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Nomenclature

a = semimajor axis, m
b = magnetic field vector, T
e = eccentricity
f = true anomaly, rad
h = specific angular momentum magnitude, m2∕s
i = inclination, rad
Jn = nth zonal harmonic coefficient
M = mean anomaly, rad
m = mass, kg
m = magnetic dipole vector, A · m2

n = mean motion, rad∕s
p = semilatus rectum, m
q = electrical charge, C
q1 = e cos ω
q2 = e sin ω
r = orbit radius magnitude, m
r = position vector, m
v = velocity vector, m∕s
W = controllability Gramian
z = orbital element vector
ΔV = Delta-v magnitude, m∕s
δ�t� = Dirac Delta function
θ = true latitude, rad
λ = mean latitude, rad
μ = gravitational parameter, m3∕s2
ν = Gramian eigenvector
Φ = state transition matrix
Ω = right ascension of ascending node, rad
ω = angular velocity vector, rad∕s
ω = argument of periapsis, rad

Subscripts

c = chief
d = deputy
L = Lorentz force–related
r = reference quantity
� = Earth-related quantity

Superscript

��·� = mean element quantity

I. Introduction

T HE geomagnetic Lorentz force represents a propellentless
means of actuation for a spacecraft. The concept of Lorentz-

force actuation is predicated on the spacecraft retaining and
modulating an electrical charge so that the Earth’s magnetic field acts
on the spacecraft via the Lorentz force in a desirable fashion.Whether
a spacecraft can generate and store sufficient electrical charge, and if
the charge can be modulated by an energy-efficient means, is not yet
clear. For a conventional spacecraft, it is prudent to mitigate charge
accumulation via plasma contactors or particle beams. Although
never used for such a purpose, such devices could also be used to
accumulate additional charge. Studies into charge-carrying space-
craft suggest that existing technologies can be adapted to realize
charge per unit mass, or specific charge, magnitudes between 10−6

and 10−3 C∕kg [1]. Lorentz-augmented spacecraft architectures have
been proposed in [2,3], however, to the authors’ knowledge, no
prototypes have been considered. In this Note, the means by which
charge accumulation is achieved is not considered and it is assumed
that the spacecraft has the required capability.
Although many different applications for Lorentz-force actuation

have been studied, such as insertion in Jovian orbit [4] and Lorentz-
augmented gravity assists [5], these applications typically require
specific charge magnitudes that are orders of magnitude greater than
those currently feasible. Conversely, spacecraft formation flight is a
possible area of application for Lorentz-force actuation where the
required specific charge magnitudes are closer to what is feasible.
Past work has investigated in-plane Lorentz-augmented formation
reconfiguration [6], formation stability [7], and three-dimensional
reconfiguration [8]. Closed-form solutions to the relative-motion
equations of spacecraft with a constant electrical charge were
presented in [9]. Those works have considered the relative motion of
the spacecraft in Cartesian coordinates using the Hill–Clohessy–
Wiltshire or the Tschauner–Hempel equations to model the relative
dynamics.
In this work, the relative dynamics are modeled using differential

orbital elements, which are useful in providing additional insight into
the Lorentz-augmented relative dynamics. The effects of the Lorentz
force on the classical orbital elements have been fully described in
[10] and also partially described and used in [11] to establish new J2-
invariant and ground-track-repeating orbits. Mean differential
element formation control has been explored previously in [12,13],
where it was identified that relative spacecraft dynamics are not
completely controllable using solely the Lorentz force; optimal
strategies combining the Lorentz force with either continuous or
impulsive thruster actuation were proposed to fully control the
relative dynamics.
The work in this Note characterizes the controllable and

uncontrollable subspaces of the Lorentz-augmented mean differential
orbital dynamics. The physical nature of the uncontrollable subspace is
explained using the differential element representation of the relative
dynamics and it is demonstrated that in some cases the relative
dynamics are stabilizable in the sense of Lyapunov. A Lorentz-force
only control strategy is designed to control the controllable subspace of
the relative dynamics.Numerical simulations show it to be effective for
both polar and equatorial orbits.
The remainder of the Note is structured as follows. Section II

presents the linearized mean differential orbital elements dynamics
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for the nonsingular orbital element set �z�� �a �i �Ω �q1 �q2 �λ�T ; Sec. III
introduces the geomagnetic Lorentz force, characterizes the
controllable and uncontrollable subspaces of the Lorentz-augmented
differential element system, and provides a physical explanation for
the existence of the uncontrollable subspace. Section IV proposes the
use of Kalman decomposition to separate the controllable and
uncontrollable subspaces of the Lorentz-augmented orbital element
system, despite it being a time-varying system; the use of Kalman
decomposition is justified by demonstrating the uncontrollable
subspace is time-invariant. A formation-keeping controller that employs
onlyLorentz-force actuation is designed using the controllable subspace
of the decomposed system. The Note concludes with several numerical
simulations demonstrating the efficacy of the Lorentz-force only
controller for formation keeping in both equatorial and polar orbits.

II. Mean Differential Orbital Element Dynamics

The relative deputy spacecraft state with respect to the chief
spacecraft is described by the differences between the actual mean
orbital elements of the deputy and chief spacecraft

δ �z�t� � �zd�t� − �zc�t� (1)

where, in order to avoid numerical singularities that occur when
eccentricity is zero, the nonsingular orbital element set, �z�
� �a �i �Ω �q1 �q2 �λ�T , is used, where �q1� �ecos �ω; �q2� �e sin �ω;
�λ� �M� �ω. Because we are considering the J2 zonal harmonic as
the primary orbital perturbation affecting our formation, we employ
mean elements, in the sense of Brouwer [14]. The use of mean
elements results in only state errors caused by the secular growth in
orbital elements due to J2 to be corrected for, whereas the osculating
variations in elements are ignored. The result is lower formation-
keeping control effort.
For the nonsingular orbital element set, the vector of mean orbital

element secular drift rates, A� �z�, is

A� �z� �

2
6666664

0

0

− 3
2
J2 �n

�
R�
�p

�
2
cos �i;

− �q2 _�ω
�q1 _�ω
_�M� _�ω

3
7777775

(2)

where the argument of perigee and mean anomaly secular drift
rates are

_�ω � 3

4
J2 �n

�
R�
�p

�
2

�5 cos2 �i − 1� (3)

_�M � �n� 3

4
J2 �n �η

�
R�
�p

�
2

�3 cos2 �i − 1� (4)

The effect of an applied control effort or additional perturbation
can be related to changes in the orbital elements using Gauss’s
variational equations, which are

B�z� �

2
666666664

2a2e sin f
h

2a2p
rh 0

0 0 r cos θ
h

0 0 r sin θ
h sin i

p sin θ
h

�p�r� cos θ�re cos ω
h

re
h

sin ω sin θ
tan i

− p cos θ
h

�p�r� sin θ�re sin ω
h − re

h
cos ω sin θ

tan i

− pe cos f
h�1�η� −

2rη
h

�p�r�
�1�η�

e sin f
h − r sin θ

h tan i

3
777777775

(5)

and where η �
������������������������
1 − q21 − q22

p
, p � aη2, and h � ������

μp
p

. It is
understood thatBwill vary with time, due to the dependence on true
anomaly f. Together, Eqs. (2) and (5) describe the mean nonsingular
element dynamics

_�z � A� �z� � ∂ϵ� �z�
∂z

T

B�z�u�t� (6)

where u�t� is the applied acceleration vector, expressed in the local
vertical/local horizontal (LVLH) frame, illustrated in Fig. 1. The
origin of the LVLH frame is at the position of the spacecraft; the one-

axis, 1̂
→r

, is in the outward direction of the spacecraft’s position axis;

the three-axis, 1̂
→h

, is parallel with the spacecraft’s orbit’s angular

momentum vector; and the two-axis, 1̂
→θ

, completes the right-hand

rule. The relative position of the deputy spacecraft with respect to the
chief is typically described in the LVLH frame positioned at the chief
spacecraft. The expression ∂ϵ� �z�∕∂z is the partial derivative of the
transformation function from osculating to mean elements. A first-
order analytical expression of it appears in [15]; however, for control
design purposes it can approximated by identity [16].
A reference vector of differential elements, δ �zr, describes the

desired relative trajectory of the deputy spacecraft. We are interested
in regulating the error in the deputy’s differential orbital elements

x�t� � �zd�t� − �zr � δ �z − δ �zr (7)

The error dynamics are

_x�t� � _�zd − _�zr (8)

Linearizing the dynamics about the reference orbital elements, �zr
yields

_x�t� � _�zr �
∂A� �z�
∂ �z

����
�z��zr

x�t� �
�
B� �zr� �

∂B
∂ �z

����
�z��zr

x�t�
�
u�t� − _�zr

(9)

� ~A� �zr�x�t� �B� �zr�u�t� (10)

where for the nonsingular elements

(11)

Per [17], ∂B∕∂ �z can be neglected for spacecraft relative
separations and velocities of approximately 25 km and 40 m∕swhen
considering formations in low Earth orbit (LEO).

Fig. 1 LVLH frame.
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III. Controllability of the Lorentz-Augmented System

The Lorentz acceleration vector acting on charged spacecraft,
expressed in an Earth-fixed inertial frame, is

fL �
q�t�
m
vrel�t� × b��t; z� (12)

where b��t; z� is the geomagnetic field vector at the spacecraft’s
location and q�t�∕m is the ratio of charge to mass on the spacecraft
known as the specific charge. The spacecraft’s velocity relative to the
geomagnetic field is

vrel�t� � v�t� − ω� × r�t� (13)

where r and v are the spacecraft’s inertial position and velocity
vectors and ω� is the Earth’s angular velocity.
The Lorentz-augmented differential element error dynamics are

_x � ~A� �zr�x�t� � ~B� �zr�u�t� (14)

where the new input matrix is

~B� �zr� � B� �zr��vrel�t� × b��t; �zr�� (15)

and the sole control input is the specific charge u�t� � �q�t�∕m�.
From previous work [13], it is known that the system described by
Eq. (14) is not fully controllable. For a given reference orbit,
calculating the controllability Gramian and determining its
eigenvalues reveals that the Gramian poses one eigenvalue equal to
zero and is singular. This result was shown to hold across all
inclinations and for all semimajor axes in LEO.
This result is examined in more detail in this section. Specifically,

the nature of the uncontrollable mode is sought. The controllability
Gramian is given by

W�t1; t0� �
Z
t1

t0

Φ�t1; τ�B�τ�BT�τ�ΦT�t1; τ� dτ (16)

where Φ�t; τ� is the state transition matrix of the linear system and
B�t� is the system’s input matrix. The controllability matrix was also
calculated in [18] for different applications. For a singular Gramian,
the eigenvector of the Gramian associated with the zero eigenvalue,
ν0 � � ν0a ν0i ν0Ω ν0q1 ν0q2 ν0λ �T , describes the uncontrol-
lable subspace of the system. The uncontrollable mode is determined

for controllability Gramians calculated for reference orbits ranging in
semimajor axis and inclination of a � 6639.2−12; 000 km and
i � 0–90 deg, respectively, and a constant eccentricity of e �
0.001. The time interval over which the Gramian is calculated is the
synodic period of the spacecraft with respect to the geomagnetic field,
i.e., the time it takes for the spacecraft to reach the same point in the
Earth’smagnetic field.As has been previously noted [9,13], this is the
natural period of the magnetic field variations seen by the spacecraft.
Figure 2 illustrates the dominant components of ν0, namely ν0a and
ν0i . The remaining four components are consistently of order
O�10−3� or smaller, and are not shown.
The main component of the uncontrollable mode, for all the

considered orbits, is the component associated with differential
semimajor axis, ν0a . For near-equatorial orbits, Fig. 2a shows that ν0a
is close to 1, regardless of inclination.
For near-equatorial orbitswith relatively small semimajor axes, the

mean differential semimajor axis is effectively the uncontrollable
state in the Lorentz-augmented system. The work of Tsujii et al. [8]
corresponds with this result. In [8], analysis of Lorentz-augmented
Hill–Clohessy–Wiltshire equations— linear relative-motionequations
that are valid for circular orbits— for the equatorial orbit case revealed
that the in-planeuncontrollable state isx4 � 2x� dy∕df, wherex and
y are the radial and along-track position components in the LVLH
frame. It is shown in [16], for e � 0, that this state is equivalent to
δa and is the expression that must be set to zero to ensure bounded
relative motion between two spacecraft in Keplerian orbits. The
physical reason for the lack of controllability of differential semimajor
axis can be seen by considering Gauss’s variational equations for the
semimajor axis

da

dt
�
h
2a2e sin f

h
2a2p
rh 0

i" ur�t�
uθ�t�
uh�t�

#
(17)

In near-circular orbits, as would be the case for a formation in low
Earth orbit (LEO), the radial component of Eq. (17) vanishes, leaving
only the along-track component. The Lorentz-force component in the
along-track direction, however, is very small because it acts in a
direction that is perpendicular to both the local geomagnetic field
vector and the spacecraft’s velocity relative to geomagnetic field. For
LEOs, the term −ω� × r�t� is small, so vrel�t� ≈ v�t�. Thus, the
Lorentz force is nearly perpendicular to the spacecraft’s velocity and,
likewise, to the along-track direction, resulting in the differential
semimajor axis being pointwise underactuated. However, it should not
be discounted that the term −ω� × r�t� may have long-term effects.
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Fig. 2 Dominant components of the uncontrollable mode, ν0, of the Lorentz-augmented mean differential element system.
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As semimajor axis and inclination increase, the uncontrollable
state becomes a linear combination of differential semimajor axis and
differential inclination. The component associated with differential
inclination, ν0i , becomes significant with nonzero inclination and can
be of the same order of magnitude as ν0a , although ν0a remains the
dominant component. In particular, for nonzero inclinations but
small semimajor axes, ν0i continues to be small and the previous
discussion regarding the physical reason for δ �a being uncontrollable
continues to hold. For reference orbits with a large semimajor axis,
the approximation vrel�t� ≈ v�t� is a poor one, because the −ω� ×
r�t� term is too large to neglect. Consequently, the uncontrollable
mode is no longer just the differential semimajor axis. Figure 2b
shows ν0i to be significant at large semimajor axis, particularly for
inclinations greater than 60 deg. Lastly, the behavior of the
eigenvectors of the controllability Gramian is examined as the
interval over which the Gramian is calculated is varied.

IV. Formation Control

Previous work [12,13] on the subject of formation keeping using
the Lorentz force has focused on supplementing Lorentz-force
actuation with thruster actuation in order to achieve controllability of
the system. Using impulsive thruster actuation [13] was shown to be
particularly effective in maintaining the desired formation while also
minimizing the required amount of the thruster control effort.

A. Kalman Decomposition of the Lorentz-Augmented System

Performing Kalman decomposition on the linear, time-invariant
(LTI) system is a classical method for decomposing a system into its
controllable and uncontrollable modes. Consider the matrix
T � �Tc Tu �, where the columns of Tc span the controllable
subspace of the system and the columns of Tu span the system’s
uncontrollable subspace and, in doing so, complement Tc, such that
T is invertible. The matrix T can be used to perform a similarity
transformation on a LTI system with state and input matrices (A,B),
such that

Â � T−1AT �
�
Âc Âcu

0 Âu

	
; B̂ � T−1B �

�
B̂c
0

	

The transformation matrix T can be constructed by using the
eigenvectors of the system’s controllability Gramian for the columns
of T. When doing so, T−1 � TT , because the eigenvectors are
orthogonal.
The Lorentz-augmented mean differential element system is not

time-invariant: it possesses a time-varying input matrix, B� �zr�.
Gauss’s variational equations and the local geomagnetic field vector
vary with the spacecraft’s true anomaly. Its state matrix, ~A� �zr�,
however, is time-invariant: the differential J2 drift rates are functions
of only �a, �e, and �i, which do not undergo secular change. If the
controllable and uncontrollable subspaces of the Lorentz-augmented
system are invariant with time, i.e., the columns of T are time-
invariant for the Lorentz-augmented system, then the Lorentz-
augmented system can be decomposed into controllable and
uncontrollable spaces. To determine whether T is time-invariant for
the Lorentz-augmented differential element system, the system’s
controllability Gramian,W�t1; t0�, is calculated for different control
intervals, Δt � t1 − t0, and the behavior of its eigenvectors is
examined.

1. Formations in Polar Orbits

The component magnitudes of the six eigenvectors of the
controllability Gramian and how they change with the interval over
which the Gramian was calculated, Δt, are plotted in Fig. 3 for the
case of a circular, polar reference orbit with a semimajor axis of
�a � 6945.033 km. The eigenvector ν0 is the uncontrollable mode.
For this polar orbit example, the uncontrollable mode, seen in

Fig. 3a, is effectively time-invariant. The two dominant components,
ν0a ν0i , are approximately constant for t1 < 300. Because ν0 is
approximately time-invariant then so is the subspace it spans.

Although Figs. 3b and 3c clearly show that components of other
eigenvectors do vary significantly with the Gramian interval, this
variation is not a problem. Because the uncontrollable subspace is
invariant with respect toΔt, then so is its complementary subspace, the
controllable subspace. Consequently, so long as the uncontrollable
mode is Δt-invariant, it does not matter if the eigenvectors describing
the controllable subspace vary with Δt, because the subspace itself is
not changing.

2. Formations in Near-Equatorial Orbits

Figure 4 plots the evolution of eigenvector component magnitudes
versus the Gramian interval Δt for the case of a circular, near-
equatorial (�i � 1 deg� reference orbit with a semimajor axis of
�a � 6945.033 km. As in the polar orbit example, ν0 is the
uncontrollable mode. For a near-equatorial reference orbit, four out
of the six eigenvectors, ν0, ν3, ν4, and ν5, are effectively invariantwith
respect to Δt. As in the polar case, this includes the uncontrollable
mode. Each of the aforementioned eigenvectors has either one or two
dominant components that do not vary with Δt, and although the
remaining components do vary with Δt, their magnitudes are
sufficiently small to be considered negligible. The eigenvectors ν1
and ν2 do vary with Δt. By the argument of the previous section,
because the uncontrollable mode, and thus the uncontrollable
subspace, is Δt-invariant, then so is the controllable subspace.
Therefore, for both the polar and equatorial reference orbit, it is

possible to perform Kalman decomposition on the Lorentz-
augmented differential element system. For other inclinations, a
similar analysis to the one performed previously is required.

B. Controller Formulation

The design of a feedback controller for the decomposed Lorentz-
augmented differential element system is now considered. The
decomposed mean differential element error system has the form

_̂xc�t� � Âcx̂c�t� � B̂c�t�u�t� (18)

where Âc � TTc ~A� �zr�Tc, B̂c�t� � TT ~B� �zr�, x̂c�t� � TTcx�t�, and
u�t� � q�t�∕m. We find that the uncontrollable mode is stabilizable
in the sense of Lyapunov, i.e., that its eigenvalue lies on the imaginary
axis. Therefore, although it is not stable in an input–output sense, if
the mode is not excited by an initial error, it will not impact the
formation. It follows then that a linear quadratic regulator (LQR)-
style feedback control law of the form

u�t� � −R−1B̂Tc �t�P�t�x̂c�t� (19)

can be chosen for control, where only the controllable states are used
for feedback. Rather than solving the time-varying matrix Riccati
equation for a history of P�t�, the constant, asymptotic limit of the
time-varying Riccati equation, Pss, is calculated, as proposed by
Psiaki [19]. The asymptotic gainPss is obtained by solving thematrix
algebraic Riccati equation

0 � PssÂc � ÂT
cPss − PssB̂ssB̂

T
ssPss �Q (20)

where B̂ss is obtained by performing the square-root factorization

B̂ssB̂
T
ss �

1

tf − t0

Z
tf

t0

B̂c�τ�R−1B̂Tc �τ� dτ (21)

Although the Lorentz-augmented mean differential element
systemviolates Psiaki’s stipulation that Âc have no eigenvalues in the
right-half plane, we find that the method still works well in
simulation.

V. Numerical Examples

Theproposed control strategy is validatedusingnumerical integration
of the nonlinear equations of motion of the chief and deputy spacecraft.
The tilted dipole model [20] is used to model the geomagnetic field and
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the only orbital perturbation is the J2 zonal harmonic. The formation
keeping of a 1 km project circular orbit (PCO) formation, with an initial
phase angle of 0 deg, is considered in both polar and equatorial orbits.
The mean orbital elements of the chief spacecraft and the reference
differential elements for the two cases are presented in Table 1. The
deputy spacecraft is initialized to the correct formation.
For both reference orbits, we confirm that the transformed input

matrix has the desired form B̂�t� � �B̂cT�t� 0�T . Figure 5 plots the
magnitudes of the components of B̂�t�, with B̂0�t� denoting the
component corresponding to theuncontrollablemode.For the equatorial
orbit, Fig. 5a shows that B̂0�t� is consistently several orders of
magnitude smaller than the next smallest component of B̂�t�. For the
polar case, Fig. 5b shows that B̂0�t� is, on average, the smallest
component of the transformed input matrix by at least an order of
magnitude; however, there are brief instants when other components of
B̂�t� are momentarily smaller than B̂0�t�.
For the calculations of the controllability Gramian and the

averaged input matrix B̂ss, a time interval of 15 orbits was used,
which corresponds to the synodic period of the spacecraft with
respect to the geomagnetic field. For the equatorial reference orbit,
the LQR design weights are

Q � 5 × 107 · 1; R � 103

and for the polar reference orbit

Q � 9.6 × 106 · 1; R � 3.5 × 103

The asymptotic LQR controllers designed for the controllable
portion of the Lorentz-augmented mean differential element system

are effective at maintaining the desired 1 km formation and keeping
the differential element errors, and thus, the relative position errors,
bounded. Because they provide amore intuitive sense of howwell the
controllers perform, the relative position errors in the LVLH frame
are presented in Fig. 6 for the two test cases, rather than the
differential element errors. For the formation in an equatorial orbit,
the norm of the relative position error has a maximum amplitude of
approximately 35 m, with the largest error being in the along-track
direction and the smallest error is in the out-of-plane direction. For
the formation in polar orbit, the norm of the position error is smaller
than in the equatorial case, with maximum amplitude of
approximately 18 m. Converse to the equatorial case, the largest
position errors occur in the out-of-plane direction, whereas the least
error is in the radial position. For both cases, the specific charge
required for formation keeping is on the order of 10−4 C∕kg. For both
cases, the error is periodic with a period of 15 orbits, which is equal to
the synodic period of the spacecraft.
Thus, formation maintenance is possible using the Lorentz force

alone, assuming the spacecraft begins in its desired formation. The
formation error achieved is coarse, but remains bounded. This
motivates the use of combined thruster/Lorentz-force controller
strategies [12,13], which achieve position errors on the order of
meters, rather than tens of meters achieved with the proposed
Lorentz-force only controller. In fact, a Lorentz-force only controller
can be designed using the Lorentz force/impulsive thrust controller
from [13] for the full differential element state. The continuous and
impulsive control inputs from [13] are given by the LQR-like laws

u�t� � −R−1BT�t�P�t�x�t�; t ≠ tk (22)
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Fig. 3 Component magnitudes of the eigenvectors ν0–ν5 of the controllability Gramian for the Lorentz-augmented differential element system, for a

polar, LEO.

Article in Advance / ENGINEERING NOTES 5

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
T

O
R

O
N

T
O

 o
n 

Se
pt

em
be

r 
21

, 2
01

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
11

48
 



vk � −R−1
k B

T
k �tk��P�t−k � −Qk�x�t−k �; t � tk (23)

where vk is the impulsive thrust, tk is the impulse application time,
and tk

− is the time immediately before the impulse is applied.
If the impulsive control penalty, Rk, is chosen to be sufficiently

large, the resulting impulsive control commands an impulsive control
that is sufficiently small to be neglected entirely. The polar orbit 1 km
formation is considered again and continuous/impulsive control
strategies are designed for three different impulsive control penalties:
Rk � 106 · 1,Rk � 108 · 1, andRk � 1010 · 1. The control laws use
four impulsive thrusters per orbit, spaced equally over the orbit. The
relative positive error norms for the three penalty cases are plotted in
Fig. 7. The case Rk � 106 · 1 requires a modest, but significant,
amount of thruster ΔV of 1.3 mm∕s per orbit and achieves a relative
position error norm with a maximum amplitude of less than 5 m. The
increased impulsive input penalties in the two cases results in a per
orbit total required thruster ΔV s of 0.25 mm∕s per orbit and 4.6 ×
10−3 mm∕s per orbit, for the 108 and 1010 cases, respectively. For the
latter case in particular, the applied thruster ΔV is insignificant. The
position error norm shown in Fig. 7 for the 1010 case was achieved
without applying the negligible thruster ΔV, again demonstrating
Lorentz-force only formation maintenance. Note the resulting
position error norm for the 1010 case is comparable to those obtained
with the asymptotic LQR. Lastly, we point out that a typical charge/

discharge time in LEO is 1.4 s. This value limits the bandwidth of the
control but not at the time scale of interest here.
The closed-loop system using the asymptotic LQR is periodic with

synodic period of the spacecraft with respective to the geomagnetic
field, so Floquet analysis is used to validate the system’s closed-loop
stability. The closed-looped Kalman decomposed model is

_̂x�t� �
�
Âc − R−1B̂c�t�B̂Tc �t�Pss Âcu

0 Âu

	
x̂�t� (24)

Per Floquet theory, a periodic, time-varying system is stable if the
system’s state transition matrix calculated for one period of the
system has eigenvalues whose magnitudes are less than unity.
Table 2 presents the eigenvalues of the state transition matrices

corresponding to the closed-loop Lorentz-augmented systems for the
discussed polar and equatorial cases. For both cases, there are five
eigenvalues with magnitudes less than unity. The sixth eigenvalue is
of unity magnitude, indicating that its mode is periodic. Examination
of the eigenvectors of the closed-loop state transition reveals that the
unity eigenvalue belongs to the uncontrolled mode of the
decomposed system. We conclude that, as expected, the asymptotic
LQR stabilizes the controllable subsystem, whereas the uncontrol-
lable subspace remains stable in the sense of Lyapunov, which agrees
with our earlier analysis of the open-loop system.
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Fig. 4 Component magnitudes of the eigenvectors ν0–ν5 of the controllability Gramian for the Lorentz-augmented differential element system, for an

equatorial, LEO.

Table 1 Chief and deputy spacecraft initial conditions

�a [m] �i�deg� �Ω�deg� �q1�−� �q2�−� �λ�deg�
Chief mean elements

6892000 — — 0.0 0.001 0.0 0.0
Case Deputy mean differential elements
�ic ≈ 0 deg −0.1129 8.313 × 10−3 −2.659 × 10−8 7.746 × 10−9 −7.255 × 10−5 −2.019 × 10−6

�ic � 90 deg 1.484 × 10−4 8.313 × 10−3 −1.122 × 10−9 −1.461 × 10−9 −7.255 × 10−5 −2.072 × 10−6

6 Article in Advance / ENGINEERING NOTES

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
T

O
R

O
N

T
O

 o
n 

Se
pt

em
be

r 
21

, 2
01

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
11

48
 



0 5 10 15 20 25 30
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Time (orbits)

 

 

a) Equatorial reference orbit
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Fig. 5 Component magnitudes of the transformed input matrix, B�t�, for equatorial and polar reference orbits.
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Fig. 6 Relative position formation-keeping errors for a 1 km PCO formation in equatorial and polar LEO.
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VI. Conclusions

Spacecraft formation keeping in the presence of the J2
perturbation has been demonstrated using only the Lorentz force,
i.e., with no additional thruster actuation to render the relative
dynamics fully controllable. Kalman decomposition has been used to
isolate the controllable subspace of the dynamics for controller
design, where its application to a time-varying system has been
justified by demonstrating that the uncontrollable subspace of the
system is time-invariant. Floquet analysis shows that the eigenvalue
of the uncontrollable mode for a Lorentz-augmented formation in
polar and the equatorial orbit lies on the unit disc. For those two cases,
any state error in the uncontrollable modewill result in a nonzero but
bounded relative position error. For formations in other inclinations, a
similar analysis is required.
Although not demonstrated in this Note, the presented results

indicate that it should be possible to perform formation maneuvers
beyond just perturbation mitigation using only the Lorentz force,
provided that the target state does not require a change to the
uncontrollable state. For example, in equatorial orbits, where the
uncontrollable state is equal to the differential semimajor axis, the δ �a
of the target formation state must be equal to the δ �a of the current
formation state. Conversely, if there are situations where the
uncontrollable state must be altered, Lorentz-augmented spacecraft
will still require propellant for conventional thruster actuation.
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