxx �
1

2
v2x �

1

2
w2
x (7)

where the subscripts x and xx denote the first and the second
derivatives of a function. As per the classical theory of plates [16], the
natural coordinate triangular plate element has the following strain-
displacement relationship:Fig. 2 Unconstrained elastic body with volume V.

a) Sail element division b) A triangular quadrant
Fig. 3 Simple FEM model of the cord-mat square solar sail.
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ϵxx � ux − zwxx �
1

2
w2
x;

ϵyy � vy − zwyy �
1

2
w2
y;

γxy � uy � vx − 2zwxy �wxwy (8)

All other strains are taken as zeros. These relationships are used to
derive the matrices in the equations of motion.
The booms in the preceding model are fixed to the body frame

origin, as are the corners of the four sail quadrants at the origin. The
sail is, in theory, indirectly attached to the booms via these cords but,
as seen in Fig. 3b, the membrane elements are pinned to the ends of
the cords, which are also pinned to the booms. Hence, the sail is
essentially pinned to the booms where the cords are pinned to the
booms. In addition, the spacecraft bus is represented simply by a rigid
point mass located at the bus center of mass, assuming that the effects
of its deformation are likely far less significant than that of the sail.
For this research, the solution to the FEM model’s equations of

motion presented in Eq. (6) is provided by a Fortran-implemented
version ofode15s, which is an ordinary differential equation (ODE)
solver originally from MATLAB. The function ode15s uses the
numerical differentiation formulas, which is a modified version of
the backward differentiation formula, as described in Shampine
and Reichelt [17]. To aid in solution convergence, exact solutions of
the Jacobian of the equations of motion are provided. It should be
noted that the matrices of the geometrically nonlinear equations of
motion are state dependent. This implies that the matrices must be
recalculatedwhenever a new state is assumed by the solver,which is a
very costly process. This limits the complexity of the model, as more
complex models would take infeasible amounts of time to complete
the simulation.

IV. Wrinkling and Slacking Behavior of Elements

Themodifications to the plate and the beam elements are needed to
account for the near-incompressible nature of the thin reflective
membrane and the support cords these elements are meant to repre-
sent. Specifically, these materials tend to fold upon themselves when
a compressive load is applied, behaving in a nonelastic manner,
whereas the elastic behavior is still preserved while in tension. To
account for this change in the material behavior, three material states
are defined: taut, wrinkled, and slack. The taut state refers to the case
where the material is in tension about all directions. The wrinkled
state refers to the casewhere thematerial is simultaneously in tension
and in compression, due to varying loads about different directions.
The slack state refers to the casewhere the material is in compression
in all directions.
The topic of static and dynamic behaviors of wrinkled membranes

is still an active area of research, and numerous authors have pre-
sented their solutions [18–28]. Here, an approach introduced by
Miller et al. [29] is used for its mathematical simplicity and ease of
integration to the FEMmodel. Specifically, the constitutive relation-
ship matrix is modified based on the state of the element.

Amembrane in tension as shown in Fig. 4a behaves elastically and
can be modeled as a plate. Its principal stress–strain constitutive
relationship can be described by

�
τ1
τ2

�
� E

1 − ν2

�
1 ν
ν 1

��
ϵ1
ϵ2

�
(9)

where τ1 and τ2 are the major and the minor principal stresses, ϵ1 and
ϵ2 are the major and the minor principal strains, E is Young’s
modulus, and ν is Poisson’s ratio. This expression, when replaced
with the local frame stresses τxx, τyy, τxy, and the local frame strains
ϵxx, ϵyy, γxy, and simplified, result in the following expression:

τ � Et ϵ �
" τxx
τyy
τxy

#
� E

1−ν2

" 1 ν 0

ν 1 0

0 0 1−ν
2

#" ϵxx
ϵyy
γxy

#
(10)

This is thewell-known plane stress–strain constitutive relationship
equation, and Et is the constitutive relationship matrix for the taut,
tensioned membrane.
A membrane is considered wrinkled when it is being stretched in

one directionwhile being compressed in another, as shown in Fig. 4b.
Pure stretching occurs along the direction of the major principal
stress, whereas pure compression occurs along the direction of the
minor principal strain. As noted before, since a membrane under
compression does not behave elastically but instead folds upon itself,
the resulting minor principal stress is assumed to be zero, giving the
following modified form of Eq. (9):

�
τ1
τ2

�
�
�
E 0

0 0

��
ϵ1
ϵ2

�
(11)

Once again, replacing the principal stresses and strains with the
local terms and rearranging, the following constitutive relationship is
derived:

τ � Ew ϵ2
4 τxx
τyy
τxy

3
5 � E

4

2
4 2�1� R� 0 Q

0 2�1 − R� Q
Q Q 1

3
5
2
4 ϵxx
ϵyy
γxy

3
5;

R �
ϵxx − ϵyy
ϵ1 − ϵ2

; Q �
γxy

ϵ1 − ϵ2
(12)

This is themodified constitutive relationship derived byMiller et al.
[29]. The constitutive relationshipmatrix isEw. Finally, amembrane is
considered slack when it is being compressed in both principal
directions. In a pure slack state, stresses remain zero throughout; that is,
the constitutive relationship matrix is simply Es � 0.

a) Tensile stress b) Compressive stress

Fig. 4 Membrane under varying stress conditions.
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Now, all three cases can be described in combination by using
the following principal stress–strain constitutive relationship as the
starting point: �

τ1
τ2

�
� E

1 − abν2

�
b abν
abν a

��
ϵ1
ϵ2

�
(13)

where the constants a and b are modified based on the state of the
material. Replacing the principal stresses and strains with the local
terms and rearranging, we have2
664
τxx

τyy

τxy

3
775� E

4�1−abν2�

×

2
6664
2�a�1−R��b�1�R�� 4abν Q�b−a�

4abν 2�b�1−R��ab�1�R�� Q�b−a�
Q�b−a� Q�b−a� b�a−2abν

3
7775

×

2
664
ϵxx

ϵyy

γxy

3
775 (14)

When a � b � 1, the preceding equation becomes equivalent to
Eq. (10), i.e., the plane stress constitutive relationship. When a � 0
and b � 1, the preceding equation simplifies to Eq. (12), i.e., the
wrinkled stress–strain constitutive relationship. When a � b � 0,
the preceding simply becomes 0, i.e., the slack stress–strain consti-
tutive relationship. Hence, all three material states can be represented
with the appropriate values of a and b. In theory, the degree of
wrinkledness and slackness can be classified by the values of a and b,
wherea controls the degree ofwrinkledness andb controls the degree
of slackness of the material. However, this particular extension is not
used for this research due to the simulation instability it brings.
The criterion that determines the state of the material can be

summarized as follows:8<
:
a � 1; b � 1 if ς1 ≥ 0

a � 1; b � δ if ς2 ≥ 0 and ς1 < 0

a � δ; b � δ if ς2 < 0

(15)

where ς1 � ϵ2 � νϵ1, ς2 � ϵ1, and δ is a small number near zero.
This criterion is also known as the stress–strain criterion in the
literature. Two other criteria for determining the material state are
known, the stress criterion and the strain criterion, but Kang and Im
[27] showed that the stress criterion and the strain criterion tend to be
less accurate than the mixed criterion; hence, the stress–strain crite-
rion is used. Keeping the values of parameters a and b nonzero ac-
counts for the idea that, even during compression, the membrane still
must be subjected to a finite force before it folds upon itself. This also
prevents the physical impossibility where the membrane would
continue to fold in upon itself after an initial impulse forcing, due to
no resistance being present.
A similar modification to the constitutive relationship for the beam

elements is made. A string being compressed along its length will
simply collapse as opposed to providing elastic resistance, just as a
membrane would. The only difference is that, unlike a membrane, a
string is one-dimensional and such a compressive load immediately
results in a slacked state. Awrinkled state has no physicalmeaning for
a string. Given its one-dimensional nature, the constitutive relation-
ship can be modified in a following manner for the slacked state:

τ � bEϵ (16)

where b is equivalent to the slacking parameter for the membrane.
Logical dissemination of the modified constitutive relationship is
that, when the string is under compressive loading, its stiffness is

modified to represent the near-zero resistance the string provides
against the compression.

V. Solar Radiation Pressure Force on the Sail

For the purpose of this research, the membrane is assumed to have
ideal optical properties, where all of the incident solar radiation is
specularly reflected off a flat surface. In addition, each membrane
element is assumed to be flat for the purpose of calculating the solar
radiation pressure force.
The combination of themomentum transported by the photons and

the reaction provided by the reflected photons results in a force vector
that is always normal to the flat surface, as shown in Fig. 5. The unit
vector from the sun to a point on the surface is ŝ. The unit normal
vector for the reflective surface is n̂, the resulting SRP force f ideal is in
the opposite direction of the unit normal, and the angle from n̂ to ŝ is
α, which is also known as the cone angle.AssumingA to be the area of
the reflected surface and P to be the pressure exerted on the surface
by the SRP, the force exerted on the reflective surface due to the SRP
is [6]

fideal � −2PA�ŝT n̂�2n̂ (17)

Thevalue of the SRP is typically taken to beP�4.56×10−6N·m−2

at one astronomical unit (AU) from the sun. However, for emphasis
on the flexible dynamics and to consider cases of missions closer to
the sun, P is taken to be 1.8253 × 10−5 N · m−2 instead, corres-
ponding to the SRP at 0.5 AU away from the sun.
McInnes also derives the SRP forces produced by optically non-

ideal surfaces in his book [6]. Using optical properties derived in the
California Institute of Technology, Jet Propulsion Laboratory (JPL)
comet Halley rendezvous study, one can show that the ideal optical
model and the nonideal optical model differ in the SRP forces pro-
duced by up to 10%, where the difference is the greatest when the
surface normal is parallel to the sun and the least when the surface
normal is perpendicular to the sun.
To calculate the SRP forces for the sail, ŝ and n̂ should be repre-

sented in the same frame. Here, the body frame is assumed to be the
common frame in which the forces are calculated, denoted by the
subscript b. Since the sail is expected to billow as the simulation
progresses, the value of n̂b is expected to be different at different
points on the sail and at different points in time. Fortunately, the sail is
already divided into finite membrane elements, and the simulator
would need to recalculate the terms of the equations of motion at
every state change, as noted previously. Hence, n̂b is determined for
each element whenever the simulator changes the state variable; then,
it is used to recalculate the SRP force on the sail.
Determination of the reflective sail’s orientation can be simplified

by taking advantage of the shape of the membrane element.
Specifically, assuming that each element surface is flat for the pur-
pose of calculating the SRP force, the three vertices of a triangular
element can describe a unique three-dimensional plane, fromwhich a

Fig. 5 Ideal solar radiation pressure force on a flat surface.
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constant normal vector can be derived to describe the orientation of
the element as a whole. This trait is not true for any element with less
than three vertices, for which there are an infinite number of normal
vectors for any point on the element, or for any element with more
than three vertices, for which any plane through all of its arbitrarily
positioned vertices must be curvilinear.
It is assumed that the location of the sun in the inertial frame is

known by the sun vector in the inertial frame ŝi and its body frame
counterpart ŝb � Cbiŝi, where Cbi is the inertial to body frame
rotation matrix and is known. The normal vector of a flat triangular
element is simply a cross product of two vectors formed from the
three vertices of the triangle. Specifically, letting pi be the location of
node i of the triangular element in the body frame (that is,

pi � ρi � ui (18)

where ρi is the original location of the node and ui is the elastic
deformation of the node), the normal vector in the body frame can be
written as

nb � �p2 − p1�×�p3 − p1� n̂b �
nb
knbk

(19)

Hence, with the knowledge of ŝb and n̂b, the SRP force in the body
frame can be calculated for any set of triangular element nodes. In
Eq. (19), we have employed the �−�× superscript to implement the
vector cross product using the matrix

p× �

2
4 0 −p3 p2

p3 0 −p1

−p2 p1 0

3
5 (20)

where p � �p1 p2 p3 �T .

VI. Sail Shadowing

Since a solar sail relies on the sun being shone on its reflective
surface to harness the momentum from the photons, problems arise
when the sail becomes shadowed. In particular, when a portion of the
sail is shadowed by some part of itself due to its orientation with
respect to the direction of the sun, it operates with reduced total thrust
force and any asymmetry in the shading pattern leads to disturbance
torques that adversely affect its attitude profile. In this section, we
consider the determination of shaded areas on a sail due to another
part of the spacecraft. The main contribution of this section is the
verification of the common assumption that the effect of sail
shadowing is minimal on the general attitude profile of the solar sail.

Determining the shaded area is essentially a problem of projecting
the shadowing component onto the reflective sail. Assuming that
the component is opaque, the following three pieces of information
are needed to perform this projection: the Cartesian location of the
component’s outer shell, the sun vector, and the plane in which the
sail resides. For simplicity, assume that the component is convex and
that its outer shell can be described by a finite number of vertices,
which are known in the body frame. The sun vector ŝ is also assumed
to be known in the body frame. With the FEM model, the sail mem-
brane is represented as a collection of triangular elements, and the
nodes forming the vertices of these elements can be used to define a
unique Cartesian plane onto which the outer shell can be projected.
The goal is to find a set of points that describes the outer boundary of
the projected shadow on that portion of the sail.
Assuming that the coordinates of the triangular vertices are known

in the body frame, the projection plane can be defined entirely by a
normal vector from its origin. To find the boundaries of the shadow
due to the component, its vertices are first projected onto this projec-
tion plane. The projected vertices, then defined in the plane as two-
dimensional coordinates, can be used to determine the convex hull of
the set, which by definition defines the set of points representing the
outer hull of a larger set of points that forms a convex shape. For the
purpose of this research, this is performed by using the gift-wrapping
algorithm, also known as the Jarvis march [30]. Once the convex hull
is defined, the same process used to determine the convex hull can
also be applied to the individual nodes of the element, or any other
point on the surface defined by those nodes, to determine whether
they are within the convex hull or not. Any nodes within the convex
hull are assumed to be shaded, hence not producing any thrust.
Two particular cases of shading are considered in this research.

The first case is the shadowing on the sail due to the bus structure,
shown in Fig. 6a. This is a very simple case where a small number of
vertices representing the bus structure is checked against each of the
triangular membrane elements to determine whether the individual
nodes are within the shadow of the bus structure. Figure 6b shows
the sail plane of the triangular element shown in Fig. 6a, where the
shaded and the unshaded nodes aremarked based onwhether the node
iswithin or outside of the projected bus convex hull.Assumingonebus
structure shading the sail, the previously described process has to be
performed only once per element per time step, and hence is integrated
into the simulation with only small computational overhead.
The second case is the shadowing on the sail due to itself. In this

case, each element is assigned three points that are halfway between
the centroid and the vertices. The shadowed area is determined by the
nodes of the shadowing element projected onto the plane formed by
the shadowed element. The points being tested for being shadowed,
however, are the newly assigned points previouslymentioned. This is
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Fig. 6 Sail shadowing due to bus structure.
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necessary in order to prevent overlap issues associated with elements
shadowing adjacent elements. Sample results of testing the sail
shadowing in near-edge-on cases are demonstrated in Fig. 7, where
the circles represent the points shadowed by the sail. This case is here
simply for demonstrative purposes however, because the computa-
tional cost of checking the possibility of shadowing due to another
membrane element for every membrane elements is prohibitively
expensive for the simulation. Hence, this check is not included in the
simulation.

VII. Vane Design and Control Allocation

Attitude control actuation for the sail is performed by four vanes
attached to the tips of the supporting booms. These vanes reflect the
incoming photons just as a sail would, and they use the resulting
thrust and its position with respect to the sail center to produce
attitude-controlling torques. For the purposes of this research, the
orientations of the vanes are defined via two angular degrees of
freedom (DOFs) θi and ϕi for i � 1..4, as shown in Fig. 8. To be
specific, vane 1 is rotated along the body x axis by θ1, followed by a
rotation along the rotated y axis by ϕ1. Other vanes follow the same
convention in terms of the order of rotation. The setup described here
is a physically achievable actuation scheme where two angular
actuators are attached sequentially.
To simplify the calculation of the torques produced by these vanes,

the following assumptions are made: first, it is assumed that the
booms are rigid and positioned about the body frame axes as Fig. 8
depicts. Second, the changes in the center of pressure of the vanes
when tilted are neglected. Third, the reflective surface of the vane is
assumed to be rigid and flat.
In a three-dimensional (3-D) space, the sunvector is represented by

not only the cone angle α but also by the clock angle β, as shown in
Fig. 9. The sun vector in the sail body frame can then be written as

ŝb �

2
4 SαCβ

SαSβ
−Cα

3
5 (21)

where S and C represent sine and cosine functions, respectively.
Using this, the SRP force equation, and the body frame to vane frame
rotation matrixCvb;1 defined as the successive rotations of θ1 and ϕ1,
the normalized torque produced by vane 1 in the body frame can be
written as
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Fig. 7 3-D plot of sail in inertial frame with shadowing due to sail membrane.

Fig. 8 Two-DOF vane configurations.

Fig. 9 Three-dimensional representation of solar radiation pressure

force.
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Ĝb1 �

2
4 0

Cϕ1Cθ1

Cϕ1Sθ1

3
5�Sϕ1SαCβ − Cϕ1Sθ1SαSβ − Cϕ1Cθ1Cα�2 (22)

Similar expressions can be written for torques produced by other
vanes. The total control torque offered by the vanes is the combi-
nation of the torque equations, and it is a complex nonlinear equation
of eight control variables that output three components. An analytical
solution to the problem of deriving the eight angles from a given
torque value is unlikely and, due to its nonlinearity, conventional
means of solving nonlinear equations are met with failure.
This problem involves eight control variables and three unknowns:

an underconstrained control allocation problem. A method was
created by the authors in order to solve this problem, which uses an
estimation to the boundaries of the attainable moment set (AMS),
which is the set of torques that can be produced by the vanes, to
redefine the problem into an affine numerical portion and a solvable
analytical portion [31]. The details of the process are omitted in this
paper, but the algorithm essentially accepts anydesired torque and the
current sun angles as an input, and it outputs a set of vane angles that
will produce the desired torque ( or a scalar-scaled version of it if the
desired torque is not physically achievable by the vanes).
Figure 10 shows an example execution of the algorithm. On

this figure are the individual vane AMSs, its estimation by ellipses,
the combined estimated AMS, and a solution set of vane torques gen-
erated by the numerical portion of the process for the normalized
torque Ĝd � �0.5; 0.3; 1.3� and the sun angles α � 0 and β � 0. The
marked points are the torques produced by each vane, and it can be
seen that the torques do add up to Ĝd as desired. With the individual
vane torques known, the analytical portion of the process calculates
the individual vane angles to be ϕ1 � −0.1067, θ1 � 0.6073, ϕ2 �
0.1365, θ2 � 0.9647, ϕ3 � −0.0231, θ3 � −0.8952, ϕ4 � 0.1148,
and θ4 � −0.4841. These angles can then be used by the actuators to
tilt the vanes to produce the desired torques.

VIII. Control Law and Simulation Steps

The completion of the control system requires a control law. For
robustness and simplicity, we use the quaternion (Euler parameter)
PD control law to determine to desired control torques for the system.
Hence, let the desired control torque in the body frameGd be given by

Gd � −Kdω − kpϵe ϵe � �ηd13 − ϵ×d �ϵn − ϵdηn (23)

where ϵe is the vector component of the error quaternion, ϵd and ηd
are the vector and the scalar components of the desired quaternion,
and ϵn and ηn are the vector and the scalar components of the current
quaternion. The current quaternion is known by the kinematics rela-
tionship with the angular velocity, which is calculated alongside the
equations of motion.

The current quaternion can be determined from the kinematics
relationship involving the angular velocity and is integrated along-
side the equation of motion:

_ϵn �
1

2
�ϵ×nω� ηnω� (24)

_ηn � −
1

2
ϵTnω (25)

It should be noted that the quaternion PD control law has been
shown to be globally asymptotically stable in controlling the attitude
of a rigid body [32]. Here, we will extend this result to the local
asymptotic stabilization of a linearized flexible sail model.
Let us linearize Eq. (6) about the equilibrium ξ � _qe � qe �

ϵe � 0 and ηe � 1. Setting fI�q; _q� � 0 and taking fT�q; χ � �
�Bfc�t�, where �B � � 03×3 13 03×Ne �T (13 is the 3 × 3 identity
matrix), the linearized motion equation becomes

�M _q� �D _q� �Kq � �BGd (26)

This assumes that the control torque is applied to a (perhaps
vanishingly small) rigid body at the mass center. Here, we have
defined �M � M�0� and �K � K�0�, and we introduced a damping
matrix of the form

�D �
�
0 0

0 Dee

�
(27)

We will assume a Rayleigh damping model of the form
Dee � mMee � kKee�0�, which is symmetric and positive definite if
m > 0 and k > 0.
In an effort to establish the stability properties of the equilibrium,

we introduce the Lyapunov function candidate:

V � 1

2
_qT �M _q� 1

2
qT �Kq� kp�ϵTe ϵe � �ηe − 1�2�

� 1

2
_qT �M _q� 1

2
qTeKee�0�qe � 2kp�1 − ηe� (28)

Differentiating V and using the motion equations in Eqs. (25) and
(26) yields

_V � _qT� �M �q� �Kq� − 2kp _ηe

� − _qTeDee _qe � _qT �BGd − 2kp�ϵTd _ϵn � ηd _ηn�

� − _qTeDee _qe � ωTGd − 2kpϵTd

�
1

2
ϵ×nω�

1

2
ωηn

�
− kpηdωTϵn

Substituting for Gd from Eq. (23) and simplifying leads to
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Fig. 10 Estimated AMS and the results of the algorithm for Ĝd � �0.5;0.3;1.3� with α � 0 and β � 0.
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_V � − _qTeDee _qe − ωTKdω ≤ 0 (29)

Applying the Krasovskii–LaSalle theorem, the invariant set
consistent with ω � _qe � 0 is ω � v � _qe � qe � ϵe � 0, which
establishes local asymptotic stability of the equilibrium.
Although the control law in Eq. (23) has been shown to yield local

asymptotic stability, this can be compromised by several factors. The
saturation imposed by the vanes has not been taken into account.
Furthermore, the control torque is not realized by “rigid torques”
applied to a central rigid bus structure. As will be discussed in the
following, it is realized by SRP forces acting on the tip vanes that are
not collocated with the central bus. This lack of collocation between
the spatial locations for applying the SRP forces (on the vanes) and
sensed attitude variables (the angular velocity and quaternions of a
central bus structure) can lead to instability. One of the main contri-
butions of the papers is to assess the possibility of this happening.
The control gains Kd and kp are intentionally tuned such that

torques several magnitudes higher than what the vanes are capable of
producing are generated until the sail attitude is near the desired
attitude. The feasibility portion of the control allocation algorithm
automatically scales the requested torque into maximum values that
can be achieved by the vanes. The control law would see comparably
minimal changes on the attitude and continue to request the same
extremely high torque values, holding the vane in the orientation that
produces the maximum torque in the desired direction. This setup
allows relatively fast slewing maneuvers to be performed. Since the
solar sail’s thrust direction and power are directly related to its
attitude, the fast slewing capacity for the controller is a highly
desired one.
The attitude control as awhole can then be described as depicted in

Fig. 11. The attitude control simulation is performed by deriving a
desired control torque from the PD control law, feeding it through the
control allocation algorithm to scale the control torque and derive the
vane angles required to achieve the scaled control torque, and then
passing the vane angles along to the dynamics simulator to calculate
the vane forces and torques. The state integration of the dynamics
equation for the current time step is performed to derive the next set of
attitude profiles, which the PD control uses to update its desired
control torque.
The detailed description of each step is as follows: first, the PD

control law described previously is used in conjunction with the
current attitude profile of the sail to derive a desired control torque.
For the first simulation, initial values for ω and qn � ϵn (along with
the generalized coordinates) are user specified, whereas the
consecutive runs are performedwith the results from the previous run
of the ODE solver.
The desired control torque from the PD control law is then scaled

by the area of thevane and the solar radiation pressure constant to take
into account the force normalization performed when deriving the
control allocationmethod, i.e., Ĝd � Gd∕�2PA�. This scaled desired
torque and the sun vector in the body frame with the representative
sun angles are used as inputs to the control allocation process
described in Sec. VII to derive the eight vane angles. The vane angles
are used instead of the torques derived by the process to properly take

into account the discrepancy that occurs by the flexibility of the
booms the vanes are attached to. The body frame sun vector ŝb is
calculated using the rotationmatrix derived from the quaternions, i.e.,

ŝb � Cbiŝi Cbi � �1 − 2ϵTnϵn�13 � 2ϵnϵTn − 2ηnϵ×n (30)

where ϵn and ηn are the quaternion components from either the
previous simulation or the specified initial value.
It should be noted that there is a duplication of information when

providing both the sun vector and the sun angles, and this is mainly
due to the current implementation using the sunvector to calculate the
forces, but with the solution to the single-vane problem being
designed around the sun angles. The derivation of the sun angles from
the sun vector is straightforward when considering Eq. (21): α �
cos−1 ŝb�3� and β � a tan 2�ŝb�2�; ŝb�1��, α ≠ 0. If α � 0, then the
value of β cannot change the orientation of the sun vector, and hence
is set to zero.
Once thevane angles are known, the next time step of the nonlinear

dynamics simulation can be simulated using theODE solver, as noted
in Sec. III. An additional process is added onto the functions being
integrated: that of calculating the force due to the vanes at the ends of
each boom. The SRP force due to the vane is calculated with Eq. (17),
using the vane’s normal vector and the sun vector in the body
frame. The sun vector is calculated in the same manner as before,
whereas the vane’s normal vector is calculated using the following
assumptions:
1) Each vane is aligned with the line formed by the last two nodes

of the boom the vane is attached to (this frame is referred to as the
deformed frame henceforth).
2) Vane rotations are performed at the deformed frame.
3) Vane rotations do not cause force center translation, which is

assumed to be at the tip of the boom. Given the preceding assump-
tions, the calculation of the vane normal can be devolved into finding
two rotationmatrices: one that rotates the vane frame to the deformed
frame, and another that rotates the deformed frame to the body frame.
The first of these, Cdv, is calculated using the same set of rotation
matrices used to calculate the torques in the control allocation
problem, specifically,

Cdv �

8>>><
>>>:
�Cy;ϕ1

Cx;θ1�T for vane1

�Cx;ϕ2
Cy;θ2�T for vane2

�Cy;ϕ3
Cx;θ3�T for vane3

�Cx;ϕ4
Cy;θ4�T for vane4

(31)

whereCi;θ is a principal rotation of θ about the i axis. These rotations
are consistent with the DOFs shown in Fig. 8 from the control
allocation section (Sec. VII). The rotation matrix from the deformed
frame to the body frame is calculated by noting that the rotation
between two vectors is easily found by taking the cross product of
the two vectors to find the axis of rotation, with its angle of rotation
found from the dot product of the two vectors. Specifically, Cbd is
calculated by

Cbd � �cos�φ�13 � �1 − cos�φ��ââT − sin�φ�â×�

â � a

kak ; a � t̂×n̂r; φ � cos−1�t̂ · n̂r�

t̂ � t

ktk ; t � p2 − p1

n̂r �

8>>>>><
>>>>>:

�1 0 0�T for vane 1

�0 1 0�T for vane 2

�−1 0 0�T for vane 3

�0 − 1 0�T for vane 4

(32)

where pi are the deformed coordinates of the last two nodes of the
boom in the body frame.Once the body frame sunvector and thevaneFig. 11 Simplified diagram of attitude control simulation.
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normal vectors are known, the solar radiation pressure force can be
calculated.
The force due to the vane is assumed to be a point force on the edge

of the boom: in terms of the dynamics simulation, the resulting
generalized force vector is written as follows:

fT;v � �FTv GTv fTe;v �T Fv � 2PA�ŝb · n̂v;b�2n̂v;b
Gv � p×

2Fv fe;v � ~PTv2Fv ~Pv2 � �03×61303×3�
(33)

where p2 denotes the deformed coordinate of the boom edge. The
element generalized force vector fe;v must be placed in the
appropriate index of the global generalized force vector to affect
the edge node as intended,whereasFv andGv are simply added to the
existing rigid-body generalized force.
The PD control law acts outside of the ODE solver, but the control

force provided by the vanes is calculated alongside the SRP force due
to the sail and is dynamically modified within the ODE solver. The
flexibility of the points in which the vanes are attached to causes
changes in the control torque generated by the vanes even when the
vane angles are not changing. This is a plausible on-orbit scenario, as
the on-orbit controller may only be able to provide control vane
angles at prespecified intervals due to electronic hardware limitations
or for stability reasons. The simulation captures this dynamic with its
continuous update to the control torque based on a fixed vane angle
within a fixed time step. The other realistic addition to the controller
setupwould have been implementing command and actuation delays,
but these have been omitted here for simplicity.
The remaining details of the dynamics simulation are equivalent to

those introduced in Secs. III and IV. The ODE solver provides the
generalized displacement and the attitude information of the system
at the next time step, and then thewrinkling criterion uses the updated
principal stresses and strains to determine the sail membrane’s cur-
rent state and updates the constitutive relationship matrix appro-
priately. This process repeats itself with the newly found states until a
designated time step is reached.
It is worthwhile to note that the controllability problem of the vane

actuators have been considered as well. By linearizing the equations
of motion and the vane actuation equation about the states and the
vane angles, and then using the system controllability theorem
presented by Hughes and Skelton [33], one can show controllability
of the sail for low-frequency modes given a number of arbitrary
pointing orientations and their steady-state elastic deformations. The
details of this simulation process and its results can be found in the
Choi’s thesis [15].

IX. Sail Simulation

To demonstrate the capability of the controller and the simulator, a
simple attitude pointing problem is defined: rotate a steady-state
cord-mat solar sail to a prescribed orientation defined by a z-y-xEuler
rotation by using the previously described control method. The
simulation is performed for a designated period of time, which is
chosen to show the sail settling down on the desired attitude profile.
The sail and the vane control actuation designs are as described

prior to this section, with the following dimensions: L � 70.7 m,
Δ � Ω � 1 × 10−2, and Γ � 0.0608. The structural parameters are
given inTable 1. Thevanes are assumed to be a right isosceles triangle
with a side length of 12.5 m. This seems excessively large, but it is a
necessary sizing requirement to counteract the disturbance torques
produced by the sail, as will be explained later on in this section. A
bus with a dimension of 10 × 10 × 10 m is assumed to be located at
the center of the sail. The bus is intentionally sized large to better see
the effects of sail shadowing due to it. As mentioned previously, sail
shadowing due to itself has not been implemented for the simulation
due to its excessive computational load.
ARayleigh dampingmodel is used, i.e.,Dee � mMee � kKee�0�,

where m and k are the damping parameters. For this simulation,
damping parameter values of m � 1 and k � 1 × 10−5 are used: a
choice based on trial and error.

The sail is preloaded by SRP with the sun vector ŝi �
� 0 0 −1 �T and stabilized before the controller is enabled. The
simulation begins at 6000 s: when the preloading simulation ends
with the vane control algorithm enabled. The simulation is performed
for 7500 s, with 50 s in between each time step for a total of 150 time
steps. Two attitude profiles are presented herewith varying controller
gains: θy � θz � 0 with θx � π∕2, and θz � π∕4, θy � 0 with
θx � π∕4. Different control gains are used for each simulation, as
listed in Table 2. These gains are chosen by a trial-and-error process
tominimize settling time and overshoot. Note that the gains are scaled
by P, which is the SRP constant.
Figure 12 shows the resulting sail shape in the body frame and the

Euler angle rotation of the sail’s attitude when commanded to an
edge-on configuration. The end shape of the sail is very close to that
of the sail without any SRP force loads. This is an expected behavior,
as the SRP force is minimal against a reflective surface edge-on to the
sun. The sail attitude converges to the desired attitude in a reasonably
rapid fashion, reaching a 99% settling time (time taken to reach 99%
norm of the desired attitude) within 4000 s. It is worthwhile to note
that there is an odd “wriggling” of θx during the slewing process. It
should also be noted that, although the membrane element nodes
along the negative y axis were marked to be shaded, the entire region
quickly stopped producing any SRP force due to the sail elements
facing away from the sun.
The aforementioned odd behavior can be explained by observing

Fig. 13. In particular, note how the sail experiences a significant
disturbance torque resisting the rotation induced by the controller.
Dubbed the “shuttlecock” effect, this is a phenomenon where the
slanted shape of each sail quadrant, combined with the nature of the
reflective surface to produce more SRP force when face-on toward
the sun, results in a restoring torque that tries to keep the spacecraft in
a sunward direction. As observed in Fig. 13a, this disturbance torque
grows as the sail is tilted, until it reaches the peak torque just before
θx � π∕4, and then it starts to fall off gradually until it is near zero
when the sail is edge-on. The peak disturbance torque is very large:
the vanes are only capable of producing, at most, 0.28 N · m along
the x or y axis, leaving around 0.05 N · m of excess torque to control
the spacecraft after counteracting the disturbance in worst cases. This
disturbance is likely to drive the sizing requirement for the vanes.
The predicted and the actual control torques produced by the vanes

are given in Fig. 13b. The difference occurs due to the bending
experienced by the boom, which is not part of the mathematical
model used to derive the vane angles but is part of the simulation due
to the structural dynamics simulated. However, it can be seen that the
difference between the two is minimal. When the sail is face-on
toward the sun, the difference between the two torques are visible in
the plot, reflecting how the SRP force bends the booms significantly
when the sail is face-on to the sun. As the sail is tilted to the edge-on
orientation, the plot demonstrates how the difference between the
predicted and the actual control torques are reduced. The difference
eventually becomes insignificantly small as the sail becomes edge-on

Table 1 Structural parameters for the cord-mat square solar sail

Beams Triangular plate

Sail boom Support cord Sail membrane

E, N∕m2 2.87 × 1010 6.619 × 1010 E, N∕m2 4 × 109

A, m2 2.87 × 10−5 2.191 × 10−7 ν 0.3
I, m4 1.6104 × 10−7 3.8201 × 10−15 h, m 1 × 10−5

ρ, kg∕m3 1440 1440 ρ, kg∕m3 1392

Table 2 Commanded Euler angle orientations

and control gains used

Euler angles Control gains

θx θy θz kp, N · m∕rad Kd, N · m∕rad∕s
π
2

0 0 5 × 105 P 2.5 × 102kp13
π
4

0 π
4

1.5 × 106 P 1.6 × 102kp13
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to the sun, with the boom sag reaching its minimum and only slightly
deviating from the straight boom case assumed by the control
allocation algorithm.
Vane angles commanded by the control allocation algorithm are

plotted in Fig. 14. It can be seen that, for the most part, the changes to
the angles are not too abrupt, with the exceptions being ϕ2 dropping
sharply at around 7000 s and θ2 and θ4 wrapping around at π. The
wraparound experienced by θ is an expected behavior, and the abrupt
change experienced by ϕ2 occurs at around the same time θ2 goes
from near zero to−π, which is most likely the main cause. A detailed
study into the behavior of the single-vane analytical solution would
be needed to mitigate such changes.
An interesting case to consider is the case when the sail is

commanded to θx � θz � π∕4: specifically, tuning the proportional
gain to allow the Euler angles to settle to 99% of the desired attitude
within a reasonable time causes significant overshoot along θz, which
is deemed undesirable. Increasing the derivative gain to mitigate the
overshoot results in significant oscillation in the control torques,
which is a highly undesirable behavior. What is shown in Fig. 15 is a
result ofmultiple attempts to tune the gain parameters such that a 99%
settling state is reached without significant overshoot and control
torque oscillation. The shape of the sail is a reduced catenary billow
from the original steady-state simulation but with a caveat. There is a
notable difference in displacement between the left and the right sides

of the sail. The sail membranes are more perpendicular to the sun
vector on the right side than the left side due to the inherent slant in
each quadrant, which results in greater force produced on the right
side, and hence the greater sail deflection on the right side. The Euler
angle plot shown in Fig. 15 indicates that there is a 20% overshoot for
θz, along with an unimpressive settling time of nearly 5000 s (albeit
90% settling state was reached earlier on). In addition, there is a θy
undershoot observed here, which is likely due to the disturbance the
sail undergoes as it slews to the desired attitude. A dip in attitude for
θx is also observed around the time θz experiences an overshoot,
which is the most likely cause of the dip.
The disturbance torque and the control torques are shown in

Fig. 16. The disturbance remains biased, acting against the control
torque to restore the sail attitude back to the sun-facing direction. One
can clearly see the effect of the bias on the control torque: Fig. 16b
shows howGx andGy are set to nonzero values even after the slewhas
completed. The plot also shows that the changes in these control
torques are not as sudden as the previous simulation, but this is likely
attributed to the slower convergence experienced by this particular
simulation compared to them. In addition, a small amount of control
torque oscillation can be seen between 9000 and 10,000 s,which does
damp out but is a cause for concern.
The general trend for the vane angles as seen in Fig. 17 is that

moderate changes are observed throughout the first 4000 s, which
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then experience a brief oscillation between 9000 to 10,000 s before
settling down to a smoother curve for the remainder of the simulation.
The behavior of the first 4000 s corresponds to the rapid changes in
the control torque. The oscillation is clearly due to the control torque
oscillation from Fig. 16b. It is worthwhile to note that the vane angles
do not experience the θ wraparound seen in other simulations.
Note that this attitude can also be achieved by a sequentially

commanded set of attitudes ( first, turn the sail about the z axis by π∕4,
and then about the x axis by π∕4); the resulting attitude is equivalent,
but it allows two different gains to be used to control each rotation
maneuver separately. One such simulation is shown in Fig. 18. To
achieve this, the simulation was initially set with kp � 1 × 106 P N ·
m∕rad and Kd � 2.2 × 102kp13 N · m∕rad∕s; then, with those
control gains, the sail is commanded to the first attitude in the
sequence— θx � θy � 0, and θz � π∕4. These control gains and the
desired attitude are maintained until the 99% settling state is reached:
in the case of this particular simulation, this is at 8000 s and denoted
by the dotted–dashed line in Fig. 18a.
Once the first sequence attitude is achieved, a new set of

control gains is specified: kp � 1.5 × 106 P N · m∕rad and
Kd � 9 × 101kp13 N · m∕rad∕s, with the new desired attitude set
as θx � π∕4, θy � 0, and θz � π∕4. One can immediately observe

its effects from Fig. 18a, where θx begins its ascent to the desired
value. One can also observe a slight overshoot, no doubt caused by
the changing θx and the resulting disturbance, but because it is
already close to its desired value, it is able to quickly settle back. At
the same time, since θx is the only angle with large changes, the
controller is able to provide appropriate torques to converge to its
desired valuewithin a short period of time. The convergence behavior
is similar to the second simulation: after the second sequence is
commanded, the sail attitude reaches a 90% settling state at around
1000 s, and it takes another 2000 s to converge to the 99% settling
state. The combined 99% settling time for the two sequences is
5150 s, which is only 200 s longer than the previous simulation, and it
avoids most of the issues associated with it.
Note that, based on what is seen in Fig. 18b, one could argue that

the controller behavior of the previous simulation is preferable to this
one, which contains several steep jumps from one set of torques to
another. Such changes to the control torques result in rapid and
sudden changes to the vane angles, as shown in Fig. 19, particularly at
around 9000 s when the sail reaches 90% settling state. Once again,
this is presumably due to the compensation action for the rapid
slewing experienced by the sail, which is necessary to keep the sail
pointing in the right direction against the biased sail SRP torques.
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Fig. 17 Vane angles during control simulation for θx � θz � π∕4 and θy � 0.
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Fig. 18 Vane angles during control simulation for θx � θz � π∕4 and θy � 0, with sequential commands.
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X. Conclusions

This paper presented a structural and attitude control dynamics
simulation of a cord-mat solar sail, containing a number of consid-
erations unique to solar sailing. Two unique disturbance factors were
added to the FEM model of the solar sail and the unconstrained
nonlinear structural dynamics equations describing themodel. One is
the wrinkling sail membrane model, where the membrane’s stress–
strain constitutive relationship is modified to portray the changing
behavior of the membrane as different forces acted upon it. The other
is the sail shadowing model, where shading caused by different
portions of the spacecraft is identified based on a parallel projection
method. This takes advantage of the specific choice of the FEM
element used for this research to determine specific shaded nodes and
removes their contributions to the SRP force produced by the sail.
The sail model combined with the disturbance factors was used to
then verify the capability of the tip-vane attitude actuators and the
associated control allocation scheme by using a simple PD control
law to command the sail to a number of pointing directions, with the
results illustrated in graphs and analyzed. The results are promising,
showing that the control scheme is capable of rotating the sail to the
desired pointing direction roughly within 2 h.
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