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I. Introduction

I T IS well known that spacecraft in low Earth orbit can generate
control torques via the interaction of theEarth’s geomagneticfield

and onboard magnetic dipole moments (created via current-carrying
coils) [1,2]. As mentioned in [3], the major shortcoming of magnetic
actuation (as the only onboard actuator) is that control torques can
only be applied to the spacecraft in a plane orthogonal to the instan-
taneous direction of the Earth’s magnetic field, which in turn means
that the spacecraft is instantaneously underactuated.

Recently, in [4,5], inertial pointing of a spacecraft using solely
magnetic actuation was considered. It was shown that stabilization
can be obtained while employing a quaternion and angular velocity
proportional derivative (PD) type of control law. Owing to the time-
varying nature of the system, the control gains are shown to be
limited, which in turn leads to closed-loop performance limitations.
Stability (and proof thereof) relies on averaging theory [6], which
physically translates to the system possessing certain dynamic prop-
erties on average. In particular, it is assumed that on average control
torques can be applied to the spacecraft in any direction owing to the
fact the magnetic field is changing direction as the spacecraft orbits
the Earth.

Modern spacecraft are usually endowed with magnetic torquers
and some type of mechanical actuator, such as reaction wheels. The
magnetic torquers are usually used for detumbling of the spacecraft
upon egress from the launch vehicle, as well as momentum dumping
of reaction wheels. Reactionwheels are used for fine attitude control.
Seldom are both magnetic torquers and reaction wheels intended to
work together harmoniously in concert. Having both actuation
systems work simultaneously can lead to power savings (depending
on, among other things, orbit inclination, control scheme and gains,
etc. [7]), as well as reduce reaction wheel torque requirements.
Additionally, although most spacecraft are equipped with redundant
reaction ormomentumwheels, failure of both primary and secondary
wheels in one axis is possible, as discussed in [8]. Upon the failure of
primary and redundant pitch axis wheels, the attitude control system
of RADARSAT-1was redesigned (and subsequently uploaded while
on orbit) to use the remaining wheels and magnetic actuation
together, thus saving themission.Attitude control of spacecraft using
two actuation systems was also considered in [9,10]. Motivated by

[4,5], in [9] the same magnetic control law was augmented with
reaction wheels; sufficient conditions were given such that the gain
limited nature of the magnetic control law was relaxed, leading to
better closed-loop system performance. In [10] the attitude control of
a spacecraft using both magnetic torquers and thrusters based on a
linear time-periodic model was considered, leading to linear time-
invariant and linear time-periodic control designs. Actuator satu-
ration was also considered.

In this paper we consider the control of a spacecraft using both
magnetic and mechanical actuation in tandem. We present a geo-
metric scheme whereby the control vector is decomposed into
orthogonal and parallel components with respect to the orientation of
the instantaneous magnetic field vector. The spacecraft magnetic
torquers apply the orthogonal control component, while the re-
maining parallel component is applied by mechanical actuators,
specifically, reaction wheels. We show that our control decom-
position is not limited to spacecraft equipped with three wheels, but
those equipped with one, two, or three wheels. Additionally, satu-
ration of the torque rods is considered. The effectiveness of our
method is shown to work well in simulation while employing an
adaptive tracking controller.

II. Spacecraft Attitude Dynamics and Actuation

Wewish to control the attitude of a generic rigid-body spacecraft in
low Earth orbit. The rotational dynamics are governed by Euler’s
equation [11]:

I _!�!�I!� u� �m � �w (1)

where I is the moment of inertia matrix,! is the angular velocity of
the spacecraft expressed in the body-fixed frame, and

a � �
0 �a3 a2
a3 0 �a1
�a2 a1 0

2
4

3
5

is a skew-symmetric matrix satisfying a�T ��a�, where a�
� a1 a2 a3 �T . The control torque, u, will subsequently be distrib-
uted between wheel torques, �w, and magnetic torques, �m�t��
b�T�t�m�t�, where b is the Earth’s geomagnetic field vector
expressed in the body-fixed frame and m is the magnetic dipole
moment. The vector b is not constant for two reasons: both the
spacecraft attitude and position are changing while on orbit.

The attitude of a spacecraft can be described by the four parameter
quaternion set �� � �1 �2 �3 �T and �, which together satisfy
�T�� �2 � 1 [11]. The quaternion rates and the angular velocity are
related by

_�
_�

� �
� 1

2

�1� ��
��T

� �
! or !� 2�� _� � _�� � �� _�� (2)

III. Geometric Decomposition of Control

Consider a spacecraft in low Earth orbit equipped with magnetic
torquers and reactions wheels governed by Eqs. (1) and (2) and a
control system that provides the control torque,u, to be applied to the
spacecraft. The control system is not assumed to be designed using
any one theory; for example, the control system could be a simple PD
control law, or designed via linear quadratic regulator theory, optimal
periodic control theory, H1 theory, etc. [3].
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A. Control Decomposition with Three Reaction Wheels Available

Nominally, the spacecraft to be controlled is equipped with three
orthogonal torque rods and three orthogonal reaction wheels. As
mentioned in the Introduction, a general control signal cannot be
fully realized via magnetic actuation alone because the magnetic
torquers can only apply torques to the spacecraft in a plane orthog-
onal to the instantaneous b field; anym that is parallel to b results in
zero torque.

Consider a general control signal u decomposed into parallel and
perpendicular components with respect to the Earth’s magnetic field
vector expressed in the spacecraft body frame:

u � u? � uk (3)

where u? 2 Imfb�g and uk 2 Kerfb�g, as shown in Fig. 1. This
“natural” decomposition will be used to distribute the control
between the magnetic torquers and the reaction wheels. Logically, it
follows that

� m � u?; �w � uk (4)

because the control that lies inKerfb�g, that is uk, cannot be applied
to the system through the magnetic torquers. Thus, the control that
does not lie in the Kernel (that is, what lies in the Image, u?) is
applied via magnetic actuation and the “left over control” uk is
applied by the reaction wheels.

It is straightforward to show using linear algebra that

u ? � b̂�
T

b̂�u; uk � b̂b̂Tu (5)

where ^�	� denotes a unit vector (i.e., b̂� kbk�1b). Via the above
geometric decomposition, the control signalu is applied completely,
which can be seen by adding �m and �w while using Eq. (5) and the

identity b̂�
T

b̂� � 1 � b̂b̂T. To apply �m to the spacecraft body, we
must findm such that �m � b�Tm. From Eqs. (4) and (5),

b �Tm� b̂�
T

b̂�u (6)

which must be solved for m. Because �m 2 Imfb�g and u? 2
Imfb�g, a solution,m, to Eq. (6) is guaranteed to exist, although the
solution is not unique because b�T is not invertible. Findingm such
that �m is applied to the spacecraft will be discussed in Sec. IV.

B. Control Decomposition with Less Than Three Reaction

Wheels Available

In the previous section we used a geometric decomposition to
distribute the control between magnetic torquers and reaction
wheels. With three wheels present, the wheel torques can exactly
equal uk. Let us now consider the case in which only one or two
wheels are available, either by design (to, for example, save weight
and minimize design complexity) or as a result of wheel failure
during mission operation.

Consider again a general control signal and the Earth’s magnetic
field vector, but also magnetic torques and geometrically limited
wheel torques to be applied to the spacecraft as shown in Fig. 2. The
wheels are able to apply torques about some general direction a,
which is appropriately restricted according to the particular wheels
available. For instance, if twowheels are available, amay be any unit
vector in the plane defined by the spin axes of the wheels.

Alternatively, if only one wheel is available, a is a fixed unit vector
coinciding with the single wheel spin axis.

Given a reduced number of wheels, only a component of thewheel
torques, that being �wk, lies in Kerfb�g. It follows that �m and �w
must sum together to create u:

u � �m � �w (7)

where

� m 2 Imfb�g; �wk 2 Kerfb�g

Letting �m ���w? � u? (as shown in Fig. 2) and adding �w creates
the desired control:

u � �m � �w ���w? � u? � �w � u? � �wk � u? � uk

where uk 
 �wk.
To find �w we must use the relation

u k � �wk , b̂b̂Tu� b̂b̂T�w (8)

which in turn depends on the number of wheels present. Once �w is
known, �m can be found.

1. Two Reaction Wheels Available

Assume there are two reaction wheels available, each aligned with
the 12 and 13 axes of the spacecraft such that

� w � � 12 13 ��w2a

where 12 � � 0 1 0 �T , 13 � � 0 0 1 �T , and �w2a � � �2 �3 �T .
Thewheels could be alignedwith anyother set of axes, butwe choose
this particular set for simplicity of exposition. We seek to find �w.
From Eq. (8) we can write

b1�bTu�
b2�bTu�
b3�bTu�

2
64

3
75�

b1b2 b1b3

b22 b2b3

b2b3 b23

2
64

3
75 �2

�3

" #

, bTu� bT � 12 13 ��w2a; 8 b2; b3 ≠ 0

Providedb is not perpendicular to the 12–13 plane, an infinite number
of solutions to the above relation exist, owing to the fact that the
equation to be solved is underdetermined.

In the interest of picking �2 and �3 optimally, we will express �3 in
terms of �2 (�3 � 1=b3�bTu � b2�2�) and pick �2 to be the solution of
the following minimization problem: minimize J ���2� � 1

2
��22�

�23�. Setting dJ �=d�2 � 0 leads to �2 � �b2=�b22 � b23��bTu and

b

u

u

u

Fig. 1 Geometric decomposition of control vector with respect to b
field.

b

τ w

τ w

τ w

u

τ m = −τ w + u

a
u

u

Fig. 2 Decomposition of u into magnetic torques and wheel torques

(less than three wheels available).
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�3 � �b3=�b22 � b23��bTu. Note, provided b =2 Imf11g b2 ≠ 0 and
b3 ≠ 0.

Having found �w, we can now calculate �m:

� m ���w? � u? � b̂�
T

b̂����w � u� (9)

2. One Reaction Wheel Available

Assuming there is only one reaction wheel spinning about the 13
axis of the spacecraft, it follows that

� w � 13�3

Again, using Eq. (8) we have

�3 �
bTu

b3
, �w � 13

bTu

b3
; 8 b3 ≠ 0

Provided b does not lie in the 11–12 plane b3 ≠ 0. Knowing �w, �m
can be determined via Eq. (9). Note that we have chosen the 13 axis
and �3 arbitrarily; we could have picked the 12 axis and �2, or the 11
axis and �1, and solved for �2 and �1, respectively.

IV. Calculation of Magnetic Dipole Moment

FromEqs. (4) and (5) we have �m � b̂�
T

b̂�u. To apply this torque
to the spacecraft, we must determine the magnetic dipole momentm
such that b�Tm� �m. Writing out b�Tm� �m, we have

�
0 �b3 b2
b3 0 �b1
�b2 b1 0

2
4

3
5 m1

m2

m3

2
4

3
5� �m1

�m2
�m3

2
4

3
5, m1� 1

b3
���m2�m3b1�

m2� 1
b3
��m1�m3b2�

where �m � � �m1 �m2 �m3 �T . Dipolesm1 andm2 are expressed as
a function of m3; thus, there are an infinite number of possible m
values that satisfy b�Tm� �m (provided b3 ≠ 0).

Althoughwe can pick anym3 value,wewish to pick a set ofmj that
are optimal (for j� 1, 2, 3) in some sense. In the interest of
minimizing power, let us solve the following simple optimization
problem: minimize J m�m3� � 1

2
mTm� 1

2
�m2

1 �m2
2 �m2

3�. Let-
ting dJ m=dm3 � 0 yields

m �
1
b3
���m2 �m3b1�
1
b3
��m1 �m3b2�

1
bTb
��m2b1 � �m;1b2�

2
64

3
75; 8 b3 ≠ 0, m� b��m

bTb
(10)

where we have used the fact bT�m � 0. Note the second expression
for m in Eq. (10) does not suffer from division by b3.

V. Geometric Decomposition of Control Considering
Magnetic Dipole Saturation

In a practical context, current limitations associated with the
magnetic torque rods impose a saturation limit on m such that
jmjj � m□, wherem□ is the saturation limit of each identical torque
rod. We will now extend our geometric method to handle saturation
issues associated with magnetic actuation.

A. Three Reaction Wheels Available

Consider the desired control decomposed into parallel and
perpendicular components, but also into a wheel torque vector, �w,
and a saturated magnetic torque vector, �sm:

u � uk � u? � �w � �sm (11)

where �sm � ksm�̂m, �̂m � b�Tm0 is the magnetic torque unit vector,
m0� k �m k�1 m is computed using the procedure outlined in
Sec. IV, and ksm �min�j m□

m0
1

j; j m□

m0
2

j; j m□

m0
3

j� is the saturated magnetic

gain. Starting with the first part of the expression in Eq. (11), by
adding and subtracting �sm we can write

u � uk � u? � �sm|���������{z���������}
�w

� �sm

Therefore, �w � uk � u? � �sm. The wheel torques compensate for
the lack of magnetic actuation as a result of saturation by applying a
torque that lies primarily inKerfb�g, but also has a small component
in Imfb�g.

B. Less Than Three Reaction Wheels Available

Consider a spacecraft equipped with magnetic actuators that may
saturate, as well as one or two wheels. Such a sparse actuator
configuration disallows the desired control, u, to be fully realized.
However, a control torque that is reduced in magnitude as a result of
saturation,us, is permissible. Given thatus can be applied, it follows
that the direction of each control vector be equivalent, that is,
ûTûs � 1. Ideally, the control system should be designed with
saturation accounted for, thus guaranteeing closed-loop stability
(see, for example, [12]), but in the case of sudden wheel failure a
practical working solution may be needed quickly, and as such the
following method is proposed. Unfortunately, at present we cannot
guarantee closed-loop stability, although the method works well in
simulation, as will be shown in Sec. VI.

Ignoring saturation for a moment, we can write

u � kma�̂m � kwa�̂w

where

kma �
��̂Tm � ��̂Tw�̂m��̂Tw�u

1 � ��̂Tw�̂m�2
and kwa �

��̂Tw � ��̂Tm�̂w��̂Tm�u
1 � ��̂Tm�̂w�2

are themagnetic gain and reactionwheel gain, respectively, when the
spacecraft is equipped with less than threewheels, and �̂m and �̂w are
the unit vectors associated with the magnetic torquers and reaction
wheel(s). Thus, while disallowing the possibility of saturation u�
�m � �w, where �m � kma�̂m and �w � kwa�̂w, which is equivalent
to Eq. (7). Upon saturation of any one of the torque rods, the total
magnetic torque to be applied to the spacecraft must scale
accordingly. Similar to Sec. V.A, �sm � ksma�̂m � b�Tms, where
ms � ksmam0 and ksma �min�j m□

m0
1

j; j m□

m0
2

j; j m□

m0
3

j�. Both �m and �sm
point in the same direction, but have different magnitudes. It follows
that

u s � ksma�̂m � kswa�̂w

where kswa � ksmakwa
kma

owing to the requirement that ûTûs � 1. It

follows that the torques to be applied by the magnetic actuators and
reaction wheel(s) are �sm � ksma�̂m and �sw � kswa�̂w, respectively.
Note the magnitude of the wheel torques scale so that û and ûs are
collinear.

VI. Numerical Example

Consider a spacecraft with I� diagf27; 17; 25g kg 	m2 in a
Keplerian orbit at an altitude of 450 km with zero eccentricity, an
inclination of 87 deg, the angle of the right ascension of the ascending
node equal to zero, the argument of perigee equal to zero, and the
time of perigee passage equal to zero. In simulation, we will use the
magnetic field model described in Wertz [1], Appendix H, and
restated in [9].

In [13], an adaptive control scheme for attitude tracking control of
a spacecraft is derived, which wewill implement here in conjunction
with our geometric approach to distribute torques between magnetic
torquers and reaction wheels. Consider the following desired
trajectory:

� d � 13 sin�f=2�; �d � cos�f=2�

where f is the true anomaly of the spacecraft orbit. Using Eq. (2) and
�d, �d as described above, the desired angular velocity, !d, can be
derived. The attitude error is
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�e
�e

� �
� �d1 � ��d ��d

�Td �d

� �
�
�

� �

Let !r �!d � ��e, !e �! � !d, and ��!e � ��e, where
� > 0. Consider the following control:

u �W�!r; _!r;!��̂ �K� (12)

which is composed of a feedforward component, W�!r; _!r;!��̂,
and a feedback component,�K�, whereK> 0 is the feedback gain
matrix. The matrix W is the regressor matrix defined so that

I _!r �!�r I!�W�!r; _!r;!��

while � are the spacecraft inertia matrix elements and �̂ are their
estimates. The error between the actual and estimated inertia,
~�� � � �̂, is governed by

_~�� ��1WT�; _̂�����1WT�

where �> 0 is the adaptive gain matrix. It can be shown that using
the control presented in Eq. (12) ensures that !, �, and �
asymptotically track !d, �d, and �d.

Values of �� 0:0075 rad=s,K� �0:075�1 kg 	m2=s, and��1 �
�1=15�1 kg 	m2 	 s2 will be used in simulation, where 1 is the
identity matrix. The initial conditions are �� 0, �� 1, and
!1 � !2 � !3 � 0:02 rad=s.Wewill consider a spacecraft equipped

with three current limited magnetic torquers and one reaction wheel
aligned with the 13 axis of the spacecraft. The saturation limit of the
torque rods ism□ � 25 A 	m2. The control is decomposed using the
procedures presented in Secs. III.B.2 and V.B. Figure 3 shows the
angular velocity and quaternion evolution of the spacecraft versus
orbit, whereas Fig. 4 shows the magnetic torques, the reaction wheel
torque, and the magnetic dipole moments versus orbit.

VII. Remarks

The geometric control decomposition developed in this paper has
several advantages compared to other methods. To start, the method
presented in [9] distributes the magnetic torques and wheel torques
independently; the two control laws operate without any knowledge
of each other. The magnetic torques and wheel torques could be
overlapping and, in effect, negate each other over a short period of
time. Our geometric method ensures that the magnetic torques and
wheel torques do not overlap due to the fact each torque lies in a
unique subspace of b�.

In [10], two different methods designed to account for saturation
of the actuators are presented that use numerical optimization
algorithms. Having numerical optimization algorithms solve for a set
of admissible torques each time a new control is computed is ex-
tremely demanding computationally, and possibly infeasible while
on orbit. Ourmethod decomposes the control geometrically, which is
mathematically rigorous, and any subsequent optimization (for
example, calculation of wheel torques or the magnetic dipole
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Fig. 3 Angular velocity and quaternions versus orbit.
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moment) is analytical, leading to exact equations. Additionally, we
handle saturation constraints via geometric decomposition, again
leading to exact equations. Our method is, from a practical point of
view, computationally tractable.

Although previous papers consider a combination ofmagnetic and
mechanical actuation (in the form of reaction wheels and thrusters),
they do not discuss the possibility of having less than three wheels.
Our geometricmethod can be used for systemswith one, two, or three
orthogonal reaction wheels.

Finally, what is attractive about the geometric control decom-
position presented is that it can be used in conjunction with any
control scheme.We have chosen to implement an adaptive scheme in
simulation, but any other control theory/method can be used.

Although our geometric scheme has many advantages, there is a
perceived disadvantage related to instantaneous underactuation
when the spacecraft is equipped with less than three wheels. Recall
fromSec. III.B.1 that wheel torqueswere derived assuming that theb
field was oriented such that b2 ≠ 0 and b3 ≠ 0 (or, with respect to
Sec. III.B.2, such that b3 ≠ 0). First, our scheme should logically be
used in conjunction with orbits and desired spacecraft attitudes that
avoid a b field yielding b2 � b3 � 0. Second, although it is true that
the wheel torques cannot be solved for when b2 � b3 � 0, if this
were the case it would be only for a short duration, as the spacecraft
would either change orientation or change position relative to the
Earth; hence, the b field would change and nonzero b2 and b3 values
would ensue. We are essentially arguing, much like the argument
presented in [4,5], that underactuation in a particular direction is

instantaneous. Therefore, the issue of underactuation given one or
two wheels is not major.

VIII. Conclusions

This paper considers the attitude control of spacecraft in low Earth
orbit using both magnetic and mechanical actuation in tandem. We
have presented a method by which the control signal is decomposed
into two parts, with the component of the control lying orthogonal to
the b field being applied via magnetic actuation and the remainder of
the control (that is, what lies parallel to the b field) being applied via
mechanical actuation. Saturation of the actuators is also considered,
leading to a magnitude-reduced control torque that maintains the
correct direction with respect to the spacecraft body. Simulation
results show that the method works well.
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Fig. 4 Magnetic torque, wheel torque, and magnetic dipole moment versus orbit.
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