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I. Introduction

I N RECENT years, many proposed satellite missions have
undergone a paradigm shift away from large, expensive space-

craft toward the use of smaller satellites flying in formation.
Although formation flying offers a number of advantages, such as
robustness of the mission to failure and potential cost savings, the
benefits are partially offset by the increased complexity of the
guidance, navigation, and control systems and by �V-limited mis-
sion durations. The development of advantageous relative dynamics
between the constituent satellites could help extend mission
durations by minimizing fuel usage. In particular, periodic or quasi-
periodic relative orbits would reduce the control effort necessary to
maintain the formation and significantly prolong the mission’s
lifetime. Attempts to identify naturally periodic relative orbits can be
found throughout the current literature. Vaddi et al. [1] modified
initial conditions from the Hill–Clohessy–Wiltshire (HCW) equa-
tions to enforce bounded relative motion in the presence of small
eccentricity and second-order differential gravity terms. Kasdin and
Kolemen [2] solved the Hamilton–Jacobi equation in terms of
epicyclic orbital elements to derive bounded, periodic orbits in the
presence of higher-order gravity and certain perturbations. Schaub
and Alfriend [3] identified the conditions for J2-invariant relative
orbits bymatching the secular drift rates of themean orbital elements
of the chief and deputy satellites. In most of these analytical cases,
however, the authors established precise periodic motion using
approximated dynamical models. When higher fidelity dynamics
and realistic orbital parameters are used, these methods break down
and exhibit relative orbit drift or a high sensitivity to initial condition
errors.

Several numerical approaches to the problem of relative orbit
periodicity have also been attempted. Sabatini et al. [4] and Izzo and
Sabatini [5] used a refined genetic algorithm to optimize relative
trajectories for maximum periodicity in the presence of J2 pertur-
bations. Quasi-periodic orbits were obtained for two sets of “magic”
inclinations (49.11 and 63.43 deg), at which resonance between the
formation’s in- and out-of-plane motion results in projected circular
orbit (PCO) formations with very small orbital drift. Damaren [6]
formulated an iterative shooting approach based on the Newton
method to close the relative orbit and achieve “almost” periodic
initial conditions. This technique requires a low-level state-feedback
control loop to track a trajectory based on the HCW equations, but is

robust to initial condition errors and exhibits very low drift charac-
teristics in circular orbits. A similar approach was taken by Becerra
et al. [7], who applied a nonlinear Hamiltonian model to the Newton
method to obtain quasi-periodic relative initial conditions of the
deputy in the presence of the J2 perturbation. A linear quadratic
regulator (LQR) controller was used to track reference trajectories
that were developed from sinusoidal functions of time and based on a
Keplerian orbit.

As yet, a method of numerically designing reference trajectories
that match or closely match the natural perturbed relative motion of
the deputy satellite in a generic orbit, and that are robust to initial
condition errors, has not been developed. Such trajectories, with a
properly designed low-authority controller, could be tracked for
minimal �V requirements, thus enabling formation flying missions
to be significantly extended. The intent of this study is to design such
trajectories by continuing the development of the methods used to
search for almost-periodic orbits, begun in [6], and applying them to
the J2-invariant trajectories in [3]. The resulting relative orbits will
approach true periodicity by capitalizing on advantageous initial
conditions, numerically designed reference trajectories, and optimal
control strategies.

II. Equations of Motion

The orbital propagation of a spacecraft is typically conducted in
the geocentric inertial (GCI) reference frame. For two satellites in
close formation, Rc denotes the position of the chief and Rd the
position of the deputy. The motion of these two satellites will evolve
in the GCI frame according to

�R c ����Rc=R
3
c� � F�Rc�pert (1)

�R d ����Rd=R
3
d� � F�Rd�pert � ui (2)

whereRd � jRdj,� is Earth’s gravitational constant,ui is the control
force per unit mass applied to the deputy during formation flying
maneuvers, and F�R�pert is the perturbation force per unit mass
acting upon each satellite. In lowEarth orbit, the principal perturbing
force is the second zonal harmonic of the Earth’s gravitational field,
J2. Higher-order terms, J3–J6, play a smaller role, but have been
included in this study to increase the fidelity of the simulations. The
perturbing accelerations of J2–J6 are given in Cartesian coordinates
in [8].

Formation flying analyses are frequently concerned with the
relative motion of the deputy with respect to the chief. This relative
motion can be expressed in the Cartesian Hill frame, a local-vertical–
local-horizontal reference frame with its origin centered on the
chief, its x axis in the orbit radial direction, its z axis in the orbit
normal direction, and its y axis completing the right-handed frame.
The state of the deputy expressed in this reference frame is x�t��
� �rd�T �vd�T �T � � x y z _x _y _z �T . The relative position in
the Hill frame can be obtained from the inertial position by using the
expression rd � � x y z �T �Chi�Rd �Rc�, where Chi is the
rotationmatrix from theGCI to the Hill frame. The relative velocities
in the rotating Hill frame are given by vd � � _x _y _z �T , the terms of
which are fully described in [9]. For a circular chief orbit, the relative
dynamics can be approximated by the nonhomogeneous HCW
equations:

_x�Ahx� Bhuh (3)

where
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and where n�
���������
�=a

p
, a is the semimajor axis of the orbit, and

uh �Chiui.

III. Shooting Approach to the Newton Method

A derivation of the Newton method used to enforce single orbit
periodicity is presented in [6], but is summarized here for continuity.
A set of relative initial conditions are sought such that x�T� � x�0�.
Note that this single-orbit-periodicity (or quasi-periodicity) require-
ment does not necessarily produce genuinely periodic motion
because nothing is enforcing x�2T� � x�T�. The iterative solution
presented in [6] is given by

xk�1�0� � xk�0� � ��k�T; 0� � 1��1�xk�0� � xk�T��
for k� 0; 1; 2; . . . (4)

where �k�T; 0� is the state transition matrix corresponding to a
linearization of the actual dynamics. To expedite the iterative process
and reduce computational effort, it is useful to develop an approxi-
mation for �k�T; 0� that is independent of k. To this end, we can
examine the reduced situation (i.e., a circular, Keplerian orbit), for
which the linearizedHCWequations govern the relative dynamics of
the deputy in the Hill frame. The state transition matrix based on the
HCW dynamics is given by �h�T; 0� � exp�AhT�. The analytical
form of �h�T; 0� is presented by Melton [10], and all six of its
eigenvalues are unity. As a result, the inverse, which is required for
Eq. (4), does not exist. To make �k�T; 0� � 1 invertible, we apply a
linear state-feedback control law:

u h�t� � �K ~x�t�; ~x�t� � x�t� � xref�t� (5)

where K is the controller gain matrix that tracks a reference state,
xref t� �. An LQR method was used to solve forK by minimizing the
cost function

J�
Z 1
0

� ~xTQ ~x� uThRuh� dt (6)

The LQR controller was designed using Q� diag�n2; n2; n2;
1; 1; 1� and R� diag�r=n2; r=n2; r=n2�, where r can be adjusted to
affect fuel usage and tracking accuracy. Incorporating the feedback
control law into Eq. (3) yields the error dynamics

_~x� �Ah � BhK� ~x (7)

where it is assumed that xref t� � is an appropriate solution of the
HCW equations. With the relative dynamics now defined by Eq. (7),
the state transition matrix for Eq. (4) becomes �k�T; 0��
exp��Ah � BhK�T�. Therefore, �k�T; 0� � 1 in Eq. (4) is now
invertible. Although the principal motivation for adding a controller
is to permit�k�T; 0� � 1 to be inverted, it will also allow the deputy
to actively track a reference trajectory that, in an open loop, would
not yield genuinely periodic motion. Nevertheless, to minimize fuel
consumption, it is desirable to use low-authority control (corres-
ponding to a high r value). If we can obtain a quasi-periodic reference
trajectory that closely matches the natural perturbed motion of the
deputy, a low-authority controller will be sufficient to accurately
track this trajectory.

IV. Relative Reference Trajectory Generation

To propagate the relative state from xk�0� to xk�T� using linear
state-feedback control, an appropriate reference trajectory must be
selected. For a PCO formation, for example, the well-known solu-
tions to the homogenous HCW equations can be used:

r ref � ��=2�� sin�nt� �� 2 cos�nt� �� 2 sin�nt� �� �T (8)

where � is the separation between the satellites, and � is the initial
phase angle of the deputy within the PCO formation. These periodic
equations approximate the relative state of a spacecraft in a circular
orbit in the absence of orbital perturbations and when � is much
smaller than the orbital radius. In a real orbital environment, how-
ever, these assumptions break down and the actual perturbed motion
of the deputy will deviate from this idealized trajectory, resulting in
high fuel expenditure as the controller seeks to mitigate the tracking
error in Eq. (5). Figure 1 illustrates the rate of convergence of Eq. (4)
to a set of quasi-periodic initial conditions while tracking the HCW
trajectory with different control authorities. In each case, a baseline
chief orbit was used, where altitude� 700 km, i��� 60 deg,
e� 0, !� 0 deg, and �� 400 m. A choice of the LQR input cost
parameter r� 10�2 corresponds to a high-control authority, whereas
r� 104 is very weak control. The iteration in Eq. (4) is considered
converged when jrk�T� � rk�0�j � 10�6 m.

Despite the rapid convergence of the Newton method, the
discrepancy between the actual perturbed motion of the deputy and
the HCW reference trajectory results in excessive �V and low
periodicity after the first orbit. However, once a solution has been
found through the convergence of Eq. (4), a second, more accurate
reference trajectory can be generated by fitting a Fourier series to the
actual trajectory of the deputy as it tracks the HCW solutions.
The generalized Fourier series evaluated on the interval of [0, T] is
given by

f�t� � 1

2
a0 �

X1
n�1

an cos

�
2�kt

T

�
�
X1
n�1

bn sin

�
2�kt

T

�
(9)

where a0, an, and bn are the Fourier coefficients. A second Newton
iteration procedure can be performed with the Fourier reference
trajectory replacing the HCW trajectory in the feedback control law
of Eq. (5) and with the solution of the previous convergence serving
as the initial conditions (ICs). However, in the process of iterating
Eq. (4) while tracking a new reference trajectory, the deputy will be
forced onto yet another relative trajectory. Once more this new
trajectory can be fit with a Fourier series, the solution used as the ICs
for the next iteration, and the process repeated. The intent is to find
the closest agreement possible between the current real trajectory of
the deputy and the Fourier series fit to its real trajectory from the
previous Newton iteration procedure. An exact match would be
indicative of a reference trajectory that precisely matches the natural
perturbedmotion of the deputy, inwhich case no control effort would
be required. In practice, the process is only semiconvergent: after

Fig. 1 Rate of convergence for the Newton method at different control

authorities.
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only two Fourier iterations, the difference between subsequent
converged trajectory solutions remains constant.

Once theNewton iteration process has converged to a solution, the
resulting relative motion of the deputy often exhibits transient
behavior. To avoid fitting the next Fourier series to this initial
transient trajectory, the deputy is cycled through five orbits to allow
the motion to settle into a steady state, and the Fourier series is fit to
the final fifth period. In addition, the periodicity of the solutions to
Eq. (4) can be further improved by iterating the initial conditionswith
the final relative state after five orbits rather than one (i.e., enforce
xk�5T� � xk�0�). This avoids the transient behavior of the first orbit
and improves the likelihood of finding initial conditions that lead to
long-term periodicity.

The selection of the LQR input cost parameter, r, in Eq. (6)
strongly impacts both the fuel expenditure and the reference
trajectory tracking accuracy. These effects are represented by the
metrics�V and the relative position periodicity error,EN , defined as

EN �
������������������������������������������������������������������������������������������������������������������
�x�0� � x�NT��2 � �y�0� � y�NT��2 � �z�0� � z�NT��2

p
(10)

whereN is the number of orbits over which the periodicity condition
is tested. Because �V and EN are competing metrics, however, it is
necessary to optimize the control authority to achieve a balance
between fuel use and periodicity. Based on a numerical study, the
control authority was set to r� 8.

V. Numerical Example: The Quasi-J2-Invariant
Formation

Schaub and Alfriend [3] developed the conditions necessary to
achieve periodic relative motion in the presence of J2 perturbations.
The so-called J2-invariant orbits are formed by using mean orbital
element differences and setting the secular drifts of the longitude of
the ascending node and the sum of the argument of the perigee and
themean anomaly to zero between neighboring orbits. This results in
the two orbits drifting at the same average angular rate and not
separating due to the J2 effect. In practice, the J2-invariant orbits
exhibit some small secular drift because the required osculating–
mean–osculating orbital element transformation is only valid to a
first-order approximation. Developing J2-invariant ICs from the
baseline chief orbit, we obtain E10 � 0:3951 m and E50 � 2:875 m.
The primary disadvantage of the J2-invariant orbits is their sensi-
tivity to initial condition errors. In a real formation flying satellite
mission, it is improbable that the exact relative starting positions and
velocities required for the J2-invariant orbits can be achieved.
Depending on the level of the control authority used to obtain the
initial conditions, most deputy satellites will exhibit IC errors on the
centimeter or meter level for position and the millimeter or
centimeter per second level for velocity. To determine the robustness
of the open-loop J2-invariant trajectories to such errors, position and
velocity gradients were determined from the ICs. The initial position
was then perturbed 10 cm in the direction of the position gradient and

the resulting ICs propagated through 10 orbits. Separately, the initial
velocity was perturbed 1 cm=s along the direction of the velocity
gradient. The final results for the velocity perturbation were plotted
in Fig. 2. The deputy exhibited high secular drift in both cases: the
periodicity error for a 0.1 m step along the position gradient is
E10 � 37:80 m; the periodicity error for a 0:01 m=s step along the
velocity gradient is E10 � 1274 m.

The quasi-periodic trajectory design algorithm can be applied to
the J2-invariant orbit baseline. The resulting controlled relative
orbits will henceforth be referred to as quasi-J2-invariant orbits. The
same baseline chief orbital elements are used. The initial reference
trajectory tracked by the controller during the first Newton iteration
sequence is formed by propagating the deputy through a single
J2-invariant orbit with no control and fitting a Fourier series to the
actual motion. The control authority was set to r� 8, which offers a
good balance between E10 and �V performance. To avoid the
small amount of initial transient motion, the Newton method was
converged over five orbits. The converged initial conditions are
given by

r d�0� � � 1:6893; 398:53; �7:0181 �T m

vd�0� � � 0:21224; 0:00082621; 0:00014407 �T m=s
(11)

The Fourier reference trajectory fit to the actual motion of the
deputy is

r ref�t� �
0:13722� �200:31� cos��2�t=T� � 1:5635�
�0:66495� �400:96� cos��2�t=T� � 0:007302�
0:14596� �7:1663� cos��2�t=T� � 3:1075�

" #
m

(12)

The solution metrics are �V � 0:007803 m=s=orbit, E10�
0:008017 m, andE50 � 0:08242 m. Figure 3 illustrates the quasi-J2-
invariant trajectory propagated over 50 orbits. In the close-up view, it
is apparent that the actual trajectory of the deputy is distinguishable
from the trajectory given in Eq. (12). The � represents the starting
point of the deputy, and the O superimposed over it represents the
final point.

The robustness test described hereinwas repeated for the quasi-J2-
invariant orbit. When the position was perturbed 0.1 m along the
gradient direction, the metrics were �V � 0:007910 m=s=orbit
and E10 � 0:008017 m. When the velocity was perturbed 0:01 m=s
along the velocity gradient direction, the metrics were �V �
0:01032 m=s=orbit and E10 � 0:008017 m. The unchanged perio-
dicity error indicates that, although the average fuel require-
ments increased slightly to compensate for the initial errors, the
controller successfully damped out the perturbations by the tenth
orbit. Therefore, a weak-authority feedback controller, tracking the
quasi-J2-invariant trajectories and using very little fuel, offers
superior robustness to IC errors over the J2-invariant orbits.

Finally, this method can be compared with the quasi-periodic
relative orbits in [5–7]. For long-duration formation keeping, the
“quasi-PCO” formations developed at the magic inclinations in [4,5]
offer very low average �V requirements of approximately 6:33 	

Fig. 2 J2-invariant orbit with a 0:01 cm=s error on the initial velocity (10 orbits).
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10�4 m=s=orbit for a 1-km-radius PCO. Away from these unique
inclinations, however, the fuel requirements rise sharply. The
quasi-J2-invariant method, conversely, results in 0:022 m=s=orbit
for a 1 km PCO, but offers consistent performance for a wide range
of inclinations. The almost-periodic 400 m PCO in [6] offers a
lower average �V of 0:00442 m=s=orbit, but is unstable and
results in a periodicity error of E10 � 0:626 m and E50 � 4:98 m.
Finally, the quasi-periodic 10 km PCO of [7] offers a �V of
5:99 m=s=orbit, whereas the quasi-J2-invariant trajectory results in
0:195 m=s=orbit for a similar 10 km relative separation.

VI. Conclusions

A numerical method for generating the initial conditions and
reference trajectories for quasi-periodic relative orbits has been
presented for formation flying spacecraft under the influence of
J2–J6 gravitational perturbations. The scheme relies on a shooting
approach to the Newton method to find a set of initial conditions that
close the relative motion over the number of orbits considered.
Reference trajectories are generated iteratively by fitting a Fourier
series to the actual perturbed motion of the deputy. The principal
advantage of this method is that the deputy tracks a numerically
generated reference trajectory that closely approximates its natural
perturbed relative motion; consequently, it requires only a low-
authority feedback control law, and thus very little fuel, to accurately
track this trajectory. This trajectory generation method was suc-
cessfully applied to the J2-invariant formation. The resulting quasi-
J2-invariant formations demonstrate a low periodicity error ofE50 �
0:08242 m and �V � 0:007633 m=s=orbit. Furthermore, although
the classic J2-invariant orbits are extremely susceptible to initial
condition errors, the inclusion of a feedback control law enables a
deputy tracking the quasi-J2-invariant trajectories to rapidly damp
out initial perturbations. Because this trajectory generationmethod is
also numerical in nature, it is applicable to simulations with higher-
fidelity orbital propagators. The quasi-periodic trajectories found by
this method can be viewed as a viable option for long-duration
formation flying missions.
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Fig. 3 Relative motion of the quasi-J2-invariant trajectory (50 orbits).
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