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I. Introduction

T HE recent successes of IKAROS [1] and Nanosail-D2 have
renewed interest in the idea of solar sailing, the method of

harnessing the solar radiation pressure (SRP) via the use of large sail-
like structures. IKAROS in particular has completed its mission to
orbit Venus, demonstrating the solar sail’s capacity for interplanetary
flight. Its success has opened the door for future solar sailing
missions. Since Garwin’s publication in 1958 [2], researchers from a
wide range of disciplines have explored topics associated with solar
sailing, and attitude control is one such discipline. The wide area
requirement renders commonly used attitude actuators such as
reaction wheels, control moment gyros, or magnetic torquers
ineffective; hence, there are several papers that introduce and develop
attitude actuators that take advantage of the unique structure that solar
sails possess [3–7].
In particular, the tip vane structure, as mentioned by both Wie [6]

and McInnes [7], is an actuation method that uses reflective vanes
located at the tips of the sail to provide the torque. Other methods that
rely on the SRP (such as using gimbals or moving masses to shift the
center of pressure) provide no control when the sun is not on the
reflective side of the sail or if the sun is near the edge of the sail.
Vanes, on the other hand, can still provide near-equal control
regardless of the sun’s direction because the vanes can be reoriented
toward the sun.
The last statement assumes that each vane is able to reorient itself

in any direction, which requires at least two rotational degrees of
freedom (DOFs). However, researchers often assume that the tip
vanes only possess a single degree of freedom, and the resulting loss
in the control torques is simply accepted or compensated with other
methods. In particular, Wie [6] shows that, for a square sail with four
vanes that can rotate about the y axis, there exists a singularity where
the x torque cannot be generated when the y torque is zero. In this
case, a gimbaled mass is used to compensate for this loss. One of the
reasons behind using a single-DOF vane over a 2-DOF vane is due to
the underconstrained nature of a set of 2-DOF vanes and the resulting
optimization that must be performed. For example, for a square sail
with four 2-DOF vanes, the control allocation problem has eight vane

angles thatmust be solved for, given three desired control torques and
vane angle constraints. Unfortunately, the equality constraints posed
by the control torques and the vane SRP force equations are highly
nonlinear and cause typical numerical algorithms to fail when trying
to find a solution. Torque allocation in the case of four single-DOF
vanes has been considered in [8].
Instead of trying to solve the preceding problem directly, this Note

proposes an alternative formulation that solves for the torques that
must be produced by each vane and then solves for the vane angles
from these vane torques analytically. The control allocation problem
that allocates the desired torques into the vane torques is still
underconstrained, but the constraints now become linear and
elliptical, allowing numerical algorithms to find a global solution
muchmore easily. Thework presented here has been extended in [9],
where shadowing was taken into account.
This Note is outlined as follows. Section II introduces the square

sail, notations, assumptions, and the derivation of the SRP torque
equation to be used in thisNote. Section III introduces and defines the
control allocation problem to be solved; Sec. IV shows the derivation
of the elliptical constraints to be used for the problem; and Sec. V
formally states the problem in a format that can be solved by a
numerical algorithm. Section VI derives the analytical solution that
converts the previously derived vane torques to vane angles. Finally,
in Sec. VII, numerical examples that demonstrate the performance of
the algorithm are presented.

II. Solar Radiation Pressure Torques Due to Two-
Degree-of-Freedom Vanes

The results of this Note are based on a square solar sail, shown in
Fig. 1. The body axes are as shown,with each boomaligned to the xor
y axis as shown. Avane is attached at each end of the boom; hence, a
total of four vanes are available for attitude control. Each vane has two
rotational DOFs: for vanes 1 and 3, one along the body x axis and
another along the vane y axis. For vanes 2 and 4 there is a rotation
about the body y axis and a rotation about the vane x axis. For vanes 1
and 3, the y-axis rotation is denoted ϕ, and the x-axis rotation is
denoted θ. Conversely, for vanes 2 and 4, the x-axis rotation is
denoted byϕ, and the y-axis rotation is denoted by θ. This convention
is established assuming that each vane has the same input–output
structure. Hence, fromavane frame perspective, a rotation along the x
axis for vane 1 or 3 would be equivalent to a rotation along the y axis
for vane 2 or 4. Also note that because of the structural symmetry, all
vanes are equidistant from the geometric center when booms are
assumed to be rigid.Vane frames are such thatwhen thevane anglesϕ
and θ are both zero, the vane frame is aligned with the body frame.
The vane frame z axis remains alignedwith the vane normal vector as
ϕ and θ change.
Let G and F denote the torques and forces in Cartesian space

respectively (G and F denote the corresponding components in a
3 × 1 column matrix). C is a 3 × 3 rotation matrix, ŝ is a unit sun
vector, and n̂ is a unit normal vector.Aswell, let the subscriptsb and v
denote the body frame at the center of pressure of the solar sail and at
the center of pressure of the vane, respectively. For convenience,
assume that the center ofmass, the geometric center, and the center of
radiation pressure are equivalent. In addition, assume that the solar
sail is ideal, that the structure remains flat and unperturbed, and that
all incoming light is specularly reflected off the sail surface. These
simplifications allow each vane to be represented as a point force
attached at the ends of the x and y-axis booms and limit variables
affecting a point force to four angles: α, β (sun angles) and ϕ, θ (vane
angles). Thus, the structural dynamics of the sail and the reflective
properties of the sail material are ignored.
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As noted by McInnes in [7], the ideal force exerted on a reflective
surface with sunward unit surface normal n̂ by a sun vector ŝ is

f srp � −2 PA�ŝTn̂�2n̂ (1)

whereP is the SRP exerted on a reflective surface (at 1 Astronomical
Unit, a constant value 4.56 × 10−6 N · m−2), andA is the total area of
the reflective surface. A normalized form of the equation is given
next:

f simple � −�ŝTn̂�2n̂ (2)

where both the sun vector ŝ and the surface normal vector n̂ are
represented in the same frame.
In a three-dimensional space, the sun vector is represented by not

only the cone angle α but also by the clock angle β, as shown in Fig. 2.
The sun vector in the sail body frame can then be written as

ŝb �
" SαCβ

SαSβ
−Cα

#
(3)

where S andC represent sine and cosine functions, respectively. Vane
1 is rotated along the body x axis by θ, followed by a rotation along the
rotated y axis byϕ. The rotationmatrix describing this set of rotations
can be represented by the rotation matrix

Cvb �
2
4Cϕ SϕSθ −SϕCθ

0 Cθ Sθ
Sϕ −CϕSθ CϕCθ

3
5 (4)

Because the vane frame is aligned with the body frame when

ϕ � θ � 0, the sunward unit normal for each vane is n̂ �
� 0 0 1 �T . Now also assume that the vane rotation does not shift

the center of pressure for the SRP force, and the sail is perfectly flat

along its x-y plane, with its center of pressure at the body frame origin,

also on the x-y plane. Hence, it can be represented as a stationary point
force attached to the end of a rigid boom.Given these assumptions, the

SRP force generated by the vane in the vane frame can be written in

terms of the sun angles α and β, and the vane angles ϕ and θ, as

fv1 � −�ŝTvxn̂v�2n̂v � −��Cvbŝb�Tn̂v�2n̂v

� −

2
664

0

0

�SϕSαCβ − CϕSθSαSβ − CϕCθCα�2

3
775 (5)

To keep the equations simple in writing, the dot product �ŝTvxn̂v� is
kept in its unexpanded form (i.e., the left side of the relationship

ŝTvxn̂v � SϕSαCβ − CϕSθSαSβ − CϕCθCα is used). The force in the

body frame can then be written as

fb1 � CT
vbfv1

�

2
664

−Sϕ
CϕSθ

−CϕCθ

3
775�ŝTvxn̂v�2 (6)

Because the sail is assumed to be flat and rigid, the torque produced

by this vane is simply a cross product between a vector from the origin

to the vane’s center of pressure and the force calculated previously, i.e.,

Gb1 � r×1fb1

�

2
664

0

CϕCθ

CϕSθ

3
775�ŝTvxn̂v�2 (7)

where the distance r1 between the body origin and the vane center of
pressure has been omitted by normalization. By following similar

processes, torques produced by other vanes can also be calculated,

resulting in the following vector equations:

Gb3 �
2
4 0

−CϕCθ

−CϕSθ

3
5�ŝTvxn̂v�2 (8)

Gb2 �
2
4−CϕCθ

0

CϕSθ

3
5�ŝTvyn̂v�2 (9)

Fig. 1 2-DOF vane configurations.

Fig. 2 Three-dimensional representation of solar radiation pressure
force.
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Gb4 �
2
4 CϕCθ

0

−CϕSθ

3
5�ŝTvyn̂v�2 (10)

where, for reiteration,

ŝTvxn̂v � SϕSαCβ − CϕSθSαSβ − CϕCθCα (11)

and

ŝTvyn̂v � CϕSθSαCβ − SϕSαSβ − CϕCθCα (12)

The total control torque offered by the set of tip vanes is the
combination of the four aforementioned torques and is a complex
nonlinear equation of eight controllable variables. An analytical
solution for the problem seems unlikely, and an attempt to solve this
equation using a nonlinear solver was met with failure. An alternate
method is needed to generate vane angles for a given control torque.

III. Control Allocation Problem

The goal of the control allocation problem just posed is to derive a
particular set of angles that correspond to the desired torque. To this
end, an optimization problem is formed as given next:

minimize
Φ

kΦ −Φik2

subject to Gb1 � Gb2 � Gb3 � Gb4 � Gd

− π < Φn < π (13)

where Φ � colfΦng � �ϕ1 θ1 ϕ2 θ2 ϕ3 θ3 ϕ4 θ4 �T ,
Φi is the previous iteration of Φ, and Gd is the desired body frame
torque vector. The cost function states that minimal changes from
previous vane angle positions is desired, whereas the constraint
demands that the vanes produce the desired torque. As mentioned in
the previous section, this problem is challenging to solve due to its
nonaffine, nonconvex nonlinear structure.
Instead of trying to solve the preceding problem, a modified

problem is posed:

minimize
Gb

kGb − Gik2

subject toGb1 � Gb2 � Gb3 � Gb4 � Gd;

�Satisfy Attainable Moment Set� (14)

where Gb and Gi are the current and the previous vane torques in the
vector form described later. Although this is not the same problem as
the initial problem posed previously, it can be said to be similar, and it
possesses an advantage over the first problem, which is taken
advantage of to derive the proposed solution.

Because of the conditions imposed upon the sail, each vane only
produces torque in two Cartesian directions, as seen in Eqs. (7–10).
Hence, Gb is written as

Gb � �Gb1y Gb1z Gb2x Gb2z Gb3y Gb3z Gb4x Gb4z �T
(15)

where Gb1y is the y component of Gb1, and so forth. Letting these
components be the controllable variables, the equality constraint is
now expanded as2

4 Gb2x �Gb4x

Gb1y �Gb3y

Gb1z �Gb2z �Gb3z �Gb4z

3
5 � Gd (16)

which is a linear function of Gb. The issue with this newly defined
problem is determining the attainable moment set (AMS), or
essentially defining the achievable set of torques that can be provided
by each vane, and constraining the components of Gb within this set.

IV. Attainable Moment Set of Vanes and Its Estimation

Visualization of the AMS can be generated by iterating through a
set of values for the vane angles ϕ and θ and calculating the vane
torque using the equations from the previous section, then finding the
set of points that form the convex hull. The result of this procedure
using Eq. (7), while assuming the vane to be reflective only on one
side, is given in Fig. 3a. Although this is the AMS, it is unclear how it
can be represented in an equation form so that the inequality
constraint for the optimization problem defined in the previous
section can be solved for. Visual inspection suggests that an ellipse
would roughly fit such a shape.
Fitzgibbon et al. [10] present a direct least-square fitting method

for ellipses, which would generate an equation of the ellipse that best
fits a given set of points. Specifically, let the general ellipse equation
for the AMS of vane 1 be written as

aG2
yi � bGyiGzi � cG2

zi � dGyi � eGzi � f � Dic � 0 (17)

where a through f are the ellipse constants, and

Di � �G2
yi GyiGzi G2

zi Gyi Gzi 1 �;
c � � a b c d e f �T (18)

Given a set of torque component pairs Gyi and Gzi that compose
the convex hull of the AMS, the general ellipse coefficients that best
fit the AMS in a least-squares sense can be calculated by solving the
eigenvalue problem of the following form:

Sc � λCc (19)
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b) Overlayed with an ellipse fit
Fig. 3 AMS and its ellipse fit for vane 1 with α � 0, β � 0.
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where

S � DTD; D � colfDig;

C � 1

2
66666666664

0 0 2 0 0 0

0 −1 0 0 0 0

2 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3
77777777775

(20)

The resulting general ellipse is plotted in Fig. 3b. Although it is a
reasonable approximation to the AMS, it violates the boundaries,
which means the ellipse contains areas where the vane is unable to
produce the specified torque. Hence, the ellipse in its current form is
unsuitable as an estimation to the AMS.
To correct this discrepancy, a constrained minimization is

performed on the ellipse coefficients derived by the least-squares
formulation. Specifically, the goal is to find themaximumellipse area
that fits within the constraint posed by the convex hull set that
describes theAMS. The area for a general ellipse can be calculated by
the following equation:

A � 2πh

4ac − b2
(21)

where

h � dGy0 � eGz0 � f (22)

and Gy0 and Gz0 are the x and y components of the ellipse centroid,
respectively, which are calculated as follows:�

Gy0

Gz0

�
� −

�
2a b
b 2c

�−1� d
e

�
(23)

The bound on the ellipse, the maximum torque set that can be
produced by the vane, is represented by the following linear
inequality constraint:

Dc > 0 (24)

Hence, by maximizing Eq. (21) with respect to c while satisfying
the constraint Eq. (24), a generalized ellipse that is within the AMS
boundary is acquired. Although the area function is nonlinear, the
initial value of c calculated by solving the eigenvalue problem
presented previously is sufficiently close to the desired solution that
typical numerical algorithms are easily able to provide a solution. The
generalized ellipse formed by one such solution is plotted in Fig. 4a,

and it can be seen that this new ellipse fits tightly within the actual

AMS as desired. The area ratio between the actual AMS and the

ellipse estimation varies between 0.95 to 1 as the sun angles are

changed.
Now, the aforementionedmethodmay or may not be viable for on-

orbit calculation as the sun angles vary with the sail orientation, but

here it is assumed that it is not viable.Hence, a parameterization of the

ellipse with respect to the sun angle is made using a Fourier series.

Specifically, the goal is to represent the ellipse constants c in terms of

a bivariate Fourier series as follows:

ci�α; β� � χ1 � χ2Sα � χ3Cα � χ4Sβ � χ5Cβ � χ6SαSβ

� χ7SαCβ � : : : � γ�α; β�χ i (25)

where ci is one of the ellipse constants, γ�α; β� is the row matrix of

sinusoids, and χ i is the columnmatrix of coefficients. The maximum

order of sinusoids is chosen arbitrarily; hence, the problem devolves

into finding the set of coefficients for the Fourier series that best fit the

set of ellipse constants for all sun angles.
This parameterization is performed as follows. First, c is calculated

for a set of sun angles α and β evenly spaced between −π and π. In
parallel, γ�α; β� is calculated for all of the α and β pairs. Then, each

component of c and γ�α; β� is stacked columnwise, and the following

equation is solved for the Fourier series coefficients χ i:

Γχ i � ci; Γ � colfγ�α; β�g ci � colfci�α; β�g (26)

The preceding equation is solved for all six ellipse constants. Once

the preceding steps are taken, generating the estimatedAMSellipse is

a simple matter of calculating the ellipse constants using the Fourier

series and the current sun angles. Figure 4b shows one such

reconstructed ellipse using fifth-order bivariate Fourier series

parameterization, overlaid on top of the original ellipse to

demonstrate how well the Fourier series approximates the estimated

AMS. Note that the Fourier series terms with zero or near-zero

coefficients are removed to reduce storage and increase calculation

speed, and after this removal procedure, only six to nine terms remain

significant. The actual Fourier series terms and coefficients are given

in Table 1.
The given Fourier series is specific to vane 1 only, and normally a

different Fourier series would be calculated for each vane. However,

after some comparison, it was found that the estimatedAMS for other

vanes can be derived directly from the Fourier series for vane 1.

Specifically, the relationships between each vane’s ellipse constant

parameterizations are as follows:
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Fig. 4 AMS for vane 1 with overlays for α � 0, β � 0.
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c1�α;β� �

2
666666666664

a�α;β�
b�α;β�
c�α;β�
d�α;β�
e�α;β�
f�α;β�

3
777777777775
; c2�α;β��

2
666666666664

a�α;β�π∕2�
b�α;β�π∕2�
c�α;β�π∕2�

d�α�π;β�π∕2�
e�α;β−π∕2�
f�α;β�π∕2�

3
777777777775
;

c3�α;β��

2
666666666664

a�α;β�
b�α;β�
c�α;β�
−d�α;β�
−e�α;β�
f�α;β�

3
777777777775
; c4�α;β��

2
666666666664

a�α;β�π∕2�
b�α;β�π∕2�
c�α;β�π∕2�

−d�α�π;β�π∕2�
−e�α;β−π∕2�
f�α;β�π∕2�

3
777777777775

(27)

where the functions a through f are the Fourier series
parameterization of the ellipse constants. With the aforementioned,
the estimated AMS for all vanes can be conveniently generated in a
general ellipse equation form regardless of sun angles.

V. Formal Definition of the Control Allocation Problem

Now that an estimate to the actual AMS is available in an equation
form, the optimization problem from Eq. (14) is rewritten as follows:

minimize
Gb

kGb−Gik2

subject to

2
64

Gb2x�Gb4x

Gb1y�Gb3y

Gb1z�Gb2z�Gb3z�Gb4z

3
75�Gd;

aiG
2
biy�biGbiyGbiz�ciG

2
biz�diGbiy�eiGbiz�fi<0;i�1;3;

aiG
2
bix�biGbixGbiz�ciG

2
biz�diGbix�eiGbiz�fi<0;i�2;4 (28)

Before, the constraint required that the torque values satisfy the
AMS. Now, the constraint requires the torque values remain inside
the general ellipse that defines the estimated AMS. The problem is
now that of a quadratic cost function, three linear equality constraints,
and four nonlinear inequality constraints, butmore importantly every
equation involved in the problem is convex. These types of
optimization problems, classified as a convex optimization problem,
guarantee arrival at a global optimum for any algorithm that can arrive
at a local optimum and, in general, are easier to solve when using
known numerical optimization algorithms [11]. For testing purpose,
Matlab’s fmincon function using either active-set line search or
interior point methods is easily able to arrive at a solution.
There is an additional part to this problem, namely, that of

determining the feasibility of the desired solution Gd. Durham lists
several methods to ascertain feasibility if each control variable was

independently constrained [12]. This is not the case here,
unfortunately. For convenience, it is assumed that if the desired
solution is not achievable, a scaled solution of the desired torque
while preserving directionality is desired. Letting this scalar scaling
factor be λ; this problem is posed as follows:

minimize
λ;Gzx;Gzy

k1 − λk2

subject to Gzx �Gzy � λGdz;

ak�λGk�2 � bkλGkGzk � ckG
2
zk � dkλGk � ekGzk � fk < 0;

k � x; y (29)

where Gzx � Gb2z �Gb4z, and Gzy � Gb1z �Gb3z. The quantities
ak through fk are the ellipse constants that define the estimated AMS
boundary created by theMinkowski (geometric) sumof the estimated
AMS ellipses for the pair of vanes on the same axis, and the subscript
k refers to the Cartesian torque component generated by the vanes.
The scaling factor λ drives the cost function to zerowhen it is equal to
1. This is the case where the desired torque is in fact feasible; hence,
no changes aremade to it whenmultiplied by λ. Because the goal is to
constrain the desired torque to within the estimated AMS, any λ > 1
solutions would violate the ellipse constraint if the λ � 1 solution
violates the constraint; hence, all caseswhere the desired torque is not
feasible would drive the scaling factor below 1, as desired.
It should be noted that the ellipse constants used for the feasibility

optimization problem are generated separately from the ellipse
constants used for the actual control allocation problem.These ellipse
constants are generated by combining the points that form the
estimated AMS ellipse for the two vanes on the same axis in a
Minkowski (geometric) sum; for example, given n points for vane 1
and m points for vane 3, the Minkowski sum of these sets of points
results in nm points, where each new point is a sum of a point from
vane 1 set and another point from vane 3 set. These generated points
are then put through the same procedure used to generate the
estimated AMS for individual vanes; a convex hull is created, which
is then estimated as a generalized ellipse, whose constants are
parameterized as Fourier series. The sinusoidal terms and the
coefficients for this Fourier series are given in Table 2.
The preceding given numbers are valid only for the combined

AMS for the x-axis vanes, but once again, there is a convenient
relationship that links the combined AMS for the x-axis vanes to the
combined AMS for the y-axis vanes, given next:

cy�α; β� �

2
6666664

ay�α; β�
by�α; β�
cy�α; β�
dy�α; β�
ey�α; β�
fy�α; β�

3
7777775
; cx�α; β� �

2
6666664

ax�α; β� π∕2�
bx�α; β� π∕2�
cx�α; β� π∕2�

dx�α� π; β� π∕2�
ex�α; β − π∕2�
fx�α; β� π∕2�

3
7777775

(30)

Figure 5 shows the individual vane AMS, the combinedAMS, and
a solution set of vane torques generated by the aforementioned

Table 1 Fourier series sinusoid terms and corresponding coefficients for the estimated AMS ellipse

A B c d e f

Sinusoid Coefficient Sinusoid Coefficient Sinusoid Coefficient Sinusoid Coefficient Sinusoid Coefficient Sinusoid Coefficient

1 4.6252 × 10−1 1 −6.4156 × 10−7 1 5.1679 × 10−1 1 −1.2271 × 10−6 1 −1.5172 × 10−7 1 −2.1863 × 10−4

C2
α −8.6810 × 10−2 S2αSβ −2.1984 × 10−1 C2

α 7.6645 × 10−2 Cα −4.1353 × 10−1 SαSβ −4.2281 × 10−1 C2
α 2.1139 × 10−2

C2
β −2.3740 × 10−2 S2αS

3
β −4.3972 × 10−3 C2

β 3.1945 × 10−2 C3
α 1.8176 × 10−2 SαS

3
β −2.6540 × 10−2 C2

β −2.1105 × 10−2

C4
α 1.7733 × 10−4 S2αS

5
β −7.4852 × 10−4 C4

α −2.8168 × 10−3 C5
α 1.0236 × 10−4 SαS

5
β −4.2944 × 10−4 C4

α −1.6333 × 10−3

C4
β −1.4713 × 10−3 S4αSβ 2.9834 × 10−3 C4

β 8.1003 × 10−4 CαC
2
β −1.7289 × 10−2 S3αSβ 8.4254 × 10−3 C4

β −1.6435 × 10−3

C2
αC

2
β 2.2940 × 10−2 S4αS

3
β 2.4681 × 10−3 C2

αC
2
β −3.1478 × 10−2 C3

αC
2
β 1.7701 × 10−2 S3αS

3
β 9.3914 × 10−3 C2

αC
2
β 2.3268 × 10−2

C2
αC

4
β 2.1478 × 10−3 — — — — C2

αC
4
β 3.6528 × 10−4 C3

αC
4
β 3.1465 × 10−4 S3αS

5
β 1.6914 × 10−4 C2

αC
4
β 2.0365 × 10−3

C4
αC

2
β 9.8842 × 10−4 — — — — C4

αC
2
β −1.9212 × 10−3 C5

αC
2
β 6.8806 × 10−4 S5αSβ 4.4759 × 10−4 C4

αC
2
β −1.9994 × 10−3

C4
αC

4
β −7.3975 × 10−4 — — — — — — — — — — — — S5αS

3
β −3.9749 × 10−4 C4

αC
4
β −6.1104 × 10−4
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process for Gd � � 0.5 0.3 1.3 �T. The scaling factor is 1 (i.e., the
desired torque is fully achievable), and summing up the vane torques

given in the figure does indeed result in the desired torque.

VI. Analytical Solution to the Single-Vane Problem

The solution to the aforementioned control allocation problem is a

set of individual, achievable torque components for each vane. The

original problem, however, calls for angular parameters that control

the orientation of these vanes; hence, the vane anglesΦmust still be

derived from the vane torques Gb. Fortunately, there is an analytical

solution to deriving vane angles from desired torque components

when considering just one 2-DOF vane. The use of Weierstrass

substitution to formulate the SRP torque turns Eqs. (7–10) into root-

solving problems.
Weierstrass substitution, also known as universal trigonometric

substitution, was originally developed to find integrals of

trigonometric functions. Specifically, let

t � tan
x

2
(31)

Then, the following substitution can be made:

sin x � 2t

1� t2
; cos x � 1 − t2

1� t2
(32)

These substitutions are valid for−π < x < π, which is the assumed

operating range for the vanes. These substitutions are made to the

SRP torque equations to rearrange them into a univariate polynomial

with respect to t, which is then used to solve for the vane angle.
For example, take Gb1 from Eq. (7). Vane angle θ can be found

easily by dividing Gbz by Gby (the subscript 1 has been omitted for

clarity):

Gbz

Gby

� CϕSθ�ŝTv n̂v�2
CϕCθ�ŝTv n̂v�2

� tan θ (33)

Now, the only unknown is the vane angle ϕ, for which the

Weierstrass substitution is used. Begin by expanding �ŝTv n̂v�2:

�ŝTv n̂v�2 � �SϕSαCβ − CϕSθSαSβ − CϕCθCα�2
� S2ϕS

2
αC

2
β − 2SϕCϕSθS

2
αSβCβ − 2SϕCϕCθSαCαCβ � C2

ϕS
2
θS

2
αS

2
β

� 2C2
ϕSθCθSαCαSβ � C2

ϕC
2
θC

2
α

� aS2ϕ � bSϕCϕ � cC2
ϕ;

a � S2αC
2
β;

b � −2�SθS2αSβSβ � CθSαCαCβ�;
c � S2θS

2
αS

2
β � 2SθCθSαCαSβ � C2

θC
2
α (34)

where constants a, b, and c were defined for conciseness. The

preceding expression can be substituted into either the expression for

Gby orGbz. For demonstration purposes,Gby is used here. Assuming

t � tan ϕ
2
and making the appropriate substitutions to Sϕ and Cϕ,

Gby�CϕCθ�ŝTv n̂v�2
�CϕCθ�aS2ϕ�bSϕCϕ�cC2

ϕ�

� 1−t2

1�t2
Cθ

�
a

�
2t

1−t2

�
2

�b

�
2t

1−t2

��
1−t2

1�t2

�
�c

�
1−t2

1�t2

�
2
�
(35)

Expanding and rearranging the preceding equation gives
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Fig. 5 Estimated AMS and the results of the algorithm for Gd � � 0.5 0.3 1.3 �T with α � 0, β � 0.

Table 2 Fourier series sinusoid terms and corresponding coefficients for the combined AMS ellipse

a b c d e f

Sinusoid Coefficient Sinusoid Coefficient Sinusoid Coefficient Sinusoid Coefficient Sinusoid Coefficient Sinusoid Coefficient

1 4.7975 × 10−1 1 −6.7944 × 10−7 1 5.3694 × 10−1 1 −3.7380 × 10−8 1 7.8201 × 10−10 1 −3.4393 × 10−1

C2
α −8.2014 × 10−2 S2αSβ −2.2972 × 10−1 C2

α 8.9863 × 10−2 — — — — — — — — C2
α −1.5279 × 10−2

C2
β −3.2834 × 10−2 S2αS

3
β −2.4043 × 10−3 C2

β 2.4907 × 10−2 — — — — — — — — C2
β 1.5275 × 10−2

C4
α 1.2695 × 10−3 S2αS

5
β −8.8293 × 10−4 C4

α −1.9948 × 10−4 — — — — — — — — C4
α 3.1485 × 10−4

C4
β −1.5202 × 10−4 S4αSβ 1.8803 × 10−3 C4

β 1.2963 × 10−3 — — — — — — — — C4
β 3.0923 × 10−4

C2
αC

2
β 3.1941 × 10−2 S4αS

3
β 1.4170 × 10−3 C2

αC
2
β −2.5524 × 10−2 — — — — — — — — C2

αC
2
β −1.5668 × 10−2

C2
αC

4
β −2.6390 × 10−4 S4αS

5
β 1.8295 × 10−4 C2

αC
4
β −1.0340 × 10−3 — — — — — — — — C2

αC
4
β −3.3428 × 10−4

C4
αC

2
β 1.5493 × 10−3 — — — — C4

αC
2
β −2.5323 × 10−4 — — — — — — — — C4

αC
2
β 3.9058 × 10−4

— — — — — — — — C4
αC

4
β 3.8920 × 10−4 — — — — — — — — C4

αC
4
β 2.7415 × 10−4
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�Gby�cCθ�t6��−2bCθ�t5��3Gby−�3c−4a�Cθ�t4
��4bCθ�t3��3Gby−�4a−3c�Cθ�t2��−2bCθ�t��Gby−cCθ��0

(36)

Because the preceding is a univariate algebraic equation, its roots

can be solved for using common root-solving techniques. The vane

angle ϕ can then be derived from t by using the definition of

Weierstrass substitution (i.e., t � tan�ϕ∕2�). The polynomial is of

sixth order; hence, up to six solutions exist for t. Neglecting any

imaginary solutions, the remaining roots and the resulting vane

angles are then substituted back into Eq. (7) to produce the vane

torques. Thevane angles that produce the correct vane torques and are

closest to the previous vane angles are chosen as the true solution.

The preceding steps are repeated in a similar fashion for all vanes.

For vane 2, Eq. (9) is used to derive the equations for the vane angles.

The equation for deriving θ2 can be written as

−Gb2z

Gb2x

� tan θ2 (37)

whereas the algebraic polynomial for ϕ2 is written as

�Gb2x−cCθ2�t6��2bCθ2�t5��3Gb2x��3c−4a�Cθ2�t4��−4bCθ�t3
��3Gb2x��4a−3c�Cθ2�t2��2bCθ2�t��Gb2x�cCθ2��0 (38)

where
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Fig. 6 Simulation results with α � π∕4, β � π∕3.
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a � S2αS
2
β; b � 2�Cθ2SαCαSβ − Sθ2S

2
αSβCβ�

c � S2θ2S
2
αC

2
β − 2Sθ2Cθ2SαCαCβ � C2

θ2C
2
α (39)

The roots of the polynomial can be solved for and ϕ2 derived from
the roots via Weierstrass substitution as before.
For vane 3, the same algorithm used to calculate the angles for vane

1 can be used, by noting that the right-hand side of Eq. (8) is simply
the sign-inverted right-hand side of Eq. (7). Vane angle θ3 is
calculated the same, whereas vane angle ϕ3 is calculated by running
through the same process for ϕ1 while using −Gb3y in place ofGb1y,
to reflect the difference in sign. A similar process applies for vane 4,
except it uses the algorithm for vane 2 instead of vane 1.

VII. Numerical Example

The capacity of the solution implemented in Matlab is
demonstrated by using a randomly generated set of desired torques
and using the preceding algorithm to calculate a set of vane angles
that would correspond to it. Specifically, a torque value is generated
by using the following equation:

Gd;k � Ga;k−1 � rand3�0.1� (40)

where Gd;k is the current desired torque, Ga;k−1 is the previously
achieved torque, andrand3�0.1� generates a 3 × 1 vector containing
random component values between −0.1 and 0.1. The number 0.1 is
chosen to facilitate gradual traversal of the range of achievable
normalized torques. The previously achieved torque is used in place
of previously desired torque to prevent the desired torques from
building up to unreasonably high values. A total of 200 desired
torques and the corresponding vane angles are generated, where the
number 200 is chosen based on the observation that there is sufficient
variance in the desired torques by then to demonstrate the

performance of the algorithm. For theminimization process, fmincon
offers a number of optimization algorithms. After test simulations, it
was determined that the active-set line search method works best and
is used for this simulation.
Figures 6 and 7 are a set of plots describing the results of the

simulation for α � π∕4, β � π∕3. Figures 6a and 6c, 6e show the
desired torques as well as the torques achieved from the vane angles
generated using the control allocation process, one plot per axis. The
actual error between the desired and the achieved torques is given in
Figs. 6b, 6d, and 6f, and a few spikes of error can be seen. This error is
actually caused by the desired torque exceeding the achievable torque
and is a behavior that is desired. This shows that the feasibility
analysis is correctly performing its job and restricting the given
desired torque to within the feasibility bound.
The vane torques are given in Figs. 7a and 7b, along with each

vane’s estimatedAMS, and the vane angles are given in Fig. 7c. It can
be seen that the vane torques are constrained strictly within the
estimated AMS, and the cost function that minimizes the changes in
individual vane torques also has an effect on the vane angles, which
changes gradually instead of spiking from one value to another as the
desired torque changes.
The processing speed for the algorithm is measured by the number

of iterations taken by the fmincon function to arrive at a solution,
which is shown in Fig. 7d. It can be seen that, for both the feasibility
analysis and the control allocation, the number of iterations to arrive
at a solution remains small. There is a notable spike in the solution
around the middle, but this is a boundary case, as Fig. 6d and its
location of the error spike shows. Actual computing time for the
entire simulation on amodern personal computer wasmeasured to be
around 20 s, which included continuous updates to the plots given
previously.
It is worth noting that, although this simulation demonstrates the

capability of the control allocation scheme under ideal conditions, it
does not make any attempt to account for issues such as optical
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Fig. 7 Simulation results with α � π∕4, β � π∕3 (continued).
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nonideality of the reflective surface or the flexibility of the booms to
which the vanes are attached.

VIII. Conclusions

Amethod for solving the control allocation problem posed by four
2-DOF vanes on a square solar sail was presented. Numerical
examples were provided that demonstrated the feasibility of the
algorithm. The algorithm presented in this Note is not complete
because there are other factors that must be taken into account. One
such factor is the nonlinearity of the reflective surface of the vane,
which would change the shape of the attainable moment set (AMS)
and render the analytic solution to the single-vane problem invalid.
The change in AMS will be static and hence can be accounted for
from the ground-testing phase. Another factor is the structural
dynamics of the booms towhich the vanes are attached, which would
render the AMS time-dependent. This is a critical issue that could
render the derived solution useless because the AMS will need to be
recalculated on the fly or the initial derivation of the estimated AMS
will somehow need to include the structural dynamics factor.
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