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I. Introduction

S PINNING wheels have long been used as torque actuators in
spacecraft applications. A constant speed wheel with variable

spin axis is usually termed a control moment gyro (CMG).1 A single-
gimbaled CMG (SGCMG) is created when the CMG is mounted in
a gimbal and motors are used to spin the wheel about the spin axis
and produce gimbal motion about the gimbal axis. The output torque
is about an axis perpendicular to the spin and gimbal axes.

Most of the research on CMGs has concentrated on their use for
attitude control2 and methods for generating the gimbal rates given
the desired output torques. There have been few studies employing
the CMG for active damping. This is somewhat surprising because
the CMG is a clean actuator (i.e., no plume impingements) exhibit-
ing a control torque that varies linearly with gimbal rate. Active
damping is a requirement on flexible spacecraft where oscillations
can develop from, for example, slewing maneuvers or solar-array
thermal snap. A device termed the gyrodamper was introduced by
Aubrun and Margulies.3 It consisted of a SGCMG with an angular
rate sensor that measured the inertial angular rate about the output
torque axis. They noted that the use of a constant proportional gain
between the angular rate and the gimbal rate (hence output torque)
would mimic a purely passive rotational dashpot.

Since the appearance of Ref. 3, there have been a few studies
using the CMG for active damping. These include Ref. 4, where a
SGCMG was placed at the tip of a pendulum to dampen its motion,
and Ref. 5, where a very large SGCMG was used to dampen the
oscillatory motions of a gondola. Bauer6 and Muise and Bauer7

have examined the design and control of a double-gimbaled CMG
for active damping. In their work, the performance of the double-
gimbaled CMG is compared with that of the SGCMG for damping
out the vibration of a beam.

This Note investigates the use of a SGCMG whose output torque
axis is nominally collocated with an angular velocity sensor and is
located at the end of a cantilevered beam. Furthermore, it has been
constructed so that the gimbal travel is restricted to ±20 deg. This
leads to an easier mechanical design and also ensures that the out-
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put torque axis is roughly constant and remains aligned with the rate
sensor axis. It is demonstrated that direct angular velocity feedback
with a proportional gain is not consistent with zeroing the gimbal
angle. A modification to the feedback law, which incorporates an
additional gimbal angle feedback term, is shown to make the gim-
bal angle go to the zero reference asymptotically. This is important
when using a device that has been constructed with limited gimbal
travel leading to an approximately constant output torque axis. Ex-
perimental results illustrate this property and demonstrate the active
damping that can be achieved.

II. Control Law Development
A. Dynamics of a Flexible Structure Containing a CMG

In this section, we consider a flexible structure that is constrained
to prevent rigid-body motion and whose configuration is described
by a column of generalized coordinates q(t). It is assumed that the
kinetic energy can be written as

T1 = 1
2 q̇T Mq̇ (1)

where M = MT > O is the mass matrix. The strain energy is assumed
to be of the form

U = 1
2 qT Kq (2)

where K = KT > O is the stiffness matrix.
We now embed a SGCMG into the flexible structure (Fig. 1). A

reference frame Ft is also embedded at this location whose 1 axis is
aligned with the spin axis for zero gimbal motion βg(t), the 2 axis
is aligned with the gimbal axis, and the 3 axis completes the right-
handed system. It is assumed that the angular momentum stored in
the wheel is hs = Isωs ≥ 0, where ωs is the constant wheel speed and
Is is the spin moment of inertia. It is assumed that the mass proper-
ties associated with the nonspinning CMG are already included in
the mass matrix M. The additional kinetic energy imparted by the
spinning wheel with moving gimbal is

T2 = hT
s ω + 1

2 Isω
2
s

Here, hs is the stored angular momentum vector expressed in Ft ,
which for small gimbal motions can be written as

hs = [hs −hsβg(t) 0]T

Fig. 1 SGCMG embedded in a flexible structure.
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The column ω denotes the angular velocity of Ft expressed in Ft .
If Ft is rotated from its undeformed position by three small rota-
tions αt = [αt1 αt2 αt3]T as a result of elastic deformation, then the
angular velocity, to second order, can be expressed as

ω = (
1 − 1

2α
×
t

)
α̇t

Therefore, to second order, the spin kinetic energy can be written as

T2 = hs α̇t1 − hsβg(t)α̇t3 + 1
2 hs(αt3α̇t2 − αt2α̇t3) + 1

2 Isω
2
s (3)

If it is assumed that the elastic rotations can be written as αti =ψT
i q,

i = 1, 2, 3, for constant columns ψi , then

T2 = hsψ
T
1 q̇ − βg(t)hsBT q̇ + 1

2 q̇T Gq + 1
2 Isω

2
s

where B =ψ3 and G = hs[ψ2ψ
T
3 −ψ3ψ

T
2 ] = −GT . In addition to

the preceding energy expressions, we assume that the presence of
structural damping leads to a nonconservative virtual work given
by δWe = −δqT Dq̇, where D = DT > O. Applying Hamilton’s (ex-
tended) principle to the kinetic energy T = T1 + T2, the strain energy
U , and δWe leads to the motion equation

Mq̈ + (D + G)q̇ + Kq = Bhs β̇g(t) (4)

Now, consider the Lyapunov function

H(t) = 1
2 q̇T Mq̇ + 1

2 qT Kq ≥ 0 (5)

We have

Ḣ = −q̇T Dq̇ + hs β̇gBT q̇ (6)

where it is noted that α̇t3 = BT q̇ is the angular velocity collocated
with the CMG output torque axis. Equations (5) and (6) can be used
to demonstrate the passivity property8 that exists between the input
β̇g and the output α̇t3. It is well known that such a system can be
stabilized using a strictly positive real control system connected in
negative feedback.9 In the present case, the simplest implementation
is a straight feedback gain

β̇g = −kd α̇t3, kd > 0

which leads to

Ḣ = −q̇T Dq̇ − hskd q̇T BBT q̇ ≤ 0

Using LaSalle’s theorem, the system in Eq. (4) coupled with the
feedback law is asymptotically stable. This also follows when D = O
if the system is observable using the output α̇t3 = BT q̇.

Integrating the feedback law leads to βg(t) = βg(0) − kd [αt3(t) −
αt3(0)]. If βg(0) = 0, then the asymptotic stability implies that

lim
t → ∞

βg(t) = kdαt3(0)

so that, in general, the gimbal angle does not tend to zero. In the
interest of keeping the gimbal angle small, it would be desirable if
βg(t) could be made to asymptotically tend to the zero reference.
To this end, we introduce the modified feedback law

β̇g(t) = −kd α̇t3 − kbβg(t) (7)

with kb > 0. Taking Lapace transforms, we have

β̇g(s)/α̇t3(s) = −kd s/(s + kb) = −Gc(s) (8)

Hence, the control law is equivalent to replacing the direct angular
velocity feedback with a high-pass filter Gc(s) = kd s/(s + kb). In
the actual controller implementation, Eq. (7) is used to determine
the desired gimbal rate using actual gimbal angle feedback; high-
pass filtering of the angular rate measurement is not used although
it is mathematically equivalent. We note that Gc(s) is analytic in
the closed right-half plane and Re{Gc( jω)} = kdω

2/(ω2 + k2
b) ≥ 0.

Hence, Gc(s) is positive real but not strictly positive real.10 However,
we can still demonstrate asymptotic stability with respect to the
structural motion and gimbal motion.

Let us define u(t) = β̇g , y(t) = α̇t3, Q = kb/kd , M = kb/
√

kd , and
N = √

kd . Adopting the Lyapunov function

V (t) = H(t) + 1
2 hs Qβ2

g(t) ≥ 0

we have, using Eqs. (6) and (7),

V̇ = Ḣ + hs Qβgβ̇g

= −q̇T Dq̇ + hs q̇T Bu − hs Qβg(kbβg + kd y)

= −q̇T Dq̇ + hs yu − hs(Mβg)
2 − hskbβg y

= −q̇T Dq̇ − hs y(kbβg + kd y) − hs(Mβg)
2 − hskbβg y

= −q̇T Dq̇ − hs(Mβg)
2 − 2hs M Nβg y − hs N 2 y2

= −q̇T Dq̇ − hs(Mβg + N y)2 ≤ 0

Clearly, we have Lyapunov stability and applying LaSalle’s theorem,
the invariant set contains q̇ = 0 and Mβg(t) + N y(t) = 0. Because,
q̇ = 0, it follows that y = BT q̇ = 0; hence, βg = 0. Therefore, u = 0;
hence, Kq = 0 implying q = 0. Thus, the system is globally asymp-
totically stable. This result is indicative of robust stability because
it does not rely on the specific values of M, D, G, or K but only on
their definiteness and symmetry properties, which depend only on
the dynamical principles.

B. CMG Gimbal Motor Control Law
Denote the desired gimbal rate produced by the feedback law in

Eq. (7) by β̇d , and let β̇g continue to denote the actual gimbal rate.
In our experimental setup, the gimbal axis is driven by a brushed dc
motor driving through a gearbox. The motor is controlled by varying
the armature voltage denoted by Vg(t). The dc motor is described by
the equation Vg = Raia + Keβ̇g , where Ra is the armature resistance,
ia is the armature current, Ke is the back electromotive force (EMF)
constant, and we have neglected the armature inductance. The motor
output torque is given by τ = Kt ia , where Kt is the motor torque
constant. One possibility for making the gimbal rate track its desired
value is the use of a closed-loop feedback law where the armature
voltage is, for example, a proportional–integral (PI) function of the
tracking error. This requires the use of potentially noisy gimbal rate
measurements. We have adopted an open-loop sensorless approach
where the armature voltage is given by Vg(t) = Keβ̇d(t). Combining
this with the preceding two relationships for the motor dynamics,
we arrive at the following expression for the motor torque:

τ = Kt ia = −(Kt Ke/Ra)(β̇g − β̇d)

Hence, this approach is equivalent to using an error-driven propor-
tional feedback law for the motor torque where the back EMF has
furnished the (noiseless) gimbal rate measurement. If we neglect
friction, then the gimbal torque can be approximately related to the
gimbal motion by Igβ̈g = τ , where Ig is the moment of inertia of
the gimbal axis assembly about the gimbal axis. When this is com-
bined with the preceding torque expression, the closed-loop transfer
function relating the desired gimbal rate to the true gimbal rate can
be written as β̇g(s)/β̇d(s) = a/(s + a), where a = Ke Kt/(Ia Ra). In
our application, the cutoff frequency a is much larger than the fre-
quencies of the vibration modes that we seek to dampen.

III. Experimental Results
A SGCMG with collocated angular rate sensor was designed and

built at the University of Toronto Institute for Aerospace Studies. A
schematic representation of the SGCMG is shown in Fig. 2. The spin
axis is controlled using a brushless dc motor, and the gimbal axis is
driven with a brushed dc motor. The rate sensor is a Systron-Donner
QRS-11 inertial rate sensor. The spin motor speed is measured by
counting pulses generated by a Hall effect sensor on one of the motor
phases. There is a quadrature encoder and an analog potentiometer
on the gimbal axis. The gimbal motor gearbox ratio is 449.1:1,
and the armature voltage is created using a pulse-width-modulation
(PWM) signal with a frequency of 187.5 kHz. The spin motor phases
were driven with a constant duty cycle PWM voltage signal so that
the rotor spin rate was 4000 rpm. Open-loop control of the spin
motor has been used. We compared this with closed-loop control
(a PI law) of the spin motor, and the regulation was comparable. For
one test we performed with a commanded spin rate of 4000 rpm,
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Fig. 2 SGCMG prototype.

Fig. 3 Gyrodamper and beam system
(schematic).

the open-loop mode produced a spin rate of 4011 ± 18 rpm, and the
closed-loop mode produced a spin rate of 4000 ± 20 rpm. The data
given here are the mean value and 1-σ variation.

The electronics is self-contained within the device and is capa-
ble of managing power, gimbal motor PWM, and real-time com-
putations. A 16-MHz microprocessor (the Siemens C164CI) was
used. The assembled device is contained within an aluminum
enclosure with dimensions 86 × 86 × 155 mm. The mass of the
entire device is mg = 1.267 kg. The spin inertia is Is = 2.08 ×
10−4 kg · m2, which yields a stored angular momentum of 8.71 ×
10−2 N · m · s. When multiplied by the maximum gimbal rate
that can be sensed (60.4 deg/s), the maximum control torque
that can be achieved is 92 mN · m. The properties of the gimbal
motor are Ke = Kt = 4.913 V · s/rad, Ra = 14.1�, and Ig = 1.5 ×
10−4 kg · m2.

The analog potentiometer and the rate sensor are interfaced to
10-bit (with sign) analog-to-digital converters. For the potentiome-
ter, 1 count = 0.0716 deg, and the noise was less than ±1 count.
For the rate sensor, 1 count = 0.118 deg/s, and the noise was on the
order of ±1 count. The rate sensor exhibited a repeatable dc bias
of −9 counts, which was easily removed. Both sensors are sampled
by the microprocessor at a rate of 30 Hz and have low-pass analog
filtering with a cutoff of 15 Hz.

This device that we have termed the GyroDamper has been at-
tached to the end of a clamped-free cantilevered beam, which is sus-
pended vertically. The beam is 0.5 m long and is made of aluminum
with a cross section that is 76.2 × 1.59 mm. A schematic represen-
tation is shown in Fig. 3. The moment of inertia of the GyroDamper
about the beam attachment axis is Jg = 9.15 × 10−3 kg · m2, and its
first moment of mass about this axis is cg = 0.108 kg · m.

For the experimental results to be presented, an impressed tip
deflection of 0.127 m with zero rate was the initial condition. The rate
sensor output is shown in Fig. 4 for the open-loop case corresponding

Fig. 4 Rate sensor and gimbal angle response.

Fig. 5 Damping ratio vs gimbal angle feedback gain (kd = 3.05).

to zero gimbal and spin motion. The response is dominated by the
first mode, which exhibits a damped natural frequency of 1.03 Hz
and a damping ratio of ζ1,o = 0.0023.

The closed-loop rate sensor response corresponding to kd = 3.05
and kb = 0 increased the damping ratio to ζ1,c = 0.025. The selected
value of kd is the maximum rate gain that could be selected with-
out saturating the gimbal motor voltage. The gimbal angle is also
shown in Fig. 4 (kb = 0), and, as expected, the gimbal angle does
not tend to zero. Next, the value of kb was increased to 1.40 s−1

with kd unchanged. The closed-loop response from the rate sensor
and the gimbal angle history are given in Fig. 4. The damping ratio
has been reduced to ζ = 0.012, but the gimbal angle now clearly
decreases toward zero. A graph of the damping ratio realized in the
first vibration mode as a function of the value of kb is given in Fig. 5.
All values were determined experimentally with the fixed value of
kd = 3.05. Clearly, the damping ratio falls off monotonically with
kb, and this relationship is linear for kb sufficiently small. It has
already been noted that for kb > 0, the gimbal angle tends to the
zero reference asymptotically. Because the effective damping is re-
duced as kb increases, one might wonder if there are any advantages
to increasing kb. By examining the gimbal angle trajectories for the
various values of kb, it was noted that the time it takes for the gimbal
angle to become “centered” about βg = 0 decreases as kb increases.
This time is approximately 15 s in Fig. 4.

IV. Conclusions
Active damping of flexible structures has been examined using

a collocated SGCMG and angular rate sensor, referred to here as
the GyroDamper. It has been demonstrated mathematically and ex-
perimentally that direct feedback between the angular rate sensor
and the gimbal rate leads to asymptotic stability but, in general,
the gimbal angle does not go to the zero reference asymptotically.
A simple modification to the feedback law that incorporates an
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additional term proportional to the gimbal angle was shown to rem-
edy this drawback and preserve the robust stability of a straight
feedback gain. Experimental results using a prototype GyroDamper
mounted to the tip of a cantilevered beam illustrated and agreed with
the theory.
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