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Many space vehicles have been launched with large flexible components such as booms and solar arrays. These

large space structures may require active shape control given the possibility of lightly damped vibrations. Such

vibrations can be controlled using a collection of control moment gyros, which consist of a spinning wheel in gimbals

and produce a torque when the orientation of the wheel is changed. This study investigates the optimal distribution of

these control moment gyros on large space structures for vibration suppression. Initially, a continuum model is

adopted that represents the distribution of control moment gyros by a continuous distribution of stored angular

momentum (gyricity). The optimal control solution for the gimbal motions (for a given gyricity distribution) is then

optimizedwith respect to the gyricity distribution. Further investigation considers discrete parametermodels of beam

and a plate structures with evenly placed discrete pointwise control moment gyros. Numerical optimization of a

suitable cost function allocates the amount of stored angular momentum possessed by these control moment gyros.

I. Introduction

C ONTROL moment gyros (CMGs) consist of a spinning rotor
that is mounted in gimbals. Gimbal motion leads to gyroscopic

reaction torques on the structure towhich theCMG is attached. These
torques are a linear function of the gimbal rates and can be used for
spacecraft actuation. In addition, the mere presence of a CMG will
lead to gyroscopic torques when the CMG experiences an angular
velocity that is not parallel to the rotor spin axis. A single-gimbaled
CMG (SGCMG) consists of a single gimbal axis and results in an
output torque that is perpendicular to the spin and gimbal axes. A
double-gimbaled CMG (DGCMG) consists of two gimbal axes and
can be used to produce torques about two output axes. In a variable-
speed CMG, the rotor spin rate is variable, which leads to a third
output torque about the spin axis.
CMGs have been a popular choice for attitude control actuators for

larger spacecraft and have been used on Skylab, Mir, and the
International Space Station. There have been a few studies that have
advocated their use as actuators to provide active damping on large
flexible space structures. Aubrun and Margulies [1] introduced the
concept of the gyrodamper. It consisted of an SGCMG with an
angular rate sensor that measured the inertial angular rate about the
output torque axis. They noted that the use of a constant proportional
gain between the angular rate and the gimbal rate (hence, output
torque) would mimic a purely passive rotational dashpot. They also
provided the suggestion that two such devices could be mounted
back-to-back so that the angular momentum bias they contributed
would be nominally zero but, with gearing of the gimbal axes (in
opposite directions), the output torques would reinforce one another.
Such devices were termed scissored pairs in [2], where it was
demonstrated that they could reduce power consumption.
An SGCMG gyrodamper prototype was constructed in [3] and

mounted to the free end of a cantilevered beam, and active damping of

the flexural motions was demonstrated. A DGCMG prototype was
attached to the tip of a slender cantilevered beam in [4], and a
comparison of a double-gimbaled format to a single-gimbaled format
was made to evaluate vibration suppression effectiveness. The
DGCMG outperformed the SGCMG where it is noted that the latter
relies on gyroscopic coupling to control vibration in two planes using
a single gimbal. Simple adaptive control was used in [5] and applied
to vibration control of flexible beam and plate structures using
discrete pointwise control moment gyros. Optimal location of a
singleCMG,which could be used for slewing and vibration control of
a truss-like beam, was explored in [6].
The possibility of locating potentially large numbers of spinning

rotors on a flexible structure led D’Eleuterio and Hughes [7,8] to
develop the notion of a gyroelastic continuum. They envisaged an
elastic structure containing a continuous distribution of stored
angular momentum parameterized by the gyricity distribution, the
density of stored angular momentum per unit volume, which could
vary throughout the structure. The basic partial differential equation
model governing the motion of a gyroelastic continuum was
developed in [7]. This was extended to the modeling of a distribution
of CMGs by Damaren and D’Eleuterio [9] who posed and solved an
optimal control problem for this class of space structures. They
developed controllability conditions for a continuous or discrete
distribution of CMGs in [10].
One stone left unturned in [9,10] was the determination of an

optimal gyricity distribution, which can be thought of as the solution
of the optimal actuator location problem for vibration control of a
flexible structure using CMGs. The gyricity distribution is an ideal
approach to this problem because it gives size and location in-
formation for a distribution of CMGs in the guise of a single function.
The approximate implementation of a continuous distribution of
CMGs as a discrete system of pointwise actuators was explored in [9]
(for a plate) and [10] (for a beam).
The optimal location problem for CMGs is complexified by the

fact that the open-loop dynamics are impacted by the amount and
location of the stored angular momentum contributed by these
devices. For example, the natural vibration frequencies are a function
of the CMG distribution. An interesting question is whether it is
better to have a single large CMG at a prescribed location (say at the
tip of a beam), which presents a large stored angular momentum bias,
or whether it is better to employ a distribution of many small devices
implemented as scissored pairs, which contribute no stored angular
momentum bias on average (nominally).
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In this paper, the problem of determining an optimal gyricity
distribution will be formulated. This is the one that minimizes the
value of a performance index that has already been minimized (with
respect to gimbal motion) for a given gyricity distribution (i.e., “the
minimum of a minimum” is sought). This will lead us to a condition
that effectivelymaximizes the controllability of a given set of actuator
locations. This condition is evaluated for simple gyroelastic beam
and plate structures, which can be thought of as equivalent continuum
models for large truss-like space structures. This analysis uses a
continuous gyricity distribution but will be validated by optimizing
the location of a discrete pointwise distribution using numerical
optimization tools in conjunction with a discrete parameter re-
presentation of the structural dynamics.
Other researchers have advocated the use of film-type sensors and

actuators for vibration control in the form of piezoelectric patches.
Applications to space structure problems are described in [11–16].
From these works, it is clear that the control influences provided are
small and suitable for suppressing low levels of vibration. They are
also more applicable to continuous beam and plate structures than
large-scale beam and plate structures whose underlying structure is
truss-like. CMGs are capable of providing larger control influences in
the form of torques, which can also be harnessed for attitude control.
The optimal location of piezoelectric actuators is described in [17–
19] for beams, plates, and spacecraft box structures, respectively.

II. CMG Control of Gyroelastic Space Structures

The basic partial differential equationmodel governing themotion
of a gyroelastic continuum was advanced in [7] and extended to the
modeling of a distribution of CMGs in [9]. The basic vehicle V is
depicted in Fig. 1 and consists of a rigid bodyR to which a number of
flexible appendages, collectively denoted by E, are attached. Let
w�r; t� denote the total displacement of the vehicle at position r �
� x y z �T whose origin O lies on a (possibly vanishingly small)
rigid portion R of the structure V. It can be decomposed into rigid-
body and elastic deformations as follows:

w�r; t� � w0�t� − r×θ�t� � ue�r; t� (1)

Here,w0�t� is the translation ofO, θ�t� is the small rotation ofR, and
ue�r; t� is the small elastic deformation, at position r, with ue
vanishing on R. The notation �·�× implements the vector cross
product:

r× �

2
4 0 −z y
z 0 −x
−y x 0

3
5

The structure is imbued with a (nominal) gyricity distribution hs�r�
(the stored angular momentum per unit volume) and it will be
assumed that hs�r� vanishes on ∂V, the boundary of V.

It is assumed that the gyricity element at r, hs�r�dV can be rotated
relative to the local body-fixed reference frame through small gimbal
angles β�r; t� � � βx βy βz �T , kβk ≪ 1. The model governing the
dynamics of this flexible structure carrying a distribution of
DGCMGs is given by [7,9,10]:

M �w� �G�D� _w�Kw �Hu (2)

where M � σ�r�I is the self-adjoint mass operator [with σ�r� the
mass density per volume and I the identity operator], K is the self-
adjoint stiffness operator, andD is the self-adjoint damping operator.
The stiffness and damping operators are positive definitewith respect
to ue and the mass operator is positive definite with respect tow. The
terms associated with the gyricity distribution are the gyricity
operator G and the input operator H, defined by

G � −
1

4
∇×h×

s∇×; H � 1

2
∇×h×

s (3)

and the control input is u�r; t� � _β�r; t�, the gimbal rates, which are
also assumed to be small. Hence, the force distribution created by the
DGCMGs is

fh�r; t� � −G _w�Hu � 1

2
∇×

�
h×
s �r�

�
1

2
∇× _w�r; t� � _β�r; t�

��

where the second 1∕2∇× operator produces an angular velocity
distribution from the linear velocity distribution _w�r; t� and the first
one produces a force distribution from a torque distribution.
The gyricity operator is skew adjoint, whereas the input operator is

neither self-adjoint or skew adjoint. The skew-adjoint property of G
follows from the following form of integration by parts:

Z
V
uT∇×v dV �

Z
V
�∇×u�Tv dV

if u or v vanishes on the boundary of V. It will be useful to introduce
the inner product

hu; vi �
Z
V
uTv dV

Using this to define the adjoint of H according to hu;Hvi �
h�H�u�; vi, one arrives at H� � −1∕2h×

s∇×.
It will be helpful to express Eq. (1) in first-order form:

E _χ � T χ � Bu (4)

where

E �
�M 0

0 K

�
; T �

�G�D K

−K 0

�
;

B �
�H
0

�
; χ �

�
_w

ue

�

The second equation contained in Eq. (4) states that K _ue � K _w,
which holds by virtue of the fact that the rigid part of themotion lies in
the null space of the stiffness operatorK. Using the inner product, the
operator E is self-adjoint and positive definite:

hχ 1;Eχ 2i � hEχ 1; χ 2i; hχ ;Eχ i > 0�χ ≠ 0�

The operator T can be decomposed into skew-adjoint and self-
adjoint parts:

T � S � δS

whereFig. 1 Gyroelastic space structure.
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S �
�

G K
−K 0

�
; δS �

�
D 0

0 0

�

The notation has been chosen to suggest that damping will be treated
as a small perturbation.

A. Eigenvalue Problem

The eigenvalue problem associated with the undamped and
unforced form of Eq. (4) is given by

λαEχ α � Sχ α � 0 (5)

Given the properties ofE andS, it is easily shown that the eigenvalues
λα are purely imaginary and the eigenfunctions occur in complex-
conjugate pairs:

λα � jωα; χ α � ϕα � jψα�α � −∞; : : : ;∞� (6)

whereω−α � −ωα,ωα > 0 for α > 0, andϕ−α � ψα. There are also
zero-frequency modes, which will not concern us here. The real
eigenfunctions have the following forms:

ϕα �
�
−ωαvα
ueα

�
; ψα �

�
ωαuα

veα

�

where u−α � vα, ue;−α � veα, and

uα � w0α − r×θα � ueα

which partitions the mode shape according to Eq. (1). A perturbation
analysis for the eigenvalues reveals that the perturbation δS leads to
changes in the eigenvalues given by

δλα � −
1

4ω2
α
hχ α; δSχ αi � −

1

4
�huα;Duαi � hvα;Dvαi� (7)

Hence, the damping perturbation leads to negative real changes in the
eigenvalues as expected. The first relation in Eq. (7) is also valid for
the casewhereG is taken to be zero inS, andD is set equal toG in δS.
In this situation, gyricity is viewed as a small perturbation to a purely
elastic undamped system. Because G is skew adjoint, we arrive at

δλα �
j

2ω2
α
hψα; δSϕαi � jδωα; δωα � −

1

2
huα;Gvαi

For a purely elastic system, one can select uα � vα, which, using the
skew-adjoint property of G, leads to δωα � 0. Hence, the first-order
change in vibration frequencies due to gyricity is zero.

B. Continuum Optimal Control Problem

For a given gyricity distribution, the optimal control law for the
gimbal rates is that which minimizes the performance index

J �u� � 1

2

Z
T

0

�hχ ;Qχ i � hu;Rui� dt (8)

where R � R�r�I is a positive-definite self-adjoint operator [with
the matrix R�r� being positive definite] and Q is a positive-
semidefinite self-adjoint operator. It is assumed that does not penalize
the translational modes of the system. It was shown in [9] that the
optimal control law is given by

u�hs� � −R−1B��hs�ξ�hs� (9)

where the adjoint state ξ is part of the solution of the following two-
point boundary value problem:

E _χ �hs� � T �hs�χ �hs� � −W�hs�ξ�hs�; χ �hs�jt�0 � χ 0
(10)

−E_ξ�hs� � T ��hs�ξ�hs� �Qχ �hs�; ξ�hs�jt�T � 0� (11)

whereW�hs� � B�hs�R−1B��hs�. The functional dependence on
hs in Eqs. (9–11) is used to exhibit either explicit or implicit
dependence on the gyricity distribution and anticipates the need to
vary it.
The “sweep solution” ξ�hs� � P�hs�Eχ �hs� leads to the operator

Riccati equation for P:

E _PE � EPT � T �PE � EPBR−1PE −Q (12)

with terminal boundary condition Pjt�T � 0. The optimal value of
the performance index is

J �hs� ≜ J �u�hs�� �
1

2
hχ �hs�;EP�hs�Eχ �hs�ijt�0 (13)

A modal expansion approach for the Riccati operator P and the
motion of the structure χ described by Eq. (4) was adopted in [9] to
calculate the solution to the optimal control problem, the motion it
produced, and the value of the optimal cost.
It is interesting to note how the optimal value (for a givenhs) varies

with respect to hs. To this end, introduce a neighboring gyricity
distribution h⋆

s and define

γ � χ �h⋆
s � − χ �hs� (14)

δ � ξ�h⋆
s � − ξ�hs� (15)

δT � T �h⋆
s � − T �hs� �

�
G�h⋆

s � − G�hs� 0

0 0

�
γ0 � χ �h⋆

s �jt�0−χ �hs�jt�0 � 0

δT � ξ�h⋆
s �jt�T − ξ�hs�jt�T � 0

δ0 � ξ�h⋆
s �jt�0 − ξ�hs�jt�0 (16)

� �P�h⋆
s �jt�0 −P�hs�jt�0�Eχ 0; χ 0 � χ jt�0 (17)

It is demonstrated in the Appendix that

J �hs� − J �h⋆
s � �

1

2

Z
T

0

hξ�h⋆
s �; �W�h⋆

s � −W�hs��ξ�h⋆
s �i dt

�
Z
T

0

hξ�h⋆
s �; δT χ �hs�i dt�

1

2

Z
T

0

�hδ;W�hs�δi � hγ;Qγi� dt

(18)

This expression provides an ideal starting for optimizing the gyricity
distribution.

III. Toward an Optimal Gyricity Distribution

A general problem that can be posed is as follows: Find h⋆
s

such that

J �h⋆
s � ≤ J �hs�; ∀ hs ∈ Had (19)

where Had is an admissible set of gyricity distributions:

Had � fhsjhs�r� � 0; r ∈ ∂V; khsk � Hg (20)

and

khsk2 �
Z
V
hTs hs dV

In general, an analytical solution to this problem is not possible.
However, a sufficient condition for h⋆

s to be optimal can be obtained
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from Eq. (18). Because W and Q are positive semidefinite, the
following statement must hold: If

1

2

Z
T

0

hξ�h⋆
s �; �W�h⋆

s � −W�hs��ξ�h⋆
s �i dt�

Z
T

0

hξ�h⋆
s �;

δT χ �hs�i dt ≥ 0 (21)

then J �h⋆
s � ≤ J �hs�. Proceeding heuristically, let us ignore the

influence of gyricity on the open-loop dynamics δT ≈ 0. This is
reasonable because, as noted earlier, the first-order change in the
vibration frequencies due to gyricity is zero.
The minimization of the performance index clearly depends on

maximizing the size of the positive-semidefinite operator W where

W �
�
HR−1H� 0

0 0

�
; HR−1H� � −

1

4
∇×h×

sR−1h×
s∇×

(22)

Letting R � I , maximizing the size of W is equivalent to
maximizing the size of HH�. To this end, consider the quantities

Sαα � huα;HH�uαi � −
1

4

Z
V
�∇×uα�Th×

s h
×
s �∇×uα� dV (23)

which were introduced in [10]. A proxy for maximizing W is
maximizing the size of these quantities (the Sαα). In [10], it was
shown that Sαα ≠ 0 or S−α;−α ≠ 0 were conditions for controllability
of mode pair α using a distribution of DGCMGs. Another
interpretation is possible by considering the collocated control law
u�r; t� � −r−1H� _w�r; t� � �2r�−1h×

s �r�∇× _w�r; t�, which is a dis-
tributed DGCMG implementation of the gyrodamper introduced in
[1]. Using the eigenperturbation formula from Eq. (7) with D �
r−1HH� � −�4r�−1∇×h×

s h
×
s∇×, the eigenvalue perturbations for

large r are given by

δλα � −
1

4r
�Sαα � S−α;−α�; α � 1; 2; 3; : : : (24)

Clearly, it is desirable to maximize the magnitude of these quantities,
whichmaximizes the controllability ofmode pair α. The fundamental
problem is the dependence of the mode shapesuα (and hence Sαα) on
the gyricity distribution, which is the quantity to be optimized.
In [20], the stored angular moment coefficients are defined as

gα � −
1

2

Z
V
h×
s∇×uα dV (25)

and shown to satisfy the modal identity

1

2

X∞
α�−∞

gαg
T
α �

1

4

Z
V
�∇×h×

s �T�∇×h×
s �σ−1 dV

� −
1

4

Z
V
h×
s∇×∇×h×

s σ
−1 dV (26)

Using the Cauchy–Schwartz inequality, one can obtain the inequality

gTαgα ≤
Z
V
dV · Sαα (27)

and combining these two equations yields

1

2

X∞
α�−∞

gTαgα � −
1

4
tr

Z
v
h×
s∇×∇×h×

s σ
−1 dV

� −
1

4

Z
V
hTs �∇∇T � ∇T∇I �hsσ−1 dV

≤
V

2

X∞
α�1
�Sαα � S−α;−α� (28)

where tr denotes the trace of a squarematrix. The second equality can
be reasoned by direct expansion. The advantage of maximizing the
lower bound established here is that it is independent of the mode
shapes uα, unlike the summation involving the Sαα. In other words,
the limiting sum in the lower bound is independent of the modal
parameters and depends only on the gyricity distribution and themass
density. Let us define this sum as

C�hs��
Δ 1

2

X∞
α�−∞

gTαgα �
1

4

Z
V
hTsKhhsσ

−1 dV;

Kh�
Δ − �∇∇T � ∇T∇I� (29)

The operator that has been defined as Kh has the interesting
interpretation of being the stiffness operator of a linear elastic,
uniform, isotropic solid with Poisson’s ratio equal to zero.
The gyricity distribution is now determined that produces

stationary values of C�hs� subject to the condition hs ∈ Had, that is,

hs�r� � 0; r ∈ ∂V; khsk � H (30)

This does not guarantee that the sum of the quantities Sαα [or J �hs�]
will be stationary, but it does render stationary a lower bound for the
sum on the right-hand side of the inequality in Eq. (28). With the
boundary condition on hs in Eq. (30), the operator Kh is rendered
self-adjoint and positive definite. Application of the calculus of
variations to the functional C�hs� yields the following eigenproblem
for the stationary values Cm and the stationary distributions hm:

−λmσ�r�hm �Khhm � 0;

Z
V
hTmhm dV � H2;

Cm �
H2λm
4

; m � 1; 2; 3; : : :

In general, the stationary values form an ascending sequence so that
the maximum value of the index C tends toward infinity.
As an example of the preceding, consider the beam example

introduced in [10] and depicted in Fig. 2. This a free–free beam that
can bend in two planes and the gyricity distribution is nominally
directed along the beam’s slender axis. In this case, the operatorKh

degenerates to −2d2∕dx2 and the aforementioned eigenproblem is
simply that of a uniform string with mass density per unit length
σ � ρ. The stationary values and functions are given by

hm � H
���
2

l

r
sin
mπx̂

l
;

�
x̂ � x� l

2

�
; λm �

2

ρ
�mπ∕l�2

Fig. 2 Gyroelastic beam.

4 AIAA Early Edition / CHEE AND DAMAREN

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

T
or

on
to

 o
n 

N
ov

em
be

r 
25

, 2
01

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
02

93
 



The stationary functions for the gyricity distribution have the
property that, as m → ∞, the average density of stored angular
momentum on a nonzero, finite segment of the beam is zero. In this
case, the CMGs behave like the scissored pairs considered in [2],
which mount two CMGs back-to-back to cancel their nominal
angular momentum but gear their gimbal motions together so that the
control torques are reinforced. It was noted in the Introduction that a
similar device was proposed in [1].
Let us now consider the plate example of [9], which treated the

transverse motions of a free thin plate with the nominal gyricity
distribution normal to the plate. If the origin is placed at the plate
center, let x and ybe the in-plane coordinate axes (with corresponding
plate dimensions a and b) and z normal to the plate. The stiffness
operator is K � D∇4 (D is the plate rigidity) and Kh is that
corresponding to a membrane with uniform tension. The stationary
functions and values are

hmn �
2H������
ab
p sin

mπx̂

a
sin
nπŷ

b
;

�
x̂ � x� a

2
; ŷ � y� b

2

�
;

λmn �
1

σ
��mπ∕a�2 � �nπ∕b�2�; m; n � 1; 2; 3; : : :

Similar comments to the beam case apply here. Effectively, the
gyroscopic terms emanating from the operatorG tend toward zero but
those produced by H_β are maximized as m, n → ∞. These results
suggest that the angular moment bias contributed by the CMGs is not
desirable and should be locally canceled by alternating the direction
of the stored angular moment bias in neighboring CMGs.

IV. Numerical Optimization

A. Discrete Optimal Control Problem

Using a Ritz technique such as the finite element method, the
partial differential equation in Eq. (2) can be spatially discretized to
yield the discrete parameter model

M �q� �G�D� _q�Kq � H_β (31)

where q�t� are the totality of the discrete parameters used to describe
w�r; t� and M, G, D, K, and H are the constant matrices
corresponding to their operator equivalentsM,G,D,K, andH. It is
assumed that the gyricity distribution corresponds to a set of N
pointwise DGCMGs, that is,

hs�r� �
XN
i�1

hiδ�r − ri�

where δ�r� is the Dirac delta function. The corresponding discrete set
of gimbal angles will be denoted by β�t� � �βx1; βy1; · · · ; βxN; βyN �T.
Equation (31) can be expressed in the following first-order state-
space form:

_x � Ax�Bu

where

A �
"
−M−1�G�D� −M−1K

1 0

#
; B �

"
−M−1H

0

#
;

x �
"
_q

q

#
; u � _β

In this section, a discrete linear quadratic regulator (LQR) control
scheme is implemented. The optimal LQR controller yields a state
feedback controller that minimizes the cost function

J �
Z

∞

0

�xTQx� uTRu� dt � xT0Px0 (32)

(the factor of 1∕2 is omitted in this section) where Q is the positive-
semidefinite matrix that penalizes the system’s states,R is a positive-
definite matrix that penalizes the control inputs, P is the solution to
the algebraic Riccati equation

PA�ATP − PBR−1BTP�Q � 0

and x0 is the state of the system at time t � 0. The unique controller
that minimizes J is of the form

u�t� � −R−1BTPx�t�

Because the control objective is to suppress the vibrations of the
system, it would seem appropriate to penalize the states x according
to the mechanical energy of the system. To this end, consider

Q � diagfM;Kg

which yields

xTQx � _qTM _q� qTKq

It should be noted that, in the case of an unconstrained body, this
choice of penalization does not penalize the rigid rotation of the
structure. It penalizes only the rates of the rigid modes viaM because
K is only positive semidefinite. To penalize the rigid rotation of the
structure, Q is modified to be

Q � diagfM;Kg �Qrigid (33)

where

Qrigid �
�
q; for diagonal positions corresponding to the rigid rotation states;
0; elsewhere

Here, q is a positive constant chosen to place the eigenvalues of the closed-loop system matrix associated with the rigid modes.

To penalize the control effort, the matrix R is chosen to have
the form

R � r1

where r is a positive constant chosen to place the eigenvalues of the
closed-loop systemmatrix. This effectively penalizes the gimbal rate
motions uniformly.

B. Optimization Objective

The objective of this analysis is to find the optimal distribution of
CMGs for vibration suppression of beams and plates. A suitable
objective function can be found in the objective function used for the
optimal LQR problem shown in Eq. (32). In this equation, the initial
state x0 is unknown and can be considered as a random variable
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with a second-order moment Efx0x
T
0 g � X0. From [21], it can be

seen that minimizing J � EfxT0Px0g is equivalent to minimizing
J � tr�PX0�; assuming X0 � 1,

J � tr�P�

is taken as the objective function. This makes the optimization a
weighted sum of how quickly the vibrations are damped and the
amount of control effort used.
Because both the location and amount of stored angular

momentum influence the control of the structure in a coupledmanner,
the amount of stored angularmomentum in eachCMG is variedwhile
keeping the locations of the CMGs fixed. This allows a fixed number
of CMGs to be distributed evenly about the body, and the op-
timization will be concerned with the allocation of the stored angular
momentum. Leth � �hs;1; hs;1; : : : ; hs;N �T be an array of the amount
of nominal stored angular momentum forN CMGs. This distribution
of stored angular momentum is subjected to the constraint

XN
k�1

h2s;k � hTh � c2; or �c�h� � hTh − c2 � 0

Thus, the optimization problem considered here can be stated as

min
s
J�h�; s � fhjh ∈ RN; �c�h� � 0g (34)

C. Implementation

The problem posed in Eq. (34) is difficult to solve analytically
because of its dependency on the solution to the Riccati equation. For
this reason, nonlinear numerical techniques are employed. This
analysis applies an interior-point algorithm using the fmincon
function in the MATLAB environment. First, consider the case of a
free–free beam. It is discretized using 20 basis functions in a Ritz
expansion. The basis functions include the two rigid rotations, the
first nine free–free elastic modes in the two axis, and the first nine
free–free elastic modes in the three axis. The properties of the beam
are presented in Table 1.
The beam is outfitted with 20 CMGs distributed evenly from one

end to the other end with a separation distance of l∕19. The stored

angular momentum of each CMG is nominally parallel to the
spanwise direction. This configuration is illustrated in Fig. 3a.
Because gradient-based optimization techniques are used, initial

conditions are required.These techniques only ensure a localminimum
is reached, and so the optimization is performed using seven different
initial conditions and the best results are presented. The following
initial conditions are considered: a uniform distribution with

hs;i �
1

c
����
N
p ; i � 1; : : : ; N (35)

and distributions based on sinusoidal functions with

hs;i �
1

C

Z
bi

ai

sin

�
mπx

l

�
dx (36)

or hs;i �
1

C

Z
bi

ai

cos

�
mπx

l

�
dx (37)

where

ai � xi �
l

2
−
l

2N
; bi � xi �

l

2
� l

2N

C is chosen to satisfy the constraint hTh � c2, and m � 1; 2; 3.
The plate case is modeled using the finite element method. For the

optimization, a uniform 16 × 16 element model is composed using a
16-degree-of-freedom rectangular plate element as described by
Zienkiewicz and Taylor [22]. The first 49 modes of this model are
retained and used as basis functions in aRitz expansion. Thesemodes
include the two rigid-body rotationmodes. The properties of the plate
are taken from the Purduemodel presented in [23]. The Purduemodel
is a plate structure with a rigid hub at the center. For this analysis, the
rigid mass at the center of the plate in the Purdue model is omitted.
The plate properties are given in Table 2.
The plate is outfitted with N � 49 CMGs. These CMGs are

distributed in aNx × Ny gridwithNx � Ny � 7. The spin axes of the
CMGs’ flywheels are nominally perpendicular to the plate. This
configuration is illustrated in Fig. 3b. The optimization is performed
using 10 different initial conditions and the best results are presented.

Table 1 Beam properties

Property Symbol Value

Beam length l 100 m
Mass per length ρ 6.200 kg∕m
Stiffness to bending in two axis B2 1.5765 × 109 N · m2

Stiffness to bending in three axis B3 1.5 × B2

Proportional damping ratios ζα 0.01
Rigid rotation penalization, Eq. (33) q 100

a) Beam b) Plate

Fig. 3 CMG placement.

Table 2 Plate properties

Property Symbol Value

Plate length a 12.5 km
Plate width b 5 km
Mass per area σ 0.2662 kg∕m2

Modulus of rigidity D 20 × 108 N
Poisson’s ratio ν 0.3
Proportional damping ratios ζα 0.01
Rigid rotation penalization, Eq. (33) q 1 × 10−4
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The following initial conditions are considered: a uniform dis-
tribution with

hs;i �
1

c
����
N
p ; i � 1; : : : ; N (38)

a corner distribution evenly lumping all of the stored angular
momentum at the plate’s corners with

�
hs;i � 1

c
��
4
p ; i � f1; 7; 43; 49g

hs;i � 0; otherwise
(39)

and distributions based on sinusoidal functions with

hs;i �
1

C

Z
di

ci

Z
bi

ai

sin

�
mπx

a

�
sin

�
nπy

b

�
dx dy (40)

or hs;i �
1

C

Z
di

ci

Z
bi

ai

cos

�
mπx

l

�
cos

�
nπy

b

�
dx dy (41)

where

ai � xi �
a

2
−

a

2Nx
; bi � xi �

a

2
� a

2Nx
;

ci � yi �
b

2
−

b

2Ny
; di � yi �

b

2
� b

2Ny

C is chosen to satisfy the constraint hTh � c2, m � 1; 2,
and n � 1; 2.

D. Optimization Results

For the free beam, consider the case where ĉ � c∕
����������
ρBl2

p
� 1.0

and r � 200, where B �
�����������
B2B3

p
. Using the method discussed, the

resulting distribution of stored angular momentum with the lowest
cost is shown in Fig. 4. One curious result of this optimized
distribution is that adjacent gyros have their nominal stored angular
momentum in opposite directions, which is consistent with the
continuum analysis of the preceding section. To search for an
explanation as towhy this results in a lower cost, it may be instructive
to compare its gyroelastic modes with the elastic modes of a purely
elastic beam and the gyroelastic modes of a beam with a single gyro
with all of the stored angular momentum lumped at the end of the
beam. Thesemodes are illustrated in Figs. 5–7. For the beamwith the
single gyro, the amount of stored angular momentum is also
constrained to have ĉ � 1.0.
The motions of a gyroelastic mode α are described by

qα � uα cos�ωαt� − vα sin�ωαt�

where uα and vα now represent the discrete parameter representation
of the mode shapes. In Figs. 6 and 7, the mode shape for uα is
visualized by the thick black linewithmany thin lines connecting it to
the one axis, and vα is visualized by the thick gray line. The circles
and ellipses planar to the one axis show the evolution of the
gyroelastic mode through a full period according to the gyroelastic
frequency ω. The frequencies presented in the figure are scaled
according to ω̂α � ωα

�������������
ρl4∕B

p
.

Comparing the elastic modes to the gyroelastic modes for a CMG
at x � l∕2 illustrates the effect that a concentrated amount of stored
angular momentum can have on the gyroelastic modes of the system.
It is apparent that having the CMG at the end of the beam flattens out
the gyroelasticmode shapes at the end of the beam for bothuα and vα.
This makes the gyroelastic modes less controllable from that
position. It is possible that this is due to the resistance of bodies with
large amounts of stored angular momentum to change its axis of
rotation.
Now consider the optimized distribution. The staggered di-

rectionality of the nominal stored angular momentum of the CMGs

Fig. 4 Optimized CMG distribution for beam.

a)     = 20.22 b)     = 24.76

d)     = 68.25

c)     = 55.73

Fig. 5 Elastic modes.
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lowers the total angularmomentum of the system, which introduces a
rigid precessional mode with low frequency shown in Fig. 7a. It also
counters the flattening effect of the gyroelastic modes seen in the
single CMG case so that the gyroelastic modes for the optimized case
are closer to the elastic modes in both shape and frequency.
Results similar to the free beam case are found for the free plate case.

Consider the case in which ĉ � c∕
������������
Dσa4
p

� 1.0 and r � 10. The
resulting optimized distribution with the lowest cost is shown in Fig. 8.
On the short edges of the plate, a staggering of the direction of the
nominal stored angularmomentumof theCMGs is seen. Concentrating
all of the stored angular momentum in a single CMG at the corner
x � a∕2, y � b∕2 results in a flattening of the gyroelasticmodes of the
plate at the position of the CMG, as shown through the comparison of
the elastic modes in Fig. 9 with the gyroelastic modes in Fig. 10. The
gyroelastic modes of the optimized distribution do recover the elastic
mode shapes for lower frequency modes, as seen in Figs. 11a and 11b.
However, they are coupled and their frequencies are different. This
correspondence is lost for higher frequencies, as evidenced in Fig. 11c.

E. System Response

Consider the closed-loop response of the gyroelastic beam system
when it is initially deformed and at rest in the shape of a parabola in
the three axis. The parabola is described by the function

a)     = 4.561 b)     = 7.561 c)     = 28.47

d)     = 35.33

Fig. 6 Gyroelastic modes for single CMG.

a)     = 0.6733 b)     = 19.75 c)     = 24.95

d)     = 55.22
Fig. 7 Gyroelastic modes for optimized distribution.

Fig. 8 Optimized CMG distribution for plate.
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z � 1

25l
x2

Thus, the ends of the beam are deformed 100th of the span of the
beamwith respect to the beam’s center. The response of the system to
this initial condition will form a basis for comparison between
different distributions of stored angular momentum. For this
comparison, the distributions considered include the optimized
distribution, a distribution with the stored angular momentum spread
uniformly between all 20 gyros as given by Eq. (35), and a

distribution with the stored angular momentum lumped evenly
between two gyros at the beam ends.
It should be noted that, because the initial conditions involve a

symmetric deformation in the three axis, modes corresponding to
mode shapes in the two axis and asymmetricmode shapes in the three
axis have zero valued initial conditions. To make a quantitative
comparison, consider the settling times ts for the elastic modewhose
mode shape is illustrated in Fig. 5b. The settling time is the time it
takes for this mode to reach and stay within 1% of the target values as
comparedwith its initial conditions. Thismode is considered because
it has nonzero initial conditions, and its settling times are presented in
Table 3. The settling time of the optimized distribution for this mode
is 11% of the settling time for the uniform distribution and 23% of
the settling time for the ends distribution. This shows that the
optimization yields significant reduction in settling times in
suppressing the vibrations of this system. Starting with the objective
function of the LQR problem given in Eq. (32), the optimization of
the CMG distribution treated x0 as a random variable. This led to
taking J � tr�P�. However, now that an initial condition is con-
sidered, the normxT0Px0 gives a directmeasure of howwell each case
performs according to the weighting of state and control effort used
for the optimization of the stored angular momentum distribution.
These values and J are included in Table 3. This norm yields little
insight, however, because the weighting between the states and the
control effort was arbitrarily determined to place the closed-loop
eigenvalues. To estimate the portion of this norm allocated to the
energy of the states and the control effort used to suppress the
vibrations of the system, the norms

a)     = 21.45

c)     = 59.63 d)     = 70.80

b)     = 32.99

Fig. 9 Free plate elastic modes.

a)     = 4.511

b)     = 12.66

c)     = 26.48
Fig. 10 Free plate single CMG gyroelastic modes (ĉ � 1.0).

a)     = 3.111

b)     = 11.76

c)     = 20.66

Fig. 11 Free plate CMG distribution gyroelastic modes (ĉ � 1.0).

Table 3 Initial deformation beam performance for ĉ � 1.0

Distribution ts, s J xT0Px0 Jx Ju

Optimum 0.57 2.69 × 105 1.49 × 104 8.31 × 103 6.55 × 103

Uniform 5.27 1.77 × 106 1.48 × 105 7.43 × 104 7.41 × 104

End 2.45 1.36 × 106 7.55 × 104 3.76 × 104 3.78 × 104
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Jx �
Z

τ

0

xTQx dt and Ju �
Z

τ

0

uTRu dt

are calculated for τ equal to the settling time for the aforementioned
elastic mode. These values are also included in Table 3. From these
norms, it can be seen that the optimized distribution outperforms the
uniform distribution and the end distribution in both reducing the
energy of the states and exerting less control effort.
The closed-loop response of the platewith a parabolic elastic initial

deformation while at rest is also considered. The deformation is
described by the equation

z � 1

25a
x2

The deformations of the plate at x � a∕2 and x � −a∕2 are a∕100.
The response of the optimized distribution to this deformation is
compared with the responses of the uniform distribution from
Eq. (38) and the corner distribution from Eq. (39).
As with the beam case, it can be seen that the optimized

distribution damps out the vibrations of the plate in less time than the
other distributions. The parabolic initial condition is closest in shape
to the mode illustrated in Fig. 9a; hence, consider the settling time for
this mode shown in Table 4. The optimized distribution has a settling
time for this mode that is 16% of the settling time of the uniform
distribution and 42% of the settling time of the corner distribution.
To compare the performance of the distributions with respect to

dissipating the energy of the states and the control effort exerted, the
norms xT0Px0, Jx, and Ju are considered as defined in the beam case.
The time over which the integration is taken is the settling time for the
aforementioned mode. The values of these norms are included in
Table 4. Thesevalues show that the optimized distribution outperforms
the uniform distribution and the corner distribution in both damping
out the energy of the states and reducing the control effort exerted.
It is important to remember, however, that the results are sensitive to

the way in which the objective function is formulated. Optimization
tools can only ensure that a series of variables minimizes or maximizes
anobjective function.The results from theuseof these tools are optimal
according to themetric bywhich theywere optimized andonlyprovide
a means to manage design objectives. To obtain a useful result, one
must ensure that the constraints and objective function properly reflect
the design requirementswhen optimization is used in a design process.

V. Conclusions

This paper has considered the problem of optimizing the location
of DGCMGs on a flexible structure for the primary purpose of
vibration control. A continuum formulation was proposed, which
treated the CMGs as a continuous distribution of stored angular
momentum (the gyricity distribution) with an associated distribution
of gimbal angles. A discrete parameter approach was also taken for
beam and plate models containing a fixed number of DGCMGs at
uniformly spaced locations. For both the continuum and discrete
parameter approaches, the performance index, which had been
optimized with respect to gimbal motion for a given distribution of
DGCMGs, was then minimized with respect to the CMGs gyricity
distribution. The continuum and discrete parameter results suggest
that DGCMGs located for optimal vibration suppression should be
implemented so as to avoid contributing stored angular momentum
bias over finite regions of the structure. In particular, many small
CMGs with alternating signs of the stored angular momentum are
superior to a single large CMG.

Appendix: Comparison Result for Gyricity Distribution

The following development has borrowed from the work in [A1],
which considered the sensor location problem for distributed
parameter systems. The differences γ and δ defined in Eqs. (14) and
(15) satisfy the following equations:

E_γ�T �h⋆
s �γ�W�hs�δ��W�hs�−W�h⋆

s ��ξ�h⋆
s �−δT χ �hs�;

γ0�0 −E _δ�T ��h⋆
s �δ�Qγ−δT �ξ�hs�; δT�0

Making considerable use of the preceding expressions as well as
Eqs. (8–13), produces the following development:

Z
T

0

hξ�h⋆
s �;�W�hs�−W�h⋆

s ��ξ�h⋆
s �idt−

Z
T

0

hξ�h⋆
s �;δT χ �hs�idt

�
Z
T

0

hξ�h⋆
s �;E_γ�T �h⋆

s �γ�W�hs�δidt

�
Z
T

0

hξ�h⋆
s �;W�hs�δidt�

Z
T

0

hξ�h⋆
s �;E_γ�T �h⋆

s �γidt

�
Z
T

0

hξ�h⋆
s �;W�hs�δidt

�
Z
T

0

h−E_ξ�h⋆
s ��T ��h⋆

s �ξ�h⋆
s �;γidt��hξ�h⋆

s �;Eγi�t�Tt�0

�
Z
T

0

hξ�h⋆
s �;W�hs�δidt�

Z
T

0

hχ �h⋆
s �;Qγidt

�
Z
T

0

hξ�h⋆
s �;W�hs�δidt�

Z
T

0

h−E _δ�T ��h⋆
s �δ;χ �h⋆

s ��idt

�
Z
T

0

hχ �h⋆
s �;δT �ξ�hs�idt

�
Z
T

0

hξ�h⋆
s �;W�hs�δidt

�
Z
T

0

hE _χ �h⋆
s ��T �h⋆

s �χ �h⋆
s �;δidt− �hEχ �h⋆

s �;δi�t�Tt�0

�
Z
T

0

hχ �h⋆
s �;δT �ξ�hs�idt

�
Z
T

0

hξ�h⋆
s �;W�hs�δidt−

Z
T

0

hW�h⋆
s �ξ�h⋆

s �;δidt�hEχ 0;δ0i

�
Z
T

0

hχ �h⋆
s �;δT �ξ�hs�idt

�
Z
T

0

hξ�h⋆
s �;�W�hs�−W�h⋆

s ��δidt

�hEχ 0;�P�h⋆
s �jt�0−P�hs�jt�0�Eχ 0i

�
Z
T

0

hχ �h⋆
s �;δT �ξ�hs�idt

�
Z
T

0

hξ�h⋆
s �;�W�hs�−W�h⋆

s ��δidt�2�J �h⋆
s �−J �hs��

�
Z
T

0

hχ �h⋆
s �;δT �ξ�hs�idt

The last equality can be rearranged to give

J �hs� − J �h⋆
s � �

1

2

Z
T

0

hξ�h⋆
s �; �W�h⋆

s � −W�hs��ξ�h⋆
s �i dt

� 1

2

Z
T

0

hξ�h⋆
s �; �W�hs� −W�h⋆

s ��δi dt

� 1

2

Z
T

0

hξ�h⋆
s �; δT χ �hs�i dt�

1

2

Z
T

0

hχ �h⋆
s �; δT �ξ�hs�i dt (A1)

Also, the use of Eqs. (14) and (15) yields the system of equalities

Table 4 Initial deformation plate performance for ĉ � 1.0

Distribution ts, s J xT0Px0 Jx Ju

Optimum 9,048 5,303 6.43 × 109 3.45 × 109 2.98 × 109

Uniform 55,720 12,099 5.06 × 1010 2.56 × 1010 2.50 × 1010

Corner 21,680 32,282 2.41 × 1010 1.25 × 1010 1.16 × 1010
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Z
T

0

hξ�h⋆
s �;�W�hs�−W�h⋆

s ��δidt−
Z
T

0

hδ;δT χ �hs�idt

�
Z
T

0

hδ;E_γ�T �h⋆
s �γ�W�hs�δidt

�
Z
T

0

hδ;W�hs�δidt�
Z
T

0

hδ;E_γ�T �h⋆
s �γidt

�
Z
T

0

hδ;W�hs�δidt�
Z
T

0

hγ;−E _δ�T ��h⋆
s �δidt��hδ;Eγi�t�Tt�0

�
Z
T

0

hδ;W�hs�δidt�
Z
T

0

hγ;Qγidt−
Z
T

0

hγ;δT �ξ�hs�idt

Noting the definitions of δ and γ, the last equality is equivalent to

1

2

Z
T

0

hξ�h⋆
s �; �W�hs� −W�h⋆

s ��δi dt

� 1

2

Z
T

0

hδ;W�hs�δi dt�
1

2

Z
T

0

hγ;Qγi dt

� 1

2

Z
T

0

hξ�h⋆
s �; δT χ �hs�i dt

−
1

2

Z
T

0

hχ �h⋆
s �; δT �ξ�hs�i dt (A2)

Combining Eqs. (A1) and (A2) gives

J �hs�−J �h⋆
s � �

1

2

Z
T

0

hξ�h⋆
s �; �W�h⋆

s �−W�hs��ξ�h⋆
s �idt

�
Z
T

0

hξ�h⋆
s �;δT χ�hs�idt�

1

2

Z
T

0

�hδ;W�hs�δi� hγ;Qγi�dt

(A3)

which is the desired result.

[A1] Bensoussan, A., “Optimization of Sensors’ Location in a Distributed
Filtering Problem,” Stability of Stochastic Dynamical Systems, Vol. 294,
Lecture Notes inMathematics, Springer-Verlag, Berlin, 1972, pp. 62–84.
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