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Nomenclature

a = angular velocity gain
a = axis of rotation
b = modified Rodrigues parameter gain
C = rotation matrix
c = coefficient in storage (Lyapunov) function
d = disturbance torque
f�x� = state function
G�σ� = modified Rodrigues parameter kinematics matrix
g�x� = control input function
Hγ = left-hand side of Hamilton–Jacobi inequality
h�x� = state weighting function
J = moment of inertia matrix
k�x� = disturbance input function
q1, q2 = state weighting factors
u = control torque
V�x� = Lyapunov function
x = state variables
x0 = equilibrium state
z = regulated outputs
fϵ; ηg = Euler parameters
γ = upper bound on L2-gain
K�x� = state feedback controller
L2�0; T� = space of square-integrable functions on �0; T�
ω = angular velocity
ϕ = angle of rotation
σ = modified Rodrigues parameters
σs = shadow modified Rodrigues parameters

I. Introduction

T HE attitude control problem for rigid spacecraft has attracted
significant attention. The problem is readily formulated using

Euler’s equation for the evolution of the angular velocity vector and
an equation to describe the evolution of the attitude. The latter typically
employs the rotation matrix or, more commonly, some parameter-
ization of it. The most common parameterization uses the Euler
parameters (or quaternions), which are a singularity-free four-
parameter set satisfying a constraint. Another interesting possibility
uses the modified Rodrigues parameters (MRPs) either by themselves
or in conjunction with their shadow parameters [1]. MRPs are a three-

parameter set that possesses a singularity when the principal angle of
rotation reaches�2π. The singularity for the shadow set occurs when
the principal angle of rotation is zero. Hence, one can combine the
MRPs with their shadow set to obtain a singularity-free parameter-
ization of the rotation matrix. This requires switching between the two
sets at an appropriate point.
The attitude control problem can be formulated as a disturbance-

free regulation or tracking problem. Alternatively, one can view the
problem from the disturbance attenuation point of view. That is the
approach that will be examined in this note using theMRPs and their
shadow set. In particular, it will be shown that a linear feedback law
consisting of a linear combination of the spacecraft angular velocity
and the generic MRPs locally solves the (suboptimal) nonlinearH∞
state feedback problem [2] (which may also be referred to as the L2

disturbance attenuation problem). The control solution is globally
defined in the presence ofMRP switching, and the degradation of the
L2-gain due to switching is examined. This control law is the one that
was proposed by Schaub and Junkins [1] as a globally asymptotically
stable solution to the attitude regulation problem. A similar control
law (although without use of the shadow parameters) was proposed
by Tsiotras [3,4] using passivity arguments to motivate it.
It should be emphasized that these previous works on the stability

of feedback using MRPs [1,3,4] considered only Lyapunov stability
and did not establish the disturbance rejection properties of the linear
angular velocity and MRP feedback. The fact that this linear
feedback can be shown to solve a local version of the nonlinearH∞
state feedback problem is our major contribution. The proof of this
result will be constructive and will establish analytical formulas for
the gain parameters in terms of the desired L2-gain, the control
weighting parameters in the performance output, and the moments
of inertia.
Other relevant work on the attitude disturbance rejection problem

is that of Kang [5], who showed that a linear combination of angular
velocity and some function of the rotation matrix locally solved the
nonlinear H∞ control problem, and Dalsmo and Egeland [6], who
showed that a linear combination of angular velocity and quaternion
feedback for the control torques solved the problem. Themain goal of
the presentwork is to obtain the comparable result usingMRPs in lieu
of the quaternions.

II. Suboptimal Nonlinear H∞ State Feedback Problem

Consider the nonlinear dynamical system described by

_x � f�x� � g�x�u� k�x�d; f�x0� � 0 (1)

z �
�
h�x�
u

�
; h�x0� � 0 (2)

where x ∈ Rn is the state vector, u ∈ Rm is the control vector, d ∈ Rp
is the disturbance vector, and z ∈ Rq are the regulated outputs. The
functions f , g, k, and h are appropriately dimensioned smooth
functions of the state.
The objective of the suboptimal nonlinear H∞ state feedback

problem is to determine a (possibly nonlinear) state feedback u �
K�x� so that for given γ > 1, the following inequality is satisfied:Z

T

0

kz�t�k2 dt ≤ γ2
Z
T

0

kd�t�k2 dt; ∀ T ≥ 0; ∀ d ∈ L2�0; T�

(3)

when x�0� � x0. Here, k�·�k denotes the Euclidean norm and
L2�0; T� is the space of functions that are square-integrable on �0; T�.
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From [2], there is the following result: the control law

u � −gT�x��∂V∕∂x�T (4)

with V�x0� � 0, V�x� > 0�x ≠ x0�, and

Hγ

�
x;
∂V
∂x

�
� ∂V

∂x
f�x�

� 1

2

∂V
∂x

�
1

γ2
k�x�kT�x� − g�x�gT�x�

��
∂V
∂x

�
T

� 1

2
hT�x�h�x� ≤ 0 (5)

solves the suboptimal nonlinearH∞ control problem. Equation (5) is
termed the Hamilton–Jacobi inequality. Note that ∂V∕∂x is a row
vector.
Now, relax the assumption that f�x� is smooth by permitting jump

discontinuities of the state (such will be the case when switching
between the MRPs and their shadow parameters). Assume that the
state experiences jump discontinuities at t � tk, k � 1; : : : ; N − 1,
and that t0 � 0 ≤ t1 < · · · < tN−1 ≤ tN � T. It will be assumed that
f�x� is a continuous function of the state, but because the state is
possibly a discontinuous function of time, it is assumed thatf�x�t�� is
only a piecewise continuous function of time t.
Now, applying the preceding theory to each time segment �t�k−1; t−k �

while usingEqs. (1), (4), and (5), it can be shownusing themethods in
[2] that

1

2

Z
tk

tk−1

kz�t�k2 dt ≤ 1

2
γ2
Z
tk

tk−1

kd�t�k2 dt� V�x�t�k−1�� − V�x�t−k ��

(6)

where x�t�k � denotes the state vector on either side of the dis-
continuity. Summing both sides of the inequality over each time
interval gives

1

2

XN
k�1

Z
tk

tk−1

kz�t�k2 dt

≤
XN
k�1

�
1

2
γ2
Z
tk

tk−1

kd�t�k2 dt� V�x�t�k−1�� − V�x�t−k ��
�

(7)

If V�x� is continuous across the discontinuities in the state, then the
above implies Eq. (3). Otherwise,

1

2

Z
T

0

kz�t�k2 dt

≤
1

2
γ2
Z
T

0

kd�t�k2 dt� V�x�0�� �
XN−1
k�1
�V�x�t�k �� − V�x�t−k ���

� 1

2
γ2
Z
T

0

kd�t�k2 dt�
XN−1
k�1
�V�x�t�k �� − V�x�t−k ���;

�x�0� � x0� (8)

which makes the impact of the discontinuities clear. In particular, for
0 < T < ∞, d ∈ L2�0; T� implies that z ∈ L2�0; T�. Letting T → ∞,
if the number of discontinuities N − 1 remains finite, then d ∈
L2�0;∞� implies that z ∈ L2�0;∞�. Because this result is made
possible by limiting the disturbances such that the number of
discontinuities remains finite, the feedback solution given byEqs. (4)
and (5) will be termed local in this case.

III. Attitude Control Using Modified Rodrigues
Parameters

For a rigid spacecraft, the evolution of the angular velocity,ω ∈ R3

(expressed in a body-fixed frame), is governed by Euler’s equation:

_ω � −J−1ω×Jω� J−1u� J−1d (9)

Here, J is the 3 × 3 moment of inertia matrix (expressed in a body-
fixed frame with origin at the mass center), u ∈ R3 are the control
torques, and d ∈ R3 are the disturbance torques. The matrix �·�× is
defined as

ω× �

2
4 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

3
5 (10)

and can be used to implement the cross product operation.
The attitude can be parameterized using the MRPs σ according to

σ � a tan�ϕ∕4� (11)

wherea andϕ are the principal axis and angle of rotation fromEuler’s
theorem. It is noted here that σ becomes infinitewhenϕ � �2π. The
MRPs can also be defined in terms of the Euler parameters fϵ; ηg
using σ � ϵ∕�1� η�, where ϵ ∈ R3 is the vector part and η ∈ R is the
scalar part. The rotation matrix mapping the components of vectors
from an inertial frame to the body-fixed frame can be expressed in
terms of MRPs using

C � 1 − 4
1 − σTσ

�1� σTσ�2 σ
× � 8

�1� σTσ�2 σ
×σ× (12)

The rotational rate kinematics relating ω to the MRP rates are
given by

_σ � G�σ�ω;G�σ� � 1

4
��1 − σTσ�1� 2σ× � 2σσT � (13)

The matrix G�σ� possesses the following properties:

σTG�σ� � 1� σTσ
4

σT (14)

G�σ� − σ× � GT�σ� (15)

kG�σ�k � 1

4
�1� σTσ� (16)

For square matrices, k�·�k denotes the matrix norm induced by the
Euclidean norm.
The MRP shadow set σs is related to the regular set according to

σs � −
σ

σTσ
� a tan

�
π − 2π

4

�
(17)

and possesses a singularity when ϕ � 0 but is singularity-free at
ϕ � �2π. By judiciously switching between the regular MRPs and
the shadow set, one can obtain a singularity-free three-parameter
representation of the spacecraft attitude. The price paid for this is a
discontinuity. In this work, it is assumed that the switch is performed
on the surface kσk � kσsk � 1. By switching between the two
parameter sets (using σs � −σ on the switching surface), one obtains
a composite description satisfying kσk ≤ 1 [7]. Another useful
property of the shadow set is that these parameters continue to satisfy
Eqs. (12) and (13). Hence, they are satisfied by the composite
description. It is also noted that _σ is globally defined, although
discontinuous on the switching boundary [8].
For a truly global representation, one needs to determine the

parameter set to be used if starting at kσk � 1. At this point

d�σTσ�
dt

����
kσk�1

� 2σT _σ � 2σTG�σ�ω � σTω
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where Eq. (14) has been used. To maintain kσk ≤ 1, the regular
parameters should be adopted when σTω < 0 and the shadow
parameters when σTω � −σTsω > 0. When ω � 0, then kσk � 1 is
a local maximum or minimum and one needs to examine

d2�σTσ�
dt2

����
ω�0;kσk�1

� σT _ω � σTJ−1�u� d�

If d is small and the control law is given by u � −aω − bσ
�a > 0; b > 0�, then

d2�σTσ�
dt2

����
ω�0

≐ −bσTJ−1σ < 0

and either MRP set yields a local maximum for kσk and can be
adopted.
Combining Eqs. (9) and (13) produces the state-space model

�
_ω
_σ

�
�
�
−J−1ω×Jω
G�σ�ω

�
�
�
J−1

0

�
u�

�
J−1

0

�
d (18)

which upon comparison with Eq. (1) permits the identification x �
colfω; σg with f�x�, g�x�, and k�x� being obvious. The equilibrium
state is x0 � 0.
The regulated output is taken to be

z �
"
h�ω; σ�
u

#
; h�ω; σ� �

�
1

2
q1ωTJω� q2σTσ

�1
2

;

q1 > 0; q2 > 0 (19)

which clearly penalizes the rotational kinetic energy; the penalization
on the MRPs is adopted from [8].
Theorem 1: Let γ > 1 and

a ≥

������������������������������������������������
1

2
q1 � b

�
kJk γ2

γ2 − 1

s
(20)

b ≥

�������������������
q2

γ2

γ2 − 1

s
(21)

Then the linear state feedback

u � −aω − bσ (22)

locally solves the state feedback suboptimal H∞ control problem.
Proof: Taking the shape of the proof from [6], it suffices to find a

positive-definite solution V�ω; σ� to the Hamilton–Jacobi inequal-
ity Hγ�x; ∂V∕∂x� ≤ 0.
To this end, consider the Lyapunov function candidate

V�ω; σ� � 1
2
aωTJω� bωTJσ � c ln�1� σTσ�, which has the

property V�0; 0� � 0 and yields the control law in Eq. (22) using
Eq. (4). The third term on the right-hand side has been used in [1,3,4]
and takes advantage of some peculiarities of the form of the MRP
kinematics.
It follows that

V�ω; σ� � 1

2
aωTJω� bωTJσ � c ln�1� σTσ�

≥
1

2
aωTJω� bωTJσ � ln�2�cσTσ

(23)

� 1

2

h
ωTσT

i�
aJ bJ
bJ 2 ln�2�c1

��
ω
σ

�
(24)

for kσk2 ≤ 1. V�ω; σ� will be positive definite when the central
matrix inEq. (24) is positive definite. Sufficient conditions for this are

a > 0 (25)

ac1 >
1

2 ln�2� b
2J (26)

Substituting the Lyapunov candidate V�ω; σ� from Eq. (23) into
Eq. (5) and simplifying gives

Hγ

�
x;
∂V
∂x

�
� bωTJGω� 2c

1� σTσ
σTGω − bσTω×Jω

� 1

2
a2
�
1 − γ2

γ2

�
kωk2 � 1

2
b2
�
1 − γ2

γ2

�
kσk2 � ab

�
1 − γ2

γ2

�
ωTσ

� 1

4
q1ωTJω�

1

2
q2σTσ

Noting that σTω×Jω � ωTJσ×ω, σTG � 1
4
σT�1� σTσ�, and

G − σ× � GT yields

Hγ

�
x;
∂V
∂x

�
� bωTJGTω� 1

2
cωTσ

� 1

2
a2
�
1 − γ2

γ2

�
kωk2 � 1

2
b2
�
1 − γ2

γ2

�
kσk2 � ab

�
1 − γ2

γ2

�
ωTσ

� 1

4
q1ωTJω�

1

2
q2σTσ

Choosing

c � 2ab

�
γ2 − 1

γ2

�
(27)

makes it possible to eliminate the two cross terms. Also, noting that
kGk � kGTk � 1

4
�1� σTσ� and ωTJω ≤ kJk · kωk2 gives

Hγ

�
x;
∂V
∂x

�
≤
1

4
bkJk�1� kσk2�kωk2

� 1

2
a2
�
1 − γ2

γ2

�
kωk2 � 1

2
b2
�
1 − γ2

γ2

�
kσk2

� 1

4
q1kJkkωk2 �

1

2
q2kσk2

≤
1

4

�
2bkJk � 2a2

�
1 − γ2

γ2

�
� q1kJk

�
kωk2

� 1

2

�
b2
�
1 − γ2

γ2

�
� q2

�
kσk2

If a and b satisfy Eqs. (20) and (21), respectively, it follows that

Hγ�x; ∂V∕∂x� ≤ 0 (28)

Also, a > 0 [using Eq. (20)] and ac ≥ 2b2kJk [using Eqs. (27)
and (20)] so that the conditions in Eqs. (25) and (26) are satisfied. The
result follows upon noting that the control law in Eq. (22) can be
obtained using Eqs. (4) and (23). □
The global asymptotic stability properties of the control law in

Eq. (22) have been previously demonstrated [1,3,4]. The Lyapunov
functions used there were identical (within a scaling) to the first and
third terms used here in Eq. (23). The second term (the cross term)
bωTJσ is not present in those references. It is noted that the first and
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third terms are continuous across the MRP-switching boundary
(because σTσ � 1 on the boundary andω is continuous). The second
term is not (because σ is replaced with σs � −σ on the boundary).
This leads to the jump V�t�k � − V�t−k � in Eq. (8) and, hence, the local
nature of the result. It should also be pointed out that the cross term is
the only way that one can obtain the linear MRP feedback term −bσ
using the H∞ feedback u � −gT�x��∂V∕∂x�T .

IV. Conclusions

In this note, the suboptimal nonlinearH∞ state feedback problem
has been examined for rigid spacecraft attitude control. The attitude
parameterization that has been adopted is the modified Rodrigues
parameters (MRPs) and their shadow parameters. A linear com-
bination of angular velocity and MRP feedback has been shown to
provide a local solution to the problem, that is, one that is valid in the
presence of a finite number of MRP switches. The local nature of the
solution stems from the discontinuous nature of the Lyapunov
function used to solve the Hamilton–Jacobi inequality. The proof of
Theorem 1, the main result, has been constructive and establishes
bounds on the gain parameters that solve the problem in terms of the
desiredL2-gain, the control weighting parameters in the performance
output, and themoments of inertia. If a Lyapunov function solution of
the Hamilton–Jacobi inequality can be found that is continuous
across the MRP switching boundary, then the result can be made a
global solution to the problem. It is also worth noting that a linear
feedback solution (although with MRP switching and hence a local
solution) has been found for a problem with nonlinear dynamics.
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