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Spacecraft attitude control using both magnetic and mechanical actuation is considered. Attitude control is

composed of quaternion-based proportional control and passivity-based rate (angular velocity) control. A passivity-

based scheme is adopted in order to guarantee robust closed-loop stability.Motivatedby thenearly periodic nature of

the Earth’s magnetic field, a linear time-varying input strictly passive system is used within the rate control.

Conditions that ensure a linear time-varying system is input strictly passive are given and are used in conjunction

with the linear quadratic regulator formulation to design and synthesize the rate control. The attitude control

formulation ensures that as time goes to infinity the spacecraft attitude and angular velocity go to zero. Simulation

results are included that highlight the robust nature of the closed loop subject to both orbit and spacecraft model

uncertainty.

I. Introduction

S PACECRAFT are usually equipped with some sort of attitude
control system. Attitude control systems are usually required to

enable pointing, slewing, or trajectory tracking (if not all these), as
well as disturbance rejection. Although spacecraft in geocentric
orbits can exploit environmental disturbance torques such as aerody-
namic, gravity gradient, or those associated with solar-radiation
pressure for attitude control or actuator desaturation, critical pointing
is usually delegated tomechanical actuators, such as reactionwheels.
Another viable actuation scheme enabling attitude control is
magnetic actuation, whereby onboard magnetic dipole moments
(created via current carrying coils) interact with the geomagnetic
field, thereby creating torques [1,2].

All attitude control schemes that rely solely onmagnetic actuation
suffer from the same fundamental problem: instantaneous under-
actuation. A general control torque cannot be realized instanta-
neously by magnetic actuation alone, owing to the fact that the
magnetic torque vector is generated via the cross-product of the
magnetic field vector and the dipole moment vector. Although
the stability of spacecraft equipped with magnetic actuators can be
guaranteed on average [3–5], improved performance in terms of
pointing accuracy is desired.

As a spacecraft orbits the Earth, the geomagnetic field properties
relative to the spacecraft change in an (almost) periodic fashion. This
periodic change has led many authors to investigate linear time-
varying (LTV) or linear periodic control schemes to be used in
conjunction with magnetic actuation [6–12]. For instance, [6–10]
consider periodic state feedback control, while [11,12] consider
periodic output feedback control. Some authors explicitly consider
disturbance rejection in the design of their periodic control law [6,9].
Often, Floquet analysis is used to assess stability of the closed-loop
system [7,8,10]; however, results that do not require a posteriori
stability analysis are available [11,12].

Other authors have explored the use of tandem actuation, i.e., the
collaborative use of magnetic and mechanical actuation, in order to,
among other objectives, improve performance. References [13,14]
consider spacecraft attitude control using reaction wheels and
magnetic toque rods, while [15] uses thrusters and magnetic torque
rods. Although both [13,14] use reactionwheels andmagnetic torque
rods in tandem, the control scheme of [13] allows for overlap of
control torques, which is undesirable. The control architecture
presented in [14] ensures that torques from each actuator are
orthogonal, disallowing the possibility of having control torques
overlap and in effect cancelling each other over short periods of time.

Tandem magnetic and mechanical actuation has also been used
after hardware failures have occurred, to restore complete three-axis
control, thus saving the mission in question. For example, the
primary and secondary pitch axis wheels of RADARSAT-1 failed on
orbit, thus rendering the pitch axis uncontrollable [16]. Similarly, the
Far Ultraviolet Spectroscopic Explorer spacecraft experienced two
reaction wheel failures (out of four), rendering three-axis control
impossible [17]. In both scenarios, three-axis control was restored
via some form of tandem magnetic and mechanical actuation.

The passivity theorem is one of the most famous and influential
stability results applicable to both linear and nonlinear systems [18].
It states that a passive system and an input strictly passive system
connected in negative feedback are stable. The passive nature of
spacecraft has been exploited for control design enabling, for
example, adaptive attitude control [19]. Passivity-based control-
lers possess excellent robustness properties. They are immune to
modeling errors in, for example, the spacecraft mass distribution.
Various authors have investigated LTV passive systems [20,21], yet
there have been no examples of LTV input strictly passive systems
being used as controllers in spacecraft applications.

This paper is concerned with passivity-based spacecraft attitude
control subject to gravity-gradient disturbances. A passivity-based
design approach is taken in order to guarantee robust closed-loop
stability. The attitude controller is composed of quaternion-based
proportional control and angular velocity based rate control. The rate
controller employs an LTV input strictly passive system. Using an
LTV system for control is motivated by the (almost) periodic nature
of the linearized spacecraftmodel, forwhich the periodicity is a result
of the magnetic field imposing its periodic nature upon the system.
Both magnetic and mechanical actuation will be used, where the
desired control torque will be distributed based on the physical
constraints of the magnetic actuators. It is shown that the properties
of the attitude controller ensure that both the vector part of the
quaternion and the angular velocity go to zero as time goes to infinity.

After reviewing spacecraft kinematics, dynamics, etc., passive and
input strictly passive systems are defined. A theorem is presented that
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ensures an LTV system is input strictly passive. Controller design is
then discussed, first showing that a spacecraft compensated by
quaternion-based proportional control possesses a passive input–
output map. A particular rate control that fosters an intuitive
distribution of the control between both actuator sets is shown to be
input strictly passive. An LTVinput strictly passive controller design
and synthesis method is presented that is based on a linearizedmodel
of the system being controlled. It is then shown that the attitude
controller can robustly stabilize both the attitude and angular velocity
of the spacecraft. Finally, a numerical example and closing remarks
are given. Throughout the paper, the writing of the temporal
argument of functions is neglected unless additional clarification is
needed.

II. Spacecraft Kinematics, Dynamics, Disturbances,
and Actuation

The rotational dynamics of generic rigid-body spacecraft in low
Earth orbit are governed by Euler’s equation (see [22], p. 95):

I _!�!�I!� �d � �w � �m (1)

where I is the moment of inertia matrix,! is the angular velocity of
the spacecraft expressed in the body-fixed frame,�d is the disturbance
torque, and

a � �
0 �a3 a2
a3 0 �a1
�a2 a1 0

2
4

3
5

is a skew-symmetric matrix satisfying a�
> � �a� where

a� �a1 a2 a3 �>. The control torque u will be distributed
between reaction wheel torques �w and magnetic torques �m�t��
b�

>�t�m�t�, whereb is the Earth’smagneticfield vector expressed in
the body-fixed frame, and m is the magnetic dipole moment [23].
The vector b is not constant as a result of the spacecraft changing
position and attitude while on orbit. The geomagnetic field vector
expressed in the inertial frame is bi, and b�Cbibi where Cbi is the
rotation matrix from the inertial frame to the body-fixed frame.

We elect to neglect disturbance torques that arise via aerodynamics
(which dominate at low altitudes) and solar-radiation pressure
(which dominate at geostationary altitudes); the gravity-gradient
torque will be considered the primary disturbance torque (see [22],
pp. 233–239):

� d �
3�

jrj5 r
�Ir (2)

where �� 3:98593 � 1014 m3=s2 is the Earth’s gravitational
constant, r is the position of the spacecraft relative to the Earth

expressed in the spacecraft body frame, and jrj �
��������
r>r
p

is the
Euclidean norm.

The attitude of a spacecraft can be described by the four-parameter
quaternion set �� � �1 �2 �3 �> and �, which together satisfy
�>�� �2 � 1 (see [22], pp. 17, 26). The quaternion rates and the
angular velocity are related by

_�
_�

� �
� 1

2

�1� ��
��>

� �
! or !� 2� �1 � �� �� � _�

_�

� �
(3)

III. Linear Time-Varying Input Strictly
Passive Systems

A function u 2 L2 if kuk2 �
����������������������������������R1
0 u>�t�u�t� dt

q
<1 and u 2

L2e if kuk2T �
���������������������������������R
T
0 u>�t�u�t� dt

q
<1,8 T 2 R�. A function u 2

L1 if kuk1 � supt2R� �maxi�1...njui�t�j�<1. A general square
system with inputsu 2 L2e and outputs y 2 L2e mapped through the
operator G: L2e ! L2e is passive if there exists a constant � such
that [19]

Z
T

0

y>�t�u�t� dt 	 �; 8 u 2 L2e; 8 T 2 R� (4)

and is input strictly passive if there exists � and 0< � <1 such thatZ
T

0

y>�t�u�t� dt 	 �
Z
T

0

u>�t�u�t� dt� �;

8 u 2 L2e; 8 T 2 R� (5)

The scalar � is related to the initial conditions of the system and
takes on values less than or equal to zero. Formally, the simple
version of the passivity theorem states that the negative feedback
interconnection of a passive system and an input strictly passive
system is L2-stable [19].

In this paper, wewill be concernedwith square LTV systems of the
form

_x�t� �A�t�x�t� �B�t�u�t� (6a)

y �t� �C�t�x�t� �D�t�u�t� (6b)

where x 2 Rn, u, y 2 Rm, and the time-varying matricesA�
�,B�
�,
C�
�, and D�
� are appropriately dimensioned real matrices that are
continuous. The nominal input–output equations are specified by
Eqs. (6a) and (6b); an alternate output is

z �t� �L�t�x�t� �W�t�u�t�

where z 2 Rm. We will assume complete controllability of
�A�
�;B�
�� and complete observability of �C�
�;A�
�� and
�L�
�;A�
�� [24,25].

We will now consider input strictly passive LTV systems.
Theorem 3.1: an LTV system described by Eq. (6) that is

completely controllable and completely observable with D�t� �
~D�t� � �1 where 0< � <1 is input strictly passive if there exist
continuous, bounded matrices P�t� � P>�t�> 0, L�
�, and W�
�
(where �L�
�;A�
�� is completely observable) such that

_P�t� � P�t�A�t� �A>�t�P�t� � �L>�t�L�t� (7a)

C >�t� � P�t�B�t� �L>�t�W�t� (7b)

~D�t� � ~D>�t� �W>�t�W�t� (7c)

Proof: to be concise, we will neglect writing the temporal
argument of the input and output signals and time-varying matrices.
Consider the following Lyapunov-like function and its temporal
derivative:

V � 1

2
x>Px

_V � 1

2
x>P _x� 1

2
_x>Px� 1

2
x> _Px� 1

2
x>� _P� PA�A>P�x

� x>PBu

Integrating _V from 0 to T gives

Z
T

0

_V dt� V�T��V�0�
z�}|�{�

	 �
Z
T

0

�
1

2
x>� _P� PA�A>P�x� x>PBu

�
dt

�
Z
T

0

�
� 1

2
x>L>Lx� x>�C> �L>W�u

�
dt 	 �

Z
T

0

x>C>u dt 	
Z
T

0

�
1

2
x>L>Lx� x>L>Wu

�
dt� �
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where we have used Eqs. (7a) and (7b). Recall that D is square and
can be broken up into symmetric and skew-symmetric parts:
D� �1=2��D�D>� � �1=2��D � D>�. Noting that

y>u� x>C>u� 1

2
u>�D> �D�u� x>C>u� 1

2
u>� ~D> � ~D�u

� �u>u� x>C>u� 1

2
u>W>Wu� �u>u

where we have used Eq. (7c), we arrive atZ
T

0

y>u dt 	
Z
T

0

�
1

2
x>L>Lx� x>L>Wu

� 1

2
u>W>Wu� �u>u

�
dt� �

� 1

2

Z
T

0

�Lx�Wu�>�Lx�Wu� dt

� �
Z
T

0

u>u dt� � 	 �
Z
T

0

u>u dt� �

which completes the proof.

IV. Spacecraft Attitude Control Formulation

Neglecting the disturbance torque momentarily, consider a
spacecraft endowed with three orthogonal reaction wheels and three
orthogonal magnetic torque rods. The desired control torque u will
be composed of proportional control up and rate control ur:

u � up � ur � �w � �m (8)

How the desired control torque will be decomposed into wheel
torques and magnetic torques will be discussed in Sec. IV.C.

A. Passivity Properties of a Spacecraft Compensated by
Proportional Control

Proportional control of the form up ��k� will be employed. In
the following theorem, we will interpret the plant compensated by
proportional control in terms of a passive input–output map between
ur and !.

Theorem 4.1: a spacecraft described by Eqs. (1) and (3) (with
�d � 0) compensated with proportional control of the form up �
�k� for 0< k <1 possesses a passive input–output map between
ur and !.

Proof: consider the following Lyapunov-like function, its
temporal derivative, and subsequent simplification [26]:

V � 1

2
!>I!� k��>�� �� � 1�2�

_V �!>��!�I!� up � ur� � 2k��> _�� �� � 1� _��
� �k!>��!>ur � k��>��1� ���! � �� � 1��>!� �!>ur

wherewehave usedEq. (3) to simplify. Integrating the result between
0 and T delivers

Z
T

0

!>ur dt�
Z
T

0

_V dt� V�T� � V�0� 	 �V�0�
z�}|�{�

which completes the proof.
Notice that the spacecraft compensated with proportional control

is passive for any inertia matrix I and any positive k; the passive
nature of the system does not hinge on particular numeric values.

B. Input Strictly Passive Rate Control

Given that a spacecraft compensated by proportional control is
passive, stability of the spacecraft angular velocity can be guaranteed
via the passivity theorem provided the rate controller (to be
connected in a negative feedback loop) is input strictly passive. Note

that only the angular velocity is guaranteed to be stable; stability of
the attitude will be considered in Sec. IV.F.

The rate controller input is!; the output is vr ��ur. Consider the
following rate controller:

v r � �b̂b̂>!� b̂�>G�b̂�!� (9)

where ^�
� denotes a unit vector (i.e., b̂� jbj�1b), and G is an input
strictly passive operator satisfying Eq. (5). The � in Eq. (9) is the same
as the � in Eq. (5) associatedwithG. In the following theorem,wewill
show that the map from ! to vr is input strictly passive.

Theorem 4.2: themap between! and vr is input strictly passive; vr
is given in Eq. (9).

Proof: consider the following integral:Z
T

0

!>vr dt�
Z
T

0

!>��b̂b̂>!� b̂�>G�b̂�!�� dt

	 �
Z
T

0

!>�b̂b̂> � b̂�
>
b̂��! dt� �

� �
Z
T

0

!>! dt� �

where we have used the identity b̂�>b̂� � 1 � b̂b̂> (see [22]
pp. 58, 85).

C. Distribution of Control Between Wheel Torques

and Magnetic Torques

The control torques applied to the spacecraft will be distributed as
follows:

u � �w � �m � b̂b̂>��k� � �!�|�����������{z�����������}
�w

� b̂�>��kb̂�� � G�b̂�!��|������������������{z������������������}
�m

(10)

It is straightforward to have the reaction wheels apply the torque
commanded to them, but the magnetic torques must be applied in the
following way:

� m � b�
>
m; m��jbj�1�kb̂��� G�b̂�!��

The distribution presented in Eq. (10) can be interpreted in the
followingway using the results of [14]. Recall that the torque created
by magnetic actuation is restricted to lie in a plane orthogonal to the
instantaneous magnetic field vector. The preceding distribution
distributes control torques such that any torque that lies in Ker fb�g,
i.e., parallel tob, is applied by the reaction wheels. Torques that lie in
Im fb�g, i.e., perpendicular to b, are applied by the magnetic torque
rods.

Control torques are distributed in this tandem manner in order to
reduce reaction wheel load. The overall load experienced by the
reaction wheels is less (because the wheels are applying lower
torques to the spacecraft), leading to longer wheel life or the use of
smaller wheels. Depending on the spacecraft mission, ensuring
longer wheel life may be more important (i.e., improving mission
robustness and reliability). Alternatively, having smaller wheels may
be desirable, especially in the context of micro- and nanosatellites.
Smaller wheels may realize a reduced spacecraft mass, or the
opportunity to increase the spacecraft payload.

D. Controller Design and Synthesis

Given the previously developed control formulation and decom-
position, we are poised to design the input strictly passive operatorG.
Given that G must be input strictly passive and the system to be
controlled possesses periodic properties, G will be realized by an
input strictly passive LTV system and must satisfy theorem 3.1. We
will design our controller G based on a linearized model of the
spacecraft to be controlled.

We will start by linearizing the spacecraft kinematics. We choose
zero angular displacement and zero angular rate of the body-fixed
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frame relative to the inertial frame as our linearization point.
Assuming small angles and rates, we have � �: 2�, i.e., Cbi �

:

1 � ��, and _� �: ! (see [22], pp. 21–22, 27–29). Next, we will
linearize the spacecraft dynamics. To do so, wewill write the system
to be controlled in the following way:

I _!�!�I!��k� � �b̂b̂>!� b̂�>v (11a)

��k� � �Cbib̂ib̂
>
i C
>
bi!�Cbib̂

�>
i C>biv (11b)

where v� G�y� and y � b̂�!�Cbib̂
�
i C
>
bi! are the output and

input of the input strictly passive LTV controller, respectively, and

�d � 0. Note that we used the identity �Cbib̂i�� �Cbib̂
�
i C
>
bi (see

[22], pp. 529). Substitution of the linearized kinematics into Eq. (11)
gives

I ��� _�
�I _��� k

2
� � ��1 � ���b̂ib̂>i �1 � ���> _�

� �1 � ���b̂�>i �1 � ���>v (12)

By neglecting terms that are of an order greater than one, Eq. (12)
becomes

I ���� k
2
� � �b̂ib̂>i _�� b̂�

>

i v

which can bewritten in conjunctionwith y �: b̂�i _� infirst-order state-
space form:

_�
��

� �
� 0 1
� k

2
I�1 ��I�1b̂ib̂>i

� �
|�������������������{z�������������������}

A�t�

�
_�

� �
|{z}

x�t�

� 0
I�1b̂�>i

� �
|�����{z�����}

B�t�

v�t� (13a)

y �t� � 0 b̂�i
� �
|����{z����}

C�t�

�
_�

� �
(13b)

Equation (13) is the linearized plant model. We have written the
temporal arguments inEq. (13) to emphasize the linearmodel is time-
varying.

The input strictly passive controller G to be designed based on
Eq. (13) can be expressed in terms of a minimal state-space
realization:

_x c�t� �Ac�t�xc�t� � Bc�t�y�t� (14a)

v �t� �Cc�t�xc�t� �Dc�t�y�t� (14b)

Rather then arbitrarily assigning the Ac�
� and Cc�
� matrices, we
will design them via the well-known linear quadratic regulator
(LQR) formulation. Given the performance index [27,28]

J � x>�T�Sx�T� �
Z
T

0

�x>�t�Mx�t� � v>�t�Nv�t�� dt

where S� S> 	 0,M�M> 	 0, andN�N> > 0, one can derive
an optimal-state feedback Cc�t� �N�1B>�t�X�t�. The matrix
X�
� �X>�
� 	 0 can be found by solving the following time-
varying matrix Riccati equation:

� _X�t� �M�A>�t�X�t� �X�t�A�t�
�X�t�B�t�N�1B>�t�X�t�;

X�T� � S (15)

The matrix Riccati equation must be solved backward in time from
t� T to t� 0 given the boundary condition X�T� � S. Following
the LQR formulation, we will let Ac�t� �A�t� � B�t�Cc�t�. Given
that we have specified Ac�
� and Cc�
�, we must now design Bc�
�
andDc�
� such that the controller is input strictly passive according to

theorem 3.1. By specifying L�
� appropriately, i.e., so that
�L�
�;Ac�
�� is observable, and Dc�
� to be positive definite [or

alternatively ~D�
�, which in turn dictatesW�
�], the matrixBc�
� can
be solved for via Eq. (7b):

B c�t� � P�1�t��C>c �t� �L>�t�W�t��

where P�
� is found by solving Eq. (7a):

_P�t� � P�t�Ac�t� �A>c �t�P�t� � �L>�t�L�t� (16)

backwards in time from t� T to t� 0 given the boundary condition
P�T�> 0. To computeBc�
�, the matrixP�
�must be inverted, which
is why �Ac�
�;Bc�
�� must be completely controllable and the pairs
�Cc�
�;Ac�
�� and �L�
�;Ac�
�� must be completely observable
[20,21].

The resultant Ac�
�, Bc�
�, Cc�
�, and Dc�
� compose an input
strictly passive controller of the form presented in Eq. (14). The
synthesis procedure will always yield an input strictly passive
operator G, even if the assumed spacecraft inertia matrix I and orbit
(and hence bi values) are incorrect.

E. Practical Considerations and Additional Comments

Some remarks with respect to implementation of the proposed
control architecture are in order. To start, recall the linearized system
in Eq. (13), which is used as the basis for controller design. Indeed,
the linearized system is time-varying, but owing to the presence of
terms involving the Earth’s magnetic field vector bi the linearized
system is in fact approximately periodic. As such, it is expected that
upon backward integration of Eqs. (15) and (16) the matrices X�
�
and P�
� will have a steady state that is approximately periodic as
well.

It is unreasonable to store the steady-state solutions of X�
� and
P�
� (from t� 0 to t� T) onboard the spacecraft. Given that X�
�
and P�
� have almost periodic steady-state solutions, in practice the
upper (or lower) triangular parts of X�
� and P�
� would be
approximated by a Fourier series. (Recall, X�
� and P�
� are sym-
metric, hence approximating every element of the matrices is
unnecessary.) The Fourier coefficients associated with each Fourier
series used to approximate the appropriate elements ofX�
� and P�
�
would then be stored onboard. Other approximations may be used;
[6] suggests using a spline approximation.

F. Convergence of Attitude and Angular Velocity to Zero

Wewill now show that as time goes to infinity, � and! go to zero.
To do so, we will first show that the input strictly passive operator G
designed by the method outlined in Sec. IV.D satisfies two critical
properties related to boundedness and convergence. We will then
show that �, �, and! 2 L1, which will lead to!�t� ! 0 as t!1.
Finally, using an invariance result associated with asymptotically
autonomous systems [29], we will show that ��t� ! 0 as t!1.

Wewill begin by showing that themap v� G�y� has the following
properties: 1) y 2 L1 ) v 2 L1 and 2) y 2 L2 and y�t� ! 0 as
t!1) v�t� ! 0 as t!1.

To show that v� G�y� satisfies property 1, first consider the
solution of Eq. (14):

xc�t� ���t; 0�xc�0� �
Z
t

0

��t; ��Bc���y��� d�

v�t� �Cc�t�xc�t� �Dc�t�y�t�

where ��
; 
� is the state-transition matrix associated with the
homogeneous system _xc�t� �Ac�t�xc�t� with solution xc�t��
��t; 0�xc�0�. We have designed Ac�
� using a LQR formulation; a
Lyapunov-type analysis can be used to show that solutions of _xc�t� �
Ac�t�xc�t� satisfy

jxc�t2�j � Ke�a�t2�t1�jxc�t1�j
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where 0<K <1 and 0< a <1, which is to say the system is
exponentially stable [30]. Using this fact, we can show that the state-
transition matrix is bounded:

k��t2; t1�k � max
jxc�t1�j�1

j��t2; t1�xc�t1�j

� max
jxc�t1�j�1

jxc�t2�j � Ke�a�t2�t1� (17)

where kXk �
�������������������
��fX>Xg

q
is the induced matrix norm and ��f
g is the

maximum eigenvalue. Next, recall that y 2 L1, and each of the
matrices Ac�
�, Bc�
�, Cc�
�, and Dc�
� is bounded. As such, let

jy�t�j � �y, kAc�t�k � �Ac, kBc�t�k � �Bc, kCc�t�k � �Cc, and

kDc�t�k � �Dc 8 t 2 R�. Also, partition the nonhomogeneous
solutions of xc�
� as follows:

xc�t� � xc1�t� � xc2�t�; xc1�t� ���t; 0�xc�0�

xc2�t� �
Z
t

0

��t; ��Bc���y��� d� (18)

To show that y 2 L1 implies v 2 L1, we will first show that xc1�
�
and xc2�
� are in L1, which will lead to the desired result. As such,
consider the Euclidean norm of xc1�
�:

jxc1�t�j � j��t; 0�xc�0�j � Ke�atjxc�0�j � Kjxc�0�j

where the inequality in Eq. (17) has been used. This shows that xc1�
�
is bounded, and hence xc1 2 L1. To show xc2 2 L1 consider the
following:

jxc2�t�j � j
Z
t

0

��t; ��Bc���y��� d�j �
Z
t

0

j��t; ��Bc���y���j d�

� K �Bc �y

Z
t

0

e�a�t��� d� � K
�Bc �y

a

wherewe have used the inequality in Eq. (17) once again. This shows
that xc2�
� is bounded as well, and hence xc2 2 L1. Given that xc1,
xc2 2 L1, then xc 2 L1 as well. Using Eq. (14b), the fact that y,
xc 2 L1, and the boundedness of Cc�
� and Dc�
�, yields v 2 L1.

Next, wewill show that v� G�y� satisfies property 2.Wewill first
show that xc 2 L2. Consider the decomposition of xc�
� in Eq. (18)
once more. The square of the L2 norm of xc1�
� is

kxc1k22 �
Z 1
0

j��t; 0�xc�0�j2 dt �
Z 1
0

k��t; 0�k2jxc�0�j2 dt

� K2jxc�0�j2
Z 1
0

e�2at dt� K
2jxc�0�j2
2a

Thus, xc1 2 L2. Now, consider the Euclidean norm of xc2�
�:

jxc2�t�j �
Z
t

0

j��t; ��Bc���y���j d� � K �Bc

Z
t

0

e�a�t���jy���j d�

� K �Bc

Z
t

0

�e�a�t���jy���j2�12�e�a�t����12 d�
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Fig. 1 Angular velocity and quaternions vs orbit.
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By using Hölder’s inequality, we then have

jxc2�t�j � K �Bc

�Z
t

0

e�a�t���jy���j2 d�

�1
2

�Z
t

0

e�a�t��� d�

�1
2

� K
�Bc
a

�Z
t

0

e�a�t���jy���j2 d�

�1
2

Squaring both sides and integrating between t� 0 and t� T gives

kxc2k22T �
K2 �B2

c

a2

Z
T

0

Z
t

0

e�a�t���jy���j2 d� dt

� K
2 �B2

c

a2

Z
T

0

Z
T

�

e�a�t���jy���j2 dt d� (19)

where we have changed the bounds of integration on the right-hand
side of the inequality. The integral

R
T
� e
�a�t��� dt is bounded by 1=a;

the inequality in Eq. (19) becomes

kxc2k22T �
K2 �B2

c

a3
kyk22T

Taking the square root of each side of the preceding inequality and
letting T !1 yields xc2 2 L2. Because xc1, xc2 2 L2, xc 2 L2.
Now, fromEq. (14a), because bothAc�
� andBc�
� are both bounded,
we have _xc 2 L2 as well. Because xc, _xc 2 L2, x�t� ! 0 as t!1

[31]. Because y�t� ! 0 andxc�t� ! 0 as t!1, fromEq. (14b) we
then have that v�t� ! 0.

Having established that v� G�y� satisfies both properties 1 and 2,
let us now turn our attention to the closed-loop system. Combining
the plant dynamics, kinematics, and control given in Eqs. (1), (3), and
(8) [i.e., up ��k� and ur ��vr; vr is given in Eq. (9)], the
undisturbed closed-loop system is described by

_�� 1

2
��1� ���! (20a)

_��� 1

2
�>! (20b)

I _!��k�� h�!; t� (20c)

where

h �!; t� � �!�I!� �b̂b̂>!� b̂�>G�b̂�!� (21)

We will now show that �, �, and ! 2 L1. Consider once again the
Lypaunov-like function used previously in the proof of theorem 4.1,
its temporal derivative, and subsequent simplification:

V � 1

2
!>I!� k��>�� �� � 1�2�

_V ��!>��b̂b̂>!� b̂�>G�b̂�!��
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Fig. 2 Wheel torque and magnetic torque vs orbit.
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Integrating _V between 0 and t and using the fact thatG is input strictly
passive gives

V�t� � V�0� � �
Z
t

0

!>��b̂b̂>! � b̂�>G�b̂�!�� d�

� ��
Z
t

0

!>! d� � �

Rearranging, we have

V�t� � V�0� � �
Z
t

0

!>! d� � � � V�0� � � (22)

where�� 	 0. Clearly,V is bounded from above, and as a result �, �,
and ! are bounded as well. Hence, �, �, and ! 2 L1. Using the
inequality in Eq. (22) we can also confirm that ! 2 L2:

�

Z
T

0

!>! dt � V�0� � �

Letting T go to infinity confirms! 2 L2, a result already ensured by
the passivity theorem.

Having shown that �, �, and ! 2 L1, we will now show that

!�t� ! 0 as t!1. Because ! 2 L1, b̂�! 2 L1. From

property 1, we have that G�b̂�!� 2 L1. Because � and ! 2 L1,
from Eqs. (20c) and (21) we have that _! 2 L1 as well. Given that
! 2 L2 and _! 2 L1, from Barbalat’s lemma [32] we conclude that
!�t� ! 0 as t!1.

Our last challenge is to show that � goes to zero as time goes to
infinity. Owing to the fact thatG satisfies property 2 and!�t� ! 0 as
t!1, it follows that h�!; t� ! 0 as t!1 also. As such, all
trajectories of the closed-loop system given in Eq. (20) approach the
set �� ���; �;!� 2 R3 � R � R3j!� 0�. Next, let ��; �;!� be a
solution of Eq. (20) given some initial conditions. Using the results of
[29], becauseh�!; t� ! 0, the nonautonomous system in Eq. (20) is
asymptotically autonomous to

_��� 1

2
� ��1� ���� �! (23a)

_���� 1

2
��> �! (23b)

I _�!��k �� (23c)

which is an autonomous system. As such, the positive limit set of the
system in Eq. (20) approaches the largest invariant set of the
autonomous system in Eq. (23) contained in �. With !� 0 and
_!� 0, from Eq. (23c) we have that �� 0 as well. Therefore, we can
conclude that ��t� ! 0 as t!1.

Given a system with quaternion-based proportional control and
passivity-based rate control, we have shown that both ��t� ! 0 and
!�t� ! 0 as t!1. Of particular interest is the fact that
convergence of � and! to zero does not hinge on the particular values
of k and �, nor particular Ac�
�, Bc�
�, Cc�
�, or Dc�
� matrices.
Provided that 0< k <1, 0< � <1, and the synthesis procedure of
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Fig. 3 Combined torque (�
w
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m
) and magnetic dipole moment vs orbit.
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Sec. IV.D is used to design G, robust stability of the spacecraft
attitude and angular velocity is assured.

V. Numerical Example

We will consider a spacecraft with moment of inertia matrix
I� diagf27; 17; 25g kg 
m2. It is in a circular Keplerian orbit at an
altitude of 450 km and inclination of 87�. The angle of the right
ascension of the ascending node, argument of perigee, and time of
perigee passage are equal to zero. We will use the magnetic field
model described by Wertz [23], Appendix H, and restated in [13].

The spacecraft is equipped with three reaction wheels and three
torque rods. The controller is to regulate the quaternions to �� 0,
�� 1, and the angular velocity to !� 0, while simultaneously
rejecting the gravity-gradient disturbance torque of Eq. (2). Control
will be computed using the design and synthesis method presented in
Sec. IV.D. We will set k� 7:5 � 10�4 N 
m and �� 5�
10�5 N 
m 
 s. The LQR weights will be M� diagf1:5 � 10�3;
1:5 � 10�3; 1:5 � 10�3; 1; 1; 1g and N� diagf1 � 104; 1 � 104;
1 � 104g, while X�T� � 1 where 1 is identity. The input strictly
passive controller will be weighted by L� � �1 � 10�8�1 �10�1 �,
while we will set Dc�t� � �2�� �1=80��� cos�t=T0� � 1��1 where

T0 is the orbital period. Letting ~D�t� � ��� �1=80��� cos�t=T0��
1��1, it follows thatW�t� �

������������������������������������������������������������������
2��� �1=80��� cos�t=T0� � 1��

p
1 by

Eq. (7c). Similarly, P�T� � 1, which will be required to solve
Eq. (16). The spacecraft initial conditions are �� ��1=2 1=2
1=2�>, ���1=2, and !� � 0:02 �0:02 0:02 �> rad=s.

Figure 1 shows the angular velocity and quaternion evolution vs
time, while Fig. 2 shows the magnetic torques and reaction wheel
torques vs time. Figure 3 shows the combined torque �w � �m vs
time and the magnetic dipole moments vs time, and Fig. 4 shows the
maximum eigenvalues of the matrices X�
� and P�
� vs time; notice
the nearly periodic nature of both, indicating that the controller is not
only time-varying but close to periodic as well. As mentioned in
Sec. IV.E, the upper triangular parts of bothX�
� and P�
� would be
approximated using a Fourier series in practice.

The wheel torques do not exceed 1 � 10�3 N 
m, the magnetic
torques do not exceed 1 � 10�3 N 
m, and the magnetic dipole
moments do not exceed 30 A 
m2; these values are reasonable. By
increasing k, �, andM (and decreasingN or holding it constant), the
resultant controller drives the quaternion error and angular velocity
error to zero much faster while simultaneously rejecting the gravity-
gradient disturbance torque. However, the magnetic dipole moments
required are much larger and are practically not possible. The values
chosen here are based on various simulations, i.e., tuning. In
particular, M and N values were first picked given the values
presented in [8] and were then tuned.

Recall the general structure of the rate control presented in Eq. (9).

Let ur;w ���b̂b̂>! be the portion of the rate control applied by the

reaction wheels and ur;m ��b̂�>G�b̂�!� be the portion applied by
the magnetic torque rods. The instantaneous power of the wheels is
then Pw �!>ur;w while the instantaneous power of the magnetic
torque rods isPm �!>ur;m. Figure 5 shows the total work done (i.e.,
the total energy dissipated) by each actuator as a function of time
where the total work done isWtotal �

R
t
0 P�t0� dt0 and P is Pw or Pm.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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Fig. 4 Maximum eigenvalues of X��� and P��� vs orbit.
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The total work each actuator does after five orbits is Wtotal;w �
�9:9324 � 10�5 J and Wtotal;m ��0:0159 J. Clearly, the magnetic
torque rods dissipate more energy than the reaction wheels do. This
in turn means the wheels are not working as hard.

The advantage of our attitude control scheme is that robust
stability can be achieved given model uncertainty. This is true given

both spacecraft and magnetic field model perturbations. Previous
studies conducted employing magnetic actuation alone have only
been able to assess the stability of the true system via simulation. For
example, [10] perturbs the assumed inertial matrix of the spacecraft
by 22% and presents simulations that indicate “some signs of
instability.” Reference [8] perturbs the spacecraft inertia matrix (by
25 and 30%) and the orbit (by changing the altitude and eccentricity)
and is able to show robust stability in simulation.

An example of robust closed-loop stability will be shown next.We
will change both the spacecraft inertia properties and orbit. The
principal axes of the inertia matrix are reduced by 25%, representing
fuel loss, while the altitude, inclination, and eccentricity of the orbit
have been changed to 500 km, 67�, and e� 0:05, respectively.
Figure 6 shows the spacecraft angular velocity and quaternion
evolution vs time, given these changes as controlled by the same
controller developed for the assumed model and orbit. The system
response is only moderately changed, given these significant
changes, highlighting the robust nature of the passivity-based control
scheme employed.

VI. Conclusions

The attitude control of a spacecraft equipped with both reaction
wheels and magnetic torque rods has been considered. It was shown
that a spacecraft compensated by quaternion-based proportional
control possesses a passive input–output map, enabling the use of an
input strictly passive LTV controller to perform rate control. Via the
passivity theorem, the spacecraft angular velocity is guaranteed to be
stable. Control torques are distributed between reaction wheels and
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Fig. 6 Angular velocity and quaternion response when spacecraft inertia and orbit have been perturbed.

0 1 2 3 4 5
−16

−14

−12

−10

−8

−6

−4

−2

0

2

4
x 10

−3

Orbit

 W
to

ta
l (

J)
 

W
total,w

W
total,m

Fig. 5 Total work done by reactionwheels andmagnetic torque rods vs

orbit.

FORBES AND DAMAREN 1371

D
ow

nl
oa

de
d 

by
 R

Y
E

R
SO

N
 U

N
IV

E
R

SI
T

Y
 o

n 
Ju

ne
 2

5,
 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.5
18

99
 



magnetic torque rods in a natural way guided by the physical
constraints imposed by magnetic actuation. To synthesize an input
strictly passive controller, the spacecraft plus control distribution
architecture is linearized; the linearized state-space model is time-
varying. A theorem was presented specifying the form of an LTV
input strictly passive system, and it was used, alongwith the standard
LQR formulation, to design an input strictly passive feedback
controller based on the linearized system. Using the attitude control
scheme presented (i.e., the combination of the proportional and rate
control), the vector part of the quaternion and the angular velocity are
shown to go to zero at time goes to infinity. Numerical simulation
shows this scheme works well, and the controller was found to be
nearly periodic.

Although similar ideas to those presented in [13,14] are used, the
present work is distinctly different. First, although passivity-based
arguments are used in [13], they are used to find the upper bound of a
particular gain, not to guarantee closed-loop stability of the nonlinear
plant as this paper does. Second, as mentioned previously, in [13]
there are no means to guarantee that the reaction wheel torques will
not cancel out the magnetic actuation over short periods of time; the
present scheme ensures the reaction wheel torques do not overlap
with magnetic torques. Third, although the proportional control is
distributed between reaction wheels and torque rods using the same
decomposition as the one presented [14], the rate control (i.e., the
input strictly passive rate control) is distributed differently, which in
turn allows for the design of an LTV input strictly passive controller.
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