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Passivity-based design approaches for hybrid attitude control of spacecraft using continuousmagnetic torques and

impulsive thrusts are proposed. The classical passivity notions, the passivity theorem, and the Kalman–Yakubovich–

Popov conditions are extended to hybrid systems and used for linear passivity-based controller design. The plant’s

output dynamics are manipulated such that the hybrid extended (time-varying) Kalman–Yakubovich–Popov

conditions are satisfied, hence establishing the plant’s passivity. Then, evoking the hybrid passivity theorem that

states the negative feedback interconnection of a passive hybrid plant and an input strictly passive hybrid controller is

input–output stable, two such controllers are proposed: a proportional feedback controller with constant positive

gains; and a dynamic compensator, developed using the hybrid algebraic (time-invariant) Kalman–Yakubovich–

Popov conditions, that actively adjusts the gains based on the system’s dynamics and response.Numerical simulations

validate the proposed controllers’ functionality and suggest performance improvements gained via hybrid control.

The effects of random sensor noise are also studied, and the results suggest enhanced immunity in terms of

performance arising from the use of the dynamic compensator instead of the constant-gain controller.

Nomenclature

A = magnetic torquer cross section, m2

a = semimajor axis, m
b = magnetic field vector, T
C = rotation matrix between two frames
c = magnetic torquer turns per coil
d = magnetic torquer coil side length, m
E = magnetic torquer energy usage, MJ
E = matrix of eigenvectors (as columns)
e = eccentricity
I = moment of inertia matrix, kg ⋅m2

i = inclination, rad
m = magnetic dipole moments, A ⋅m2

N = total number of impulses (plus one)
N = natural numbers (positive integers)
N̂ = pretruncation impulses (plus one)
n = impulsive thrust gains, N ⋅m
n = number of impulses per orbit (plus one)
P = Lyapunov solution
R = magnetic torquer coil resistance, Ω
R = real numbers
R� = nonnegative real numbers
r = position vector, m
T = orbital period, s
t0 = time of perigee passage, s
t̂ = truncation time, s
V = storage function
W = whole numbers (N ∪ f0g)
δ�t� = Dirac delta function
Σ = noise covariance matrix
ϵ = vector part of quaternions

η = scalar part of quaternions
θ = attitude Euler angles, rad
Λ = matrix of eigenvalues (as diagonals)
μ = gravitational parameter, m3∕s2
ρ = vector of random numbers
σ = noise variance
τ = torque vector, N ⋅m
ϕ = angle from Euler axis angle, rad
Ω = longitude of ascending node, rad
ω = angular velocity vector, rad∕s
ω = argument of periapsis, rad
0m×n = m × n zero matrix
1n×n = n × n identity matrix
_�⋅� = differentiation with respect to time
j ⋅ j = Euclidean norm of a vector
k ⋅ k = root mean square norm of a quantity
k ⋅ kp = p norm of a quantity

�⋅�× = skew-symmetric matrix operator
��⋅� = averaged or steady-state value

Subscripts

B = in body-fixed frame
c = continuous-time
d = discrete-time
dist = disturbance
e = extended
f = final value
G = in Earth-centered inertial frame
nT = computed over n orbital periods
nz = nonzero
t̂ = truncated at t̂
z = zero
0 = initial value

Superscripts

�⋅�h = hybrid
�⋅�� = postimpulse quantity
�⋅�− = preimpulse quantity

I. Introduction

T HIS paper focuses on passivity-based control of hybrid
(continuous/impulsive) systems, with applications to the hybrid

system emerging from combination of magnetic torquers and
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impulsive thrusters for spacecraft attitude control purposes. Passivity
is intimately tied to the notion of energy and, for the interconnection
of a plant and a controller, the passivity theorem (that states the
negative feedback of a passive plant and an input strictly passive
controller is input–output stable) enables a physical interpretation of
stability by considering how much energy is injected into and
dissipated by the system [1]. A survey of passivity-based feedback
control designs was presented in [2]. Using the positive realness of a
system’s transfer function for stability analysis and developing
algebraic criteria to guarantee this property date back to classical
papers such as [3–6]. A discussion of themore generalized concept of
dissipativity, of which passivity is a special case, was provided in
[7,8], and an extension of dissipativity to affine nonlinear systems
was performed in [9]. Extending the notion of dissipativity to
nonlinear hybrid systems that also include impulsive dynamics, a
rigorous study on the stability of open-loop systems and their
feedback interconnection was conducted in [10,11], respectively.
Also presented in [10] were generalized interpretations of hybrid
energy balance between the system’s stored and dissipated energies,
as well as a specialization of the stability results and the extended
algebraic Kalman–Yakubovich–Popov (KYP) conditions to passive
and nonexpansive hybrid systems. A notion of passivity for switched
systems with multiple continuous states that are mapped by a set of
discrete states (also referred to as “hybrid”) was provided in [12].
In terms of applications, passivity-based nonlinear control

synthesiswas explored in [13], inwhich a brief discussion of possible
extensions to discrete-time systems was also provided. Passification
methods (for rendering a system passive) were proposed in [14] for
passivity-based design of nonpassive systems, such as some flexible
aerospace structures. An example of passive design for hybrid
impulsive systems that exhibit dissipation only in continuous- or
discrete-time dynamics was considered in [15]. Focusing on
spacecraft equipped with magnetic torquers and reaction wheels,
passivity-based design was used in [16] for attitude control. Some
other spacecraft-related applications of the passivity theorem were
discussed in [17].
In this paper, a set of extended KYP conditions similar to those

derived in [10] for hybrid impulsive systems, in conjunction with
additional extensions to time-varying systems resembling those in
[16], is employed to design a plant that is passive, in a hybrid sense.
Two different feedback controllers are then considered, which are
both input strictly passive, as required by the passivity theorem: a
proportional hybrid controller with positive constant gains for both
continuous- and discrete-time outputs, and a dynamic compensator
(similar to the one proposed in [18]) that judiciously adjusts the
feedback gains and ensures the controller’s input strict passivity
using a hybrid extension of a specialization of the algebraic KYP
conditions of [10]. Adopting a passivity-based control scheme is
primarily motivated by expectations on the robustness of such
controllers [14,16], whereas proposing a dynamic compensator in
addition to a simple constant-gain controller is driven by the latter’s
enhanced capability in filtering out sensor noise and in producing
potentially smoother control inputs.
Attitude control using magnetic torquers relies on electromagnetic

interactions between mutually perpendicular current-carrying coils
and the geomagnetic field and, as a result, is a particularly attractive
option for near-Earth spacecraft because of its efficiency and absence
of fuel requirements [19]. Among earliest studies on magnetic
attitude control was that performed in [20], in which the feasibility
of using magnetic torquers for two-axis control of the Orbiting
Astronomical Observatory was studied and confirmed using
experiments. Another practical application to three-axis stabilization
of spacecraft was in the Ørsted satellite mission that was launched in
1999 [21–23]. Avery recent application, discussed in [24], was in the
design of UPMSat-2, which was a microsatellite scheduled for
launch in 2015 that relied only on magnetic torquers and
magnetometers with new laws based onmodifications of the classical
B-dot control (originally proposed in [25], with control inputs
proportional to the derivative of the magnetic field vector).
A concise survey of the studies performed on magnetic attitude

control was provided in [26]. It is well known that this mechanism

inherently suffers from instantaneous underactuation that arises
from orthogonality of the magnetic field vector to the control
torque; however, owing to the time-varying nature of Earth’s
magnetic field, the attitude control system of interest possesses, on
average, controllability properties (over some time interval) for a
range of orbit inclinations [22,26,27]. In addition to the pointwise
uncontrollability issue, there is also an intrinsic gain limitation
associated with stabilization using magnetic actuators, as
demonstrated in [28]. Early works on magnetic attitude control
include that in [25], in which B-dot control was proposed upon
considering approximate solutions to the nonlinear time-varying
problem, as well as that in [27], which employed linear time-
invariant (LTI) techniques upon averaging the magnetic field over
one orbit. With the aim of using magnetic torquers for momentum
dumping, [29] also relied on averaging assumptions. Suggested in
[30] were some control allocation techniques for auxiliary
magnetic controllers used for oscillation dampening. Local and
global three-axis stabilization results using purely magnetic control
were derived in [21,23], relying on the quasi-periodic nature of the
geomagnetic field.
With the quasi-periodicity assumption, various time-varying

magnetic attitude controllers were developed in [22], and optimal
periodic control approaches were proposed in [31,32]. A magnetic
linear quadratic Gaussian controller was presented in [33] using state
estimates for feedback. Considering a discrete-time design problem
using magnetic actuators, projection-based optimal output feedback
control techniques were introduced in [34]. Abandoning the
periodicity assumption, full state feedback using only magnetic
actuation was considered in [35] for an almost globally stable
solution, but the aforementioned scaling condition restricting the
control gains remained. Providing an auxiliary impulsive control
mechanism to complement the continuous control of the magnetic
torquers is thus partly motivated by a need to alleviate the gain
limitation inherent to linear magnetic control. Although nonlinear
controllers may be able to overcome such a gain limitation associated
with proportional-derivative (PD) control, the proposed designs aim
to achieve infinite gain margin using linear passivity-based control.
Hybrid magnetic attitude control using both continuous and
impulsive torques, along with a corresponding hybrid stability
analysis approach, were proposed in [36] but, similar to many other
previous works, used optimal control concepts (that did not
inherently guarantee robustness) as opposed to the passivity-based
techniques used in this paper. Passivity-based linear time-varying
(LTV) attitude control was addressed in [16], but using reaction
wheels (that also provide continuous torques) in tandem with
magnetic torquers. This paper focuses on passive continuous/
impulsive (referred to as hybrid) attitude control, presenting novel
design schemes that are inherently stable owing to their passivity-
based design.
The paper’s organization is as follows: First, some well-known

definitions and lemmas pertaining to passivity, as well as the
passivity theorem, are extended in Sec. II to hybrid systems. Sets of
hybrid extended and algebraic KYP conditions that apply to time-
varying and time-invariant hybrid systems, respectively, are also
provided in this section. The kinematics and dynamics of the
attitude control problem of interest, in the presence of gravity
gradient and residual magnetic disturbance torques, are described in
Sec. III. The system model is then linearized in Sec. IV, and the
hybrid passivity theorem and KYP conditions of Sec. II are
subsequently employed to design two types of passivity-based
hybrid magnetic attitude controller: one with constant gains, and
one with a dynamic compensator structure. Lastly, some simulation
results, using the full nonlinear model, are presented in Sec. V to
assess the performance of the proposed control schemes and study
the effects of sensor noise on the controllers’ performance, and some
concluding remarks are provided in Sec. VI.

II. Hybrid Passivity

Consider a hybrid (continuous/impulsive) LTV system, with
impulses applied at tk, k ∈ N, represented by y � Ghu, where
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u � fuc�t�;udkg consists of both continuous- and discrete-time
control inputs; and y � fyc�t�; ydkg consists of both continuous- and
discrete-time outputs.Assumeuc andyc have the samedimensions as
do ud and yd.
The continuous-time portion of Gh at t ≠ tk is given, with the

initial condition x�t0� � x0, by

_x�t� � Ac�t�x�t� � Bc�t�uc�t� (1a)

yc�t� � Cc�t�x�t� �Dc�t�uc�t� (1b)

whereas the discrete-time portion of Gh at t � tk is given by

x�t�k � � Adkx�t−k � � Bdkudk (2a)

ydk � Cdkx�t−k � �Ddkudk (2b)

where x�t�:R� → Rn×1 is the state vector; uc�t�:R� → Rmc×1 and
udk:N → Rmd×1 are the control inputs; and assuming equal input/
output dimensions, yc�t�:R� → Rmc×1 and ydk:N → Rmd×1 are the
output vectors. The continuous-time state-space matrices Ac�t�,
Bc�t�, Cc�t�, and Dc�t�, as well as the discrete-time Adk, Bdk,
Cdk, and Ddk, are all dimensioned appropriately. A hybrid LTI
system can be represented in an almost identical manner, but
with constant continuous-time Ac, Bc, Cc, and Dc, as well as
constant discrete-time Ad, Bd, Cd, and Dd matrices. Section II.A
builds the foundations of hybrid passivity using some definitions
and lemmas, and it extends the celebrated passivity theorem to
hybrid systems. Section II.B then follows by providing a set of
conditions that could be used for passivity-based design of
hybrid systems.

A. Definitions, Lemmas, and Hybrid Passivity Theorem

Definitions 2.1 and 2.2 extend the finite 2-norm spaces to hybrid
systems (from [1] Chap. 2, for example), and Definition 2.3
provides a hybrid extension of the inner product and norm
operations.
Definition 2.1: The hybrid Lh

2 space is defined as the Cartesian
product of the continuous- and discrete-time finite norm spaces
(Lh

2 ≜ L2 × l2), such that a hybrid vector functionv � fvc�t�; vdkg ∈
Lh
2 if both vc�t� ∈ L2 and vdk ∈ l2. More precisely,

Lh
2 ≜

�
v � fvc�t�; vdkg

����
Z

∞

0

v⊺c�t�vc�t� dt < ∞;
X∞
k�1

v⊺dkvdk < ∞
�

Definition 2.2: The hybrid extended Lh
2e space is defined as the

Cartesian product of the extended continuous- and discrete-time
finite norm spaces (Lh

2e ≜ L2e × l2e), such that a truncated hybrid
vector function (that becomes identically zero after some time t � t̂
between impulses tN̂−1 < t̂ < tN̂) vt̂ � fvct̂�t�; vdkt̂g ∈ Lh

2e if both
vct̂�t� ∈ L2e and vdkt̂ ∈ l2e. More precisely,

Lh
2e ≜

�
v � fvc�t�; vdkg

����
Z

t̂

0

v⊺c�t�vc�t� dt < ∞;
XN̂−1

k�1

v⊺dkvdk

< ∞; 0 < t̂ < ∞; tN̂−1 < t̂ < tN̂

�

where t̂ denotes the truncation time (0 < t̂ < ∞) and, after N̂ − 1
impulses, tN̂−1 < t̂ < tN̂ . The variable t̂ is considered to be strictly less
than tN̂ in order to avoid ambiguity about whether or not there is a
nonzero impulsive thrust at time tN̂ . Consistent with the definition of
N̂ − 1 being the last nonzero thrust, the impulsive thrust at tN̂ is set
to zero.
Definition 2.3: The hybrid (truncated) inner product of two hybrid

vector functions, v ∈ Lh
2 and w ∈ Lh

2 (or v ∈ Lh
2e and w ∈ Lh

2e), is
defined as Follows:

hvjwih ≜
Z

∞

0

v⊺c�t�wc�t� dt�
X∞
k�1

v⊺dkwdk

hvjwih
t̂
≜
Z

t̂

0

v⊺c�t�wc�t� dt�
XN̂−1

k�1

v⊺dkwdk

For a vector v ∈ Lh
2 or v ∈ Lh

2e, the hybrid norm or hybrid truncated
norm is defined as kvkh2 ≜ �hvjvih�1∕2 or kvkh

2t̂
≜ �hvjvih

t̂
�1∕2,

respectively.
Similar to the classical inner product andL2 or l2 norms, the hybrid

(truncated) inner products and norms defined inDefinition 2.3 satisfy
the Cauchy–Schwarz inequality, as stated in Lemma 2.1 as follows:
Lemma 2.1: For two hybrid vector functions v ∈ Lh

2 andw ∈ Lh
2 ,

or v ∈ Lh
2e and w ∈ Lh

2e, the Cauchy–Schwarz inequality holds
using hybrid (truncated) inner products and norms:

hvjwih⩽kvkh2 ⋅ kwkh2 (3a)

hvjwih
t̂
⩽kvkh

2t̂
⋅ kwkh

2t̂
(3b)

Proof: Refer to the Appendix of this paper.
With the preliminary definitions in place, the notion of “hybrid

(input strict) passivity” [an extension of classical passivity as defined
in ([37] Chap. 2), for example] is presented in Definition 2.4 below.
Theorem 2.1 provides conditions pertinent to hybrid systems under
which (input strict) passivity is guaranteed. These conditions parallel
those applicable to classical passivity, provided in ([37] Chap. 2) and
([38] definition 1), for instance.
Definition 2.4: A hybrid system y � Ghu, modeled by Eqs. (1)

and (2), is passive if

hyjuih
t̂
⩾β; ∀ u ∈ Lh

2e; ∀ t̂ ∈ R� (4)

for some real constant β⩽0 that relates to the initial energy of the
system. If the initial conditions are zero, β � 0. Similarly, it is input
strictly passive if there exists ϵ > 0 such that

hyjuih
t̂
⩾β� ϵ�kukh

2t̂
�2; ∀ u ∈ Lh

2e; ∀ t̂ ∈ R� (5)

for some real constant β⩽0.
Theorem 2.1: A hybrid system y � Ghu, represented by Eqs. (1)

and (2), is passive if there exists a piecewise continuous scalar
function, termed a “hybrid storage function,” V�x�t��⩾0, such that
the following conditions hold within each time interval:
t ∈ �tκ; tκ�1�, κ ∈ W. Or, at each impulse time, t � tk, k ∈ N:

V�tb� − V�ta�⩽
Z

tb

ta

y⊺c�τ�uc�τ� dτ; tκ < ta⩽tb < tκ�1 (6a)

V�t�k � − V�t−k �⩽y⊺dkudk (6b)

where t�0 � 0, and the state dependence of V is omitted for brevity.
Furthermore, the system is input strictly passive if there also exist
constants ϵcκ > 0, κ ∈ W, and ϵdk > 0, k ∈ N, such that

V�tb� − V�ta�⩽
Z

tb

ta

y⊺c�τ�uc�τ� dτ − ϵcκ

Z
tb

ta

u⊺c�τ�uc�τ� dτ;

tκ < ta⩽tb < tκ�1 (7a)

V�t�k � − V�t−k �⩽y⊺dkudk − ϵdku
⊺
dkudk (7b)

Proof: Refer to the Appendix of this paper.
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Thus far, only (input strict) passivity of a single plant has been
considered. Presented in Theorem 2.2 is a “hybrid passivity theorem”

[a general case of which was considered in ([11] theorem 1)] that can
act as a useful tool to design a feedback controller for the hybrid
system of interest in this document. Once again, this is a hybrid
extension of the well-known passivity theorem, stated and proved in
([1] Chap. VI), among other sources.
Theorem 2.2: Consider the negative feedback interconnection,

illustrated in Fig. 1, of a hybrid plant y � Ghu with a hybrid
controller ŷ � ℋhû, with disturbances such that u � d − ŷ. IfGh is
passive andℋh is input strictly passive, then d ∈ Lh

2 implies y ∈ Lh
2

as well.
Proof: From passivity of Gh by Definition 2.4,

hyjuih
t̂
⩾β1; hyjd − ŷih

t̂
� hyjdih

t̂
− hyjŷih

t̂
⩾β1;

∀ u ∈ Lh
2e; t̂ > 0 (8)

for some real constant β1⩽0, where linearity of the inner product
operation is used. Similarly, from input strict passivity of ℋh by
Definition 2.4.

∃ϵ> 0; hŷjyih
t̂
� hyjŷih

t̂
⩾β2 � ϵ�kŷkh

2t̂
�2; ∀ y ∈ Lh

2e; t̂ > 0

(9)

for some real constant β2⩽0, where commutativity of the inner
product operation is used. Rearranging Eq. (8) and using Eq. (9)
results in the following:

β1 � β2 � ϵ�kykh
2t̂
�2⩽hyjdih

t̂
⩽kykh

2t̂
⋅ kdkh

2t̂
(10)

where theCauchy–Schwarz inequality of Lemma 2.1 is used. Finally,
dividing Eq. (10) by ϵkykh

2t̂
and letting t̂ → ∞ yields the following:

kykh2⩽
1

ϵ
kdkh2 −

β1 � β2
ϵkykh2

(11)

for some real constants β1⩽0 and β2⩽0, which implies that, if
kdkh2 < ∞ (i.e., d ∈ Lh

2), then so is kykh2 < ∞ (i.e., y ∈ Lh
2), as

required. This conclusion follows from assuming, by way of
contradiction, that kykh2 → ∞ as t → ∞, and observing that the right-
hand side of Eq. (11) approaches kdkh2∕ϵ < ∞. This places a finite
upper bound on kykh2 that conflicts with the original assumption,
hence proving that, indeed, kykh2 < ∞.
Theorem 2.2 suggests a useful passivity-based design approach

that involves specifying the plant’s continuous- and discrete-time
outputs such that it becomes passive, and then feeding the outputs
back via an input strictly passive controller, hence ensuring the
stability of the overall feedback system. An input strictly passive
controller can be as simple as the proportional controller described
later in Sec. IV.C

ŷ � fŷc�t�; ŷdkg � fkcyc�t�; kdydkg

with kc > 0 and kd > 0; or, it can have a more sophisticated design,
such as that of the dynamic compensator detailed later in Sec. IV.D.
Section II.B presents some conditions that could be used in designing
a passive plant with a time-varying model, whereas Sec. II.C lists the

algebraic analog of these conditions, to be used for an input strictly
passive controller with time-invariant state-space matrices.

B. Hybrid Extended KYP Conditions

The classical KYP conditions focus on LTI systems. They
establish an equivalence between a set of equations involving the
state-space model’s matrices and the existence of some positive-
definite matrices that also manifest themselves in the equations. A
generalization of the KYP conditions for passivity of impulsive
(dynamical) systems is presented in ([10] corollary 5), and an
extension of the continuous portion to time-varying systems is
provided in ([16] theorem 3.1). These results, together with the
discrete-time equivalent of the KYP conditions presented in [39], can
all be combined to provide a set of hybrid extended KYP conditions,
presented in Theorem 2.3 in the following, that could be used for the
LTV hybrid system studied in this paper.
Theorem 2.3:Consider the hybrid system y � Ghu represented by

Eqs. (1) and (2). If there exists a symmetric positive-semidefinite
matrixP�t�:R� → Rn×n, real continuous-timematricesLc�t�:R� →
Rmc×n and Wc�t�:R� → Rmc×mc , and real discrete-time matrices
Ldk:N → Rmd×n and Wdk:N → Rmd×md , such that the following
conditions hold for some ϵcκ⩾0, κ ∈ W, and ϵdk⩾0, k ∈ N

0 � _P�t� �A⊺
c�t�P�t� � P�t�Ac�t� � L⊺

c�t�Lc�t� (12a)

0 � P�t�Bc�t� − C⊺
c�t� � L⊺

c�t�Wc�t� (12b)

0 � −2ϵcκ1�Dc�t� �D⊺
c�t� −W⊺

c�t�Wc�t� (12c)

0 � A⊺
dkP�t�k �Adk − P�t−k � � L⊺

dkLdk (12d)

0 � A⊺
dkP�t�k �Bdk − C⊺

dk � L⊺
dkWdk (12e)

0 � −2ϵdk1�Ddk �D⊺
dk −B⊺

dkP�t�k �Bdk −W⊺
dkWdk (12f)

then the LTV systemGh is passive if all ϵcκ � ϵdk ≡ 0, and it is input
strictly passive if all ϵcκ > 0 and ϵdk > 0.
Proof: A similar approach to that in [16] (for the continuous

portion) is followed using a quadratic storage function:

V�x�t�� � 1

2
x⊺�t�P�t�x�t� (13)

the time derivative of which can be written, using Eq. (1a) and
rearranging, as follows:

_V � 1

2
x⊺� _P �A⊺

cP � PAc�x� x⊺PBcuc (14)

where the time dependence of all variables is omitted for clarity.
Rearranging the conditions in Eqs. (12a) and (12b) and substituting
the results in Eq. (14) yields the following:

_V � −
1

2
�Lcx�⊺Lcx� �Ccx�⊺uc − �Lcx�⊺Wcuc (15)

in which Eq. (1b) for the output of the continuous model can be used
to obtain, upon rearranging,

_V � y⊺cuc −
1

2
��Lcx�⊺Lcx� 2�Lcx�⊺Wcuc � 2u⊺cDcuc� (16)

Further rearranging Eq. (16) and noting that

u⊺cDcuc � �Dcuc�⊺uc � u⊺cD
⊺
cuc

Fig. 1 Negative feedback interconnection of a hybrid plant and a hybrid
controller.
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we have the following:

y⊺cuc � _V � 1

2
��Lcx�⊺Lcx� 2�Lcx�⊺Wcuc � �Wcuc�⊺Wcuc

� 2ϵcκu
⊺
cuc�

� _V � 1

2
�Lcx�Wcuc�⊺�Lcx�Wcuc� � ϵcκu

⊺
cuc (17)

where the condition in Eq. (12c) is evoked. Equation (17) can be
integrated from time ta to tb within any time interval tκ < ta⩽tb
< tκ�1:Z

tb

ta

y⊺cuc dτ � V�tb� − V�ta� �
1

2

Z
tb

ta

jLcx�Wcucj2 dt

� ϵcκ

Z
tb

ta

u⊺cuc dτ (18)

but the integral of a norm is always nonnegative; thus,Z
tb

ta

y⊺c�τ�uc�τ� dτ − ϵcκ

Z
tb

ta

u⊺c�τ�uc�τ� dτ⩾V�tb� − V�ta� (19)

as required by Eq. (7a) for some ϵcκ > 0. If ϵcκ ≡ 0, then Eq. (19)
reduces to the following:Z

tb

ta

y⊺c�τ�uc�τ� dτ⩾V�tb� − V�ta� (20)

as required by Eq. (6a).
Using the same storage function for the discrete dynamics, the

change in the function’s value over an impulse can be found by taking
the difference betweenEq. (13) computed after and before an impulse
time tk, using Eq. (2a) for the discrete-time state dynamics. We have

V�t�k �−V�t−k ��
1

2
�Adx

−
k �Bduk�⊺P�

k �Adx
−
k �Bduk�−

1

2
x−⊺k P−

k x
−
k

� 1

2
x−⊺k �A⊺

dP
�
k Ad−P−

k �x−k �u⊺dB
⊺
dP

�
k Adx

−
k

�1

2
u⊺dB

⊺
dP

�
k Bdud (21)

where x�k ≜ x�t�k � and P�
k ≜ P�t�k �, and index dependence of all

other variables is omitted for clarity. Substituting the conditions in
Eqs. (12d) and (12e) of the theorem into Eq. (21) yields the following:

where, similar to the continuous portion,

u⊺dDdud � �Ddud�⊺ud � u⊺dD
⊺
dud

is used. Finally, usingEq. (2b) for the output of the discretemodel and
recognizing the second set of terms in Eq. (22) as an inner product,
upon rearranging the result, we obtain the following:

y⊺dud � V�t�k � − V�t−k � �
1

2
jLdx

−
k �Wdudj2 � ϵdku

⊺
dud (23)

But, a vector norm is always nonnegative; thus,

y⊺dkudk − ϵdku
⊺
dud⩾V�t�k � − V�t−k � (24)

as required by Eq. (7b) for some ϵdκ > 0. If ϵdk ≡ 0, then Eq. (24)
reduces to the following:

y⊺dkudk⩾V�t�k � − V�t−k � (25)

as required by Eq. (6b).
Together with Eq. (20), Eq. (25) proves the hybrid passivity of the

system; and together with Eq. (19), Eq. (24) establishes the hybrid
input strict passivity of the system, as defined in Definition (2.4) and
according to Theorem (2.2). □

Noting the resemblance of Eq. (12a) to the well-known Lyapunov
equation, P�t� will hereafter be referred to as the “Lyapunov
solution.” In addition, the set of conditions in Eq. (12) will be called
the “hybrid extended KYP conditions” and will be used in Sec. IV.B
for passivity-based design of the plant output dynamics.

C. Hybrid Algebraic KYP Conditions

Theorem 2.4 specializes the hybrid KYP conditions of
Theorem 2.3 to a hybrid LTI system, in which the state-space
matrices are constant, for which the differential and difference
equations reduce to algebraic equations, and for which the Lyapunov
solution P remains constant over time and at each impulse. These
conditions follow directly from the results of [10] (although input
strict passivity is not treated explicitly in that paper), but they can also
be considered as special (time-invariant) analog of the hybrid
extended KYP conditions presented in Sec. II.B.
Theorem 2.4:Consider the hybrid system y � Ghu represented by

Eqs. (1) and (2). If there exists a symmetric positive-semidefinite
matrix �P ∈ Rn×n, real continuous-time matrices Lc ∈ Rmc×n and
Wc ∈ Rmc×mc , and real discrete-time matrices Ld ∈ Rmd×n and
Wd ∈ Rmd×md , such that the following conditions hold for some
ϵcκ⩾0, κ ∈ W, and ϵdk⩾0, k ∈ N:

0 � A⊺
c
�P � �PAc � L⊺

cLc (26a)

0 � �PBc − C⊺
c � L⊺

cWc (26b)

0 � −2ϵc1�Dc �D⊺
c −W⊺

cWc (26c)

0 � A⊺
d
�PAd − �P � L⊺

dLd (26d)

0 � A⊺
d
�PBd − C⊺

d � L⊺
dWd (26e)

0 � −2ϵd1�Dd �D⊺
d −B⊺

d
�PBd −W⊺

dWd (26f)

then the LTI system Gh is passive if ϵc � ϵd ≡ 0, and it is input
strictly passive if all ϵc > 0 and ϵd > 0.
Proof: Refer to the proof of theorem 14 of [10], of which this

theorem is a corollary, with the general quadratic supply rates

rc � y⊺cQcyc � 2y⊺cScuc � u⊺cRcuc

and

rd � y⊺dQdyd � 2y⊺dSdud � u⊺dRdud

Are set using the specific parametersQc � 0,Sc � 1,Rc � −2ϵc1,
Qd � 0,Sd � 1, andRd � −2ϵd1, where ϵc � ϵd ≡ 0 for passivity,
and ϵc > 0 and ϵd > 0 for input strict passivity. □

Noting the resemblance of Eq. (26a) to the well-known Lyapunov
equation, �P will hereafter be referred to as the “algebraic Lyapunov
solution.” In addition, the set of conditions in Eq. (26) will be called
the “hybrid algebraic KYP conditions” and will be used in Sec. IV.D
to design an input strictly passive controller.
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III. Spacecraft Kinematics and Dynamics

The passivity-based hybrid control strategy using the associated
KYP conditions considered thus far is applied to the problem of
attitude control via magnetic actuators augmented with auxiliary
impulsive thrusters. A Keplerian orbit is assumed and used to
determine the spacecraft’s position vector rG�t� at any given time.
Using this information, the tilted dipole model of Earth’s magnetic
field (described in appendix H of [19]) can be used to estimate the
magnetic field vector bG�t�. The body-fixed frame representations of
these vectors are then obtained using bB � CBGbG and rB � CBGrG,
where CBG denotes the rotation matrix from the inertial frame to the
body-fixed frame. Adopting the four-parameter set of quaternions,
ϵ � � ϵ1 ϵ2 ϵ3 �⊺ and η; to represent the spacecraft’s attitude, the
rotation matrix can be computed using CBG � �η2 − ϵ⊺ϵ�13×3 �
2ϵϵ⊺ − 2ηϵ× ([40] Chap. 2).
Assuming a total of N − 1 impulsive thrusts applied within the

control interval, the rotational kinematics and dynamics can be
described as follows ([40] Chaps. 2 and 4):�

_ϵ
_η

�
� 1

2

�
η13×3 � ϵ×

−ϵ⊺

�
ω (27a)

I _ω�ω×Iω � m×bB �
XN−1

k�1

nkδ�t − tk� � τdist (27b)

Where the first and second terms on the right-hand side of Eq. (27b)
represent the magnetic torquers’ and thrusters’ contributions to the
control torques, respectively, with the Dirac delta function δ�t − tk�
used to create the impulsive nature of the thruster torques. The
operator _�⋅� denotes the derivativewith respect to time; and the skew-
symmetric operator �⋅�× acts on ω, ϵ, andm as follows (shown for a
generic vector v):

v× �
2
4 0 −v3 v2

v3 0 −v1
−v2 v1 0

3
5 (28)

The disturbance torques, represented by τdist in Eq. (27b), are
neglected when designing the controller (consistent with a typical
passivity-based approach that treats the disturbances as exogenous
inputs), but they are accounted for during the nonlinear simulations
used for testing the controller’s performance. For near-Earth small
spacecraft that are not significantly affected by solar radiation or
atmospheric drag, the disturbance sources of importance are the
gravity gradient and residual magnetic dipole moments resulting
from onboard electronics ([40] Chap. 9):

τdist �
3μ

jrBj5
r×BIrB �m×

distbB (29)

where μ � 3.9859 × 1014 m3∕s2 for Earth.
The nonlinear differential equations in Eqs. (27a) and (27b) [with

the disturbances in Eq. (29)] fully describe the attitude motion of the
spacecraft. Numerical integration of this system of equations
provides an accurate prediction of the spacecraft’s on-orbit attitude
changes over time.

IV. Passivity-Based Hybrid Magnetic Attitude Control

The hybrid passivity concepts and conditions described in Sec. II
are applied in this section to the specific attitude control problem
introduced in Sec. III. Augmenting continuous magnetic actuation
with impulsive control provided by thrusters is motivated by a desire
to overcome magnetic control’s fundamental gain limitation (as
demonstrated in [28]) and alleviate its pointwise uncontrollability
issues. A design approach that guarantees the closed-loop system’s
stability using passivity-related concepts is expected to result in

improved robustness properties, making the control system better
immune to modeling uncertainties and measurement noises.
To design a passivity-based controller, the equations of motion

described in Sec. III are linearized in Sec. IV.A, and the resulting
state-space model is treated as the plant of the hybrid system
considered in Sec. II. The plant’s output dynamics are then designed
in Sec. IV.B in a manner that satisfies the set of hybrid extended KYP
conditions presented in Sec. II.B, hence establishing the passivity of
the plant. Finally, aiming to benefit from the hybrid passivity theorem
(Theorem 2.2), two strictly passive controller designs are proposed to
be used in negative feedback with the passive plant: In Sec. IV.C, the
controller is set to provide proportional feedback with constant
positive gains; whereas in Sec. IV.D, a dynamic compensator is
designed using the hybrid algebraic KYP conditions presented in
Sec. II.C.

A. Linearization of the Plant Model

The plant model is obtained by linearizing Eq. (27) (disregarding
τdist) as follows ([40] Chap. 4):� _θ �t�
�θ �t�

�
_x�t�

≈
� 03×3 13×3

03×3 03×3

�
|���������{z���������}

Ac

� θ�t�
_θ�t�

�
x�t�

�
� 03×3

−I−1b×G�t�

�
|��������{z��������}

Bc�t�

�m�t��
u�t�

; t ≠ tk

(30a)

�
θ�t�k �
_θ�t�k �

�
x�t�

k
�

≈
�
13×3 03×3
03×3 13×3

�
|���������{z���������}

Ad

�
θ�t−k �
_θ�t−k �

�
x�t−

k
�

�
�
03×3
I−1

�
|��{z��}

Bd

�nk�
vk

; t � tk

(30b)

where Eq. (30a) corresponds to the continuous portion of the hybrid
plant Gh, represented by Eq. (1); whereas Eq. (30b) correlates with
the discrete portion shown in Eq. (2). This linearization assumes
small angles and rates (_θ ≈ ω and θ ≈ 2ϵ) and small magnetic dipole
moments m. It should be noted that, although the linearized model
assumes b×B ≈ b×G [making use of an identity from [41] that states

b×B � �CBGbG�× � CBGb
×
GCGB ≈ �1 − θ×�b×G�1� θ×�

assuming small angles, and neglecting the resulting θ×θ× term
because of its order], the implemented controller will have access to
bB during the mission (via measurements), so the design approach
presented in the following sections uses bB for higher accuracy when
computing the matrix Bc.
As mentioned earlier, the dynamic compensator proposed in

Sec. IV.C relies on the algebraic KYP conditions of Sec. II.C, which
presume time-invariant state-space matrices. For this reason, a time-
invariant approximate to the system in Eq. (3) is requires. Oneway of
obtaining this involves average the time-varying Bc�t�B⊺

c�t� over an
orbit (assuming quasi-periodicity of the systemwith one orbit and, as
opposed to averaging Bc�t� itself, which would integrate to 0):

�Bc
�B⊺
c � 1

T

Z
T

0

Bc�τ�B⊺
c�τ� dτ (31)

upon diagonalizing the right-hand side of which an averaged �Bc can
be obtained as follows:

�Bc � EnzΛ
1∕2
nz (32)

where Λnz contains the nonzero eigenvalues of the right-hand side
of Eq. (31) as its diagonal elements, and Enz consists of these
eigenvalues’ corresponding eigenvectors as its columns. In other
words, thesematrices are extracted from the diagonalization �Bc

�B⊺
c �

EΛE−1 that leads to Λ � blockdiagfΛnz; 0g and E � �Enz Ez �,
whereEz has the eigenvectors corresponding to the zero eigenvalues
of the right-hand side of Eq. (31) as its columns.
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B. Passive Plant Design

As mentioned previously, the idea behind the passivity-based
design approach described in this section is to complete the
specification of the plant by determining for it appropriate output
dynamics, given by Eqs. (1b) and (2b). To this end, assuming full
state measurement, some artificial state-space matrices Cc�t�,Dc�t�,
Cdk, and Ddk could be designed such that the set of hybrid KYP
conditions provided by Eq. (12) are satisfied, hence establishing the
passivity of the plant.
Some simplifying assumptions can be made for the purpose of

limiting the design space. Letting Wc�t� ≡ 0 and Wdk ≡ 0 and
assuming a symmetricDc, it follows fromEq. (12c) thatDc�t� ≡ 0 as
well because ϵcκ ≡ 0 for passivity. Furthermore, noting that an inner
product of any matrix with itself is positive semidefinite and
symmetric, new variables L⊺

c�t�Lc�t� ≜ Uc�t�⩾0 and L⊺
dkLdk ≜

Udk⩾0 are defined. Lastly, setting ϵdk ≡ 0 for passivity, assuming a
symmetricDdk, noting the symmetry ofP�t� as required by Theorem
2.3, and realizing that Adk � 1 in Eq. (30b), a simplified and
rearranged form of the KYP conditions in Eq. (12) is obtained:

_P�t� � −�P�t�Ac �A⊺
cP�t� � Uc�t�� (33a)

P�t−k � � P�t�k � � Udk (33b)

Cc�t� � B⊺
c�t�P�t� (33c)

Cdk � B⊺
dkP�t�k � (33d)

Ddk �
1

2
B⊺

dkP�t�k �Bdk (33e)

where P�t�, Uc�t�, and Udk should all be symmetric and positive
semidefinite. The matrix P�t� can be determined (numerically, if
need be) by integrating Eq. (33a) backward in time and inducing
jumps in it at each impulse time using Eq. (33b). To this end, a
positive-semidefinite terminal conditionP�tf� is required to be set by
the user as a design parameter. With the Ac matrix specific to this
problem, defined in Eq. (30a), Eq. (33a) can be rewritten as follows:

_P�t� �−
��

P1 P2

P2 P3

��
0 1

0 0

�
�
�
0 0

1 0

��
P1 P2

P2 P3

�
�
�
Uc1 Uc2

Uc2 Uc3

�	

�−
�

Uc1 P1�Uc2

P1 �Uc2 2P2 �Uc3

�
(34)

Once the Lyapunov solution P�t� is determined, it can be used to
assign the control inputs. Two different approaches for doing so are
explored in Secs. IV.C and IV.D.
Assume, for simplicity, a constant block-diagonal Uc [as in

Eq. (34)], with Uc1 � uc11, Uc2 � 0, and Uc3 � uc31, where uc1 >
0 and uc3 > 0 to ensure positive semidefiniteness. In addition,Udk ≡
0 is assumed to keep the Lyapunov solution continuous, even at the
impulse times [based on Eq. (33b)]. Integrating Eq. (34) with this
choice of Uc yields the following:

_P1 � −uc11 ⇒ P1 � −uc1t1� C1 (35a)

_P2 � uc1t1 − C1 ⇒ P2 �
uc1
2

t21 − tC1 � C2 (35b)

_P3 � −uc1t21� 2tC1 − 2C2 − uc31 ⇒ P3

� −
uc1
3

t31� t2C1 − 2tC2 − uc3t1� C3 (35c)

where the constants of integration can be solved for by assuming a
terminal condition of P�tf�:

P1 � P1�tf� � uc1�tf − t�1 (36a)

P2 � P2�tf� � �tf − t�P1�tf� �
uc1
2

�tf − t�21 (36b)

P3 � P3�tf� � 2�tf − t�P2�tf� � �tf − t�2P1�tf� �
uc1
3

�tf − t�31
� uc3�tf − t�1 (36c)

which shows a linear, quadratic, and cubic increase (moving
backward from t � tf) in P1, P2, andP3, respectively. This becomes
problematic when tf is large because the initial values ofP�t� diverge
to infinity, rendering the controller useless. To remedy this problem,
this plant design procedure also incorporates resetting of the
Lyapunov solution, at the end of every orbit, to its terminal value: i.e.,
P�iT� � P�tf� � Pf, i ∈ N. The Lyapunov solution provided in
Eq. (36) then takes the following piecewise form for i ∈ N:

P1�P1f�uc1�iT−t�1; t∈ ��i−1�T;iT�
P2�P2f��iT−t�P1f�

uc1
2
�iT−t�21; t∈ ��i−1�T;iT�

P3�P3f�2�iT−t�P2f��iT−t�2P1f�
uc1
3
�iT−t�31�uc3�iT−t�1;

t∈ ��i−1�T;iT� (37)

This is an analytic solution that does not require numerical
backward integration, owing to the choice of a constantUc. In theory,
the terminal conditions can be set to any P�tf�⩾0; in practice,
however, setting it to 0 can entail unsatisfactory steady-state
performance resulting from loss of control at the end of each orbit.
Larger terminal values are therefore recommended, and they are used
in the simulations presented in Sec. V.
When simulating the nonlinear dynamics inEq. (27) [togetherwith

the disturbance torques in Eq. (29)], starting with some initial
conditions at time zero, the analytic Lyapunov solution P�t� and its
value immediately before each impulse are used to compute, using
the approaches described in Secs. IV.C and IV.D, themagnetic dipole
moments and thruster gains (outputs of a strictly passive feedback
controller) that guarantee the system’s linear stability under the
influence of sufficiently small disturbances.
What remains is designing the controller and determining the

control inputs of the plant. Based on Theorem 2.3, any input strictly
passive controller would render the closed-loop system (with the
passive plant of Sec. IV.B) stable in the presence of sufficiently small
disturbances. In Secs. IV.C and IV.D, two different design approaches
for the controller are presented.

C. Input Strictly Passive Constant-Gain Controller

In this design, a proportional output feedback controller with
constant positive gains is chosen to satisfy the strict passivity
condition, considering the negative feedback interconnection of
Fig. 1 (with d � 0):

uc�t� � −ŷc�t� � −kcyc�t� (38a)

udk � −ŷdk � −kdydk (38b)

where yc�t� and ydk are the plant outputs, represented by Eqs. (1b)
and (2b), respectively. Recalling the assumption that Dc�t� ≡ 0 and
using Eqs. (33c–33e) for the plant, one obtains the following:

uc�t� � −kc�B⊺
c�t�P�t�x�t�� (39a)
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udk � −kd
�
B⊺

dkP�t�k �x�t−k � �
1

2
B⊺

dkP�t�k �Bdkudk

�
(39b)

Lastly, using the block-diagonal form ofP introduced in Eq. (34) and
the Bc�t� and Bdk matrices specific to this problem [defined in
Eq. (30)], the control inputs can be solved for from Eq. (39):

uc�t� � −kcb×B�t�I−1�P2�t�θ�t� � P3�t�_θ�t�� (40a)

udk � −kd
�
1� kd

2
I−1P3�t�k �I−1

�−1
I−1�P2�t�k �θ�t−k �

� P3�t�k �_θ�t−k �� (40b)

where a symmetric moment of inertia matrix I is also assumed. The
control inputs provided byEq. (40) are computed using the Lyapunov
solutionP�t�, an analytic solution of whichwas obtained in Sec. IV.B
upon assuming constant Uc and Ud matrices.

D. Input Strictly Passive Dynamic Compensator

Analogously to the hybrid linear system represented by Eqs. (1)
and (2), we define a hybrid dynamic compensator structure for the
controllerℋh, the input of which is the plant’s output. For simplicity,
an LTI system is adopted for this controller:
The continuous-time portion of ℋh at t ≠ tk is given, with the

initial condition x̂�t0� (set to 0 in the absence of any other justifiable
value) by

_̂x�t� � Âcx̂�t� � B̂cûc�t� (41a)

ŷc�t� � Ĉcx̂�t� � D̂cûc�t� (41b)

whereas the discrete-time portion ofℋh at t � tk is given by

x̂�t�k � � Âdx̂�t−k � � B̂dûdk (42a)

ŷdk � Ĉdx̂�t−k � � D̂dûdk (42b)

where x̂�t�:R� → Rn×1 is the controller’s “state” and has no
physical significance. The vectors ûc�t�:R� → Rmc×1 and
ûdk:N → Rmd×1 are the inputs used by the controller [that, for
the negative feedback structure of Fig. 1 with d � 0, correspond
to the plant’s outputs, i.e., ûc�t� � yc�t� and ûdk � ydk] and,
assuming equal input/output dimensions, ŷc�t�:R� → Rmc×1 and
ŷdk:N → Rmd×1 are the controller’s output vectors [that for Fig. 1,
correspond to the negative of the plant’s control inputs, i.e.,
ŷc�t� � −uc�t� and ŷdk � −udk]. The constant continuous-time
matrices Âc, B̂c, Ĉc, and D̂c, as well as the discrete-time Âd, B̂d,
Ĉd, and D̂d, are all dimensioned appropriately, in the same way
as their plant analog.
Making use of the aforementioned plant–controller relationships

arising from the negative feedback loop of Fig. 1 (with d � 0), the
evolution of the controller’s state based on Eqs. (41a) and (42a) is
dictated by

_̂x�t� � Âcx̂�t� � B̂cŷc�t�; t ≠ tk (43a)

x̂�t�k � � Âdx̂�t−k � � B̂dydk; t � tk (43b)

Fig. 2 Transient performance of constant-gain controller, with quaternions and angular velocity: passivity-based five-impulse hybrid (solid lines), two-
impulse hybrid (dashed lines), and solely magnetic (dashed–dotted lines).
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whereas the continuous- and discrete-time control inputs to be fed
back to the plant are provided by

uc�t� � −Ĉcx̂�t� − D̂cyc�t� (44a)

udk � −Ĉdx̂�t−k � − D̂dydk (44b)

What remains is determining the matrices such that the resulting
dynamic compensator is input strictly passive. A possible design
approach that yields satisfactory performance follows, but the reader
should keep inmind that many other approaches may be possible and
should be explored as part of future work on this topic.
We select Ĉc � R−1

c
�B⊺
c
�X, where �Bc is the time-invariant

equivalent [given by Eq. (32)] of the plant’s Bc�t� matrix, based on
the solution �X of the familiar linear quadratic regulator problem that
minimizes the following:

J � 1

2

Z
∞

0

�x⊺�τ�Qcx�τ� � u⊺c�τ�Rcuc�τ�� dτ (45)

where Qc � Q⊺
c > 0 and Rc � R⊺

c > 0 are user-defined penalty
matrices. The solution is provided by solving the following
continuous-time algebraic Riccati equation for �X:

A⊺
c
�X� �XAc − �XBcR

−1
c B⊺

c
�X�Qc � 0 (46)

whereAc of the plant [given byEq. (30a)] is constant in this problem.
We then let

Âc � Ac − �BcĈc � Ac − �BcR
−1
c

�B⊺
c
�X

which is guaranteed to have eigenvalues with negative real parts.
With Âc and Ĉc determined, the remaining continuous-timematrices
to design are B̂c and D̂c. This is where input strict passivity comes in,
and the set of hybrid algebraic KYP conditions of Sec. II.C are used
(as the controller’s system is LTI): Let (similar to the plant’s design in
Sec. IV.B) Wc ≡ 0 and L⊺

cLc ≡ Vc⩾0. The algebraic Lyapunov
solution is obtained via Eq. (26a) using the controller’s state-space
matrices:

Â⊺
c
�P � �PÂc � −Vc (47)

where Vc is a design parameter specified by the user. Once �P is
solved for, it can be used in Eq. (26b) (with Wc ≡ 0) to
determine B̂c � �P−1Ĉ⊺

c � �P−1�R−1
c

�B⊺
c
�X�⊺. Lastly, assuming a

symmetric Dc, from Eq. (26c) we obtain D̂c � ϵc1, which
completes the specification of the continuous-time portion of the
hybrid controller in a manner that, thus far, satisfies the
pertinent portion of the hybrid algebraic KYP conditions by
construction.
Before proceeding with the discrete-time matrices, we assume

(similar to the continuous-time case) that Wd ≡ 0, and we let
L⊺

dLd ≜ Vd⩾0. Because the set of conditions in Eq. (26) requires the
same �P for both continuous- and discrete-time portions, we let
Âd � ad1, ad⩽1, which is guaranteed to satisfy Eq. (26a):

Â⊺
d
�PÂd − �P � −Vd (48)

Fig. 3 Transient performance of constant-gain controller, with continuous and impulsive torques: passivity-based five-impulse hybrid (solid lines), two-
impulse hybrid (dashed lines), and solely magnetic (dashed–dotted lines).
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for some positive-semidefiniteVd. Inspired by the form of the plant’s
Bd matrix, we then choose B̂d � bd� 0 1 �⊺, and we determine
Ĉd � B̂⊺

d
�PÂd using Eq. (26e) (with Wd ≡ 0). Finally, assuming a

symmetric D̂d similar to its continuous-time counterpart, from
Eq. (26f), we have D̂d � ϵd1� �1∕2�B̂⊺

d
�PB̂d, which completes the

discrete-time portion’s design.
The control inputs to be fed back to the controller can now be

evaluated at each time instance using Eq. (44). Substituting the
matrices selected in this paper into that equation yields

uc�t� � −R−1
c

�B⊺
c
�X x̂�t� − ϵcyc�t� (49a)

udk � −adbd� �P2
�P3 �x̂�t−k � − �ϵd1� b2d

�P3�ydk (49b)

where �X and �P [partitioned in a block-diagonal form similar toP�t� in
Eq. (34)] are the solutions of the algebraic Riccati and Lyapunov
equations in Eqs. (46) and (47), respectively. The evolution of the
state variable x̂�t� is governed by Eq. (43):

_̂x�t� � �Ac − �BcR
−1
c

�B⊺
c
�X�x̂�t� � � �P−1 �X⊺ �BcR

−1
c �yc�t�; t ≠ tk

(50a)

x̂�t�k � � adx̂�t−k � � bd� 0 1 �⊺ydk; t � tk (50b)

Having satisfied all of the hybrid algebraic KYP conditions of
Theorem 2.4 by construction of the matrices, the proposed hybrid
dynamic compensator is guaranteed to be input strictly passive

(in a linear sense), and its negative feedback interconnection with the
passive plant of Sec. IV.B should be stable, according toTheorem2.2.

V. Numerical Examples

Simulations are performed using MATLAB® to study the
performance of the proposed passivity-based hybrid magnetic
attitude controller. A circular near-polar Keplerian orbit with orbital
parameters

fa; e; i;Ω;ω; t0g � f6.82 × 106 m; 0; 87 deg; 0 deg; 0 deg; 0 sg

is assumed, corresponding to an altitude of 450 km. The moment of
inertiamatrix of the spacecraft is set to I � diagf27; 17; 25g kg ⋅m2;
based on somemissions considered in [19], the spacecraft is assumed
to be equipped with three magnetic torquers with R � 100 Ω, c �
1000 turns, d � 25 cm, and A � d2 (assuming square coils).
Numerical integration is performed on the full nonlinear equations

of motion given in Eq. (27) using a fourth-order Runge–Kutta
algorithm. At each time step, the linearized model of Eq. (30) is
constructed based on an estimation of the magnetic field vector;
because the design approach of Sec. IV.B provides an analytic
Lyapunov solution P�t�, the plant’s desired measurement matrices
are readily obtained. Then, depending on which type of controller is
being used, the control inputs are computed at every time instance
from either Eq. (40), for the constant-gain controller, or from
Eqs. (49) and (50), for the dynamic compensator. In conjunction with
the gravity gradient and residual magnetic dipole moments (set to
mdist � �0.1 0.1 0.1�⊺ A ⋅m2) disturbance torques, these control

Fig. 4 Transient performance of dynamic compensator, with quaternions and angular velocity: passivity-based five-impulse hybrid (solid lines), two-
impulse hybrid (dashed lines), and solely magnetic (dashed–dotted lines).
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torques are applied and the resulting nonlinear states are obtained
from Eq. (27).
For the plant, the design approach presented in Sec. IV.B is used.

Following that approach, the discrete-timeUdk is set to 0, producing a
continuous Lyapunov solution. A constant block-diagonal form is
assumed for Uc � blockdiagfuc113×3; uc313×3g, and the scalar
parameters are tuned to be uc1 � 0.3 and uc3 � 100. To preventP�t�
from growing (backward) without bound, the solution is reset at
every orbital period; and to prevent loss of control as a result of its
zero or small values, the terminal value to which the solution is reset
at every orbit is set to P1�iT� � 03×3, P2�iT� � 2 × 10613×3, and
P3�iT� � 2 × 10913×3. Two types of hybrid controller are used: a
two-impulse one with thrusts applied at t2k−1 � 0.245� �k − 1�T,
t2k � 0.735T � �k − 1�T, k ∈ f1; 2; : : : ; 10g (which correspond to
the times at which the magnetic controller has the least control
authority [36]); and a five-impulse controller with an equally spaced
set of impulse times (separated by 0.20T and starting from time
0.20T), namely, at tk � k × 0.20T, k ∈ f1; 2; : : : ; 10 × 5g for 10
orbits.
For the constant-gain controller of Sec. IV.C, matrix Uc in

Eq. (33a) is set constructed using uc1 � 0.3 and uc3 � 100, and the
continuous and impulsive control gains used in Eq. (40) are set to
kc � 0.5 and kd � 5 × 10−8, respectively. For the dynamic
compensator proposed in Sec. IV.D, the penalty matrices used in
the algebraic Riccati equation, given by Eq. (46), are set to Qc �
qc16×6 and Rc � rc13×3, with qc � 8 × 105 and rc� 104. In
addition, Vc � vc16×6 is used for the algebraic Lyapunov equation,
given by Eq. (47), with the scaling factor tuned to vc � 5 × 102.
Lastly, for the assumed forms of Âd � ad16×6 and
B̂d � bd� 03×3 13×3 �⊺, the parameters are set to ad � −0.2 and
bd � 2 × 10−9, and the positive parameters used to ensure input strict

passivity via the conditions in Eqs. (26c) and (26f) are tuned to
ϵc � 0.5 and ϵd� 10−9. These parameters, together with the
algebraic Riccati and Lyapunov solutions ( �X and �P), are used to
compute the control inputs via Eqs. (49) and (50).
As a means of comparison and to assess the effectiveness of a

hybrid architecture, a solely magnetic controller is also designed and
tested using similar, but continuous only, passivity-based approaches
(with no impulses applied). To this end, the sameP�t� fromEq. (37) is
used for the plant, but only in conjunction with Eq. (40a) (for the
constant-gain controller) or Eqs. (49a) and (50a) (for the dynamic
compensator), without a need for their discrete-time counterparts in
Eq. (40b) or Eqs. (49b) and (50b). Similar to the hybrid controllers,
and in order to allow for a meaningful performance comparison, the
same continuous parameters are used, namely, uc1 � 0.3 and uc3 �
100 for the plant, and kc � 0.5 (for the solelymagnetic constant-gain
controller) or qc � 8 × 105, rc� 104, vc � 5 × 102, and (for the
solely magnetic dynamic compensator).

A. Transient Performance

The initial conditions are first set to ϵ0 � � 0.50 0.50 0.50 �⊺,
η0 � 0.50, and ω0 � � 0.50 0.50 0.50 �⊺ rad∕s. Figures 2 and 3
depict the nonlinear simulation results over 10 orbits using the
passivity-based hybrid constant-gain controller presented in Sec. IV.
C, whereas Figs. 4 and 5 show those obtained using the passivity-
based hybrid dynamic compensator proposed in Sec. IV.D. For both
control schemes, the included cases are five-impulse hybrid (solid
curves), two-impulse hybrid (dashed curves), and solely magnetic
(dashed–dotted curves) control. The quaternions and angular
velocity results in Figs. 2 and 4 demonstrate the satisfactory
performance of both of the proposed passivity-based control
schemes, with their respective control torques shown in Figs. 3 and 5.

Fig. 5 Transient performance of dynamic compensator, with continuous and impulsive torques: passivity-based five-impulse hybrid (solid lines), two-
impulse hybrid (dashed lines), and solely magnetic (dashed–dotted lines).
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In both cases, the five-impulse hybrid controller generally
outperforms the solely magnetic and the two-impulse ones, as is
further evident from Tables 1 and 2, which present some quantitative
norms computed over 10 orbits. Thesemeasures include the electrical
energy estimated using

E10T � 3R∕�c2A2�
Z

10T

0

m⊺m dt

as well as some root-mean-square-like norms defined generically as

kvk10T ≜















































�Z
10T

0

v⊺v dt

	
∕�10T�

s

such thatv is set to τc � m×bB formagnetic torquesmeasure, is set to
ω for a measure of angular velocities, and is set to ϕ for rotation
angles. To compute the angle ϕ from Euler’s axis/angle parameters,

Table 2 Transient performance of reference PD (based on [28]) vs magnetic, two-impulse, and
five-impulse dynamic compensators over 10T

Parameter Description Reference PD Magnetic Two-impulse Five-impulse Unit

E10T Electrical energy usage 5.08 × 101 2.61 × 101 2.61 × 101 2.61 × 101 MJ
kτck10T Magnetic torque norm 2.70 × 10−3 1.91 × 10−3 1.90 × 10−3 1.90 × 10−3 N ⋅m
kτdk10T Impulsive torque norm 0 0 3.24 × 10−3 3.98 × 10−3 N ⋅m
kωk10T Angular velocity norm 9.34 × 10−3 5.48 × 10−3 4.92 × 10−3 4.65 × 10−3 rad∕s
kϕk10T Rotation angle norm 2.45 × 100 7.50 × 10−1 1.07 × 100 6.90 × 10−1 rad

Table 1 Transient performance of reference PD (based on [28]) vs magnetic, two-impulse, and
five-impulse constant-gain controllers over 10T

Parameter Description Reference PD Magnetic Two-impulse Five-impulse Unit

E10T Electrical energy usage 5.08 × 101 2.37 × 101 2.37 × 101 2.36 × 101 MJ
kτck10T Magnetic torque norm 2.70 × 10−3 1.85 × 10−3 1.85 × 10−3 1.85 × 10−3 N ⋅m
kτdk10T Impulsive torque norm 0 0 1.80 × 10−3 2.12 × 10−3 N ⋅m
kωk10T Angular velocity norm 9.34 × 10−3 5.02 × 10−3 4.72 × 10−3 4.59 × 10−3 rad∕s
kϕk10T Rotation angle norm 2.45 × 100 7.78 × 10−1 9.21 × 10−1 6.22 × 10−1 rad

Fig. 6 Steady-state performance of constant-gain controller, with quaternions and angular velocity: passivity-based five-impulse hybrid (solid lines),
two-impulse hybrid (dashed lines), and solely magnetic (dashed–dotted lines).
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the relationship cos�ϕ� � �tracefCBGg − 1�∕2 is used. For ameasure
of the impulsive torques, owing to their discrete nature, v is set to
τd ≈ nk∕h when tk ∈ �t; t� h� during the numerical integration
(where the impulse is approximated with a rectangle of area nk and
finite width h) and to τd � 0 at all other time steps.
For the constant-gain controller represented by Table 1, the

two-impulse controller’s performance actually appears to be
worse than that of the solely magnetic controller, although it
does result in reduced angular velocities. By increasing the
number of impulses using the five-impulse controller, however,
in addition to ameliorated steady-state behavior (discussed in
more detail in Sec. V.B), further improvements are seen in the
norms reported in Table 1: most noticeably, that of the rotation
angle is reduced by about 20 and 32% as compared to the solely
magnetic and two-impulse cases, respectively. Table 1 also
includes, as an external benchmark, the performance results
using the proportional-derivative magnetic state feedback
suggested in [28], with control input u � m � b×Bν∕jbGj2,
where ν � −�γ2kpϵ� γkvIω�. The scaling parameter and gains
are set to γ � 0.001 and kp � kv � 50, which is consistent with
[28] for the moment of inertia, and orbital parameters are the
same. The passivity-based constant-gain controllers seem to
perform better than the reference PD law in terms of all measures
defined (disregarding the impulsive torques that are not used by
the continuous-only schemes). Similar comments can be made
about the dynamic compensator represented by Table 2: all
passivity-based compensators perform better than the PD law
used as a benchmark, and improvements are gained by adding an
auxiliary impulsive mechanism with a sufficiently large number
of thrusts.

B. Steady-State Behavior

Shown in Fig. 6 are the quaternions and angular velocities
corresponding to simulations using the constant-gain controller;
whereas depicted in Fig. 7 are those resulting from the use of the
dynamic compensator, with the same spacecraft, orbit, and impulse
patterns as those in Sec. V.A. In this section, however, the initial
conditions are set to ϵ0 � 0, η0 � 1, and ω0 � � 0 0 0 �⊺ rad∕s.
By eliminating the nonequilibrium initial conditions, the controllers
are only influenced by the disturbances, so these results give an
indication of their steady-state performance. For the constant-gain
controller, based on Fig. 6, there seems to be no improvement
resulting from the use of the two-impulse controller (dashed curves)
compared to the solely magnetic one (dashed–dotted curves).
However, increasing the number of impulses to five seems to reduce
some of the errors. The large jumps in the angular velocities
(especially in ω2), shown in Fig. 6, occur every T and are caused by
the resetting of the P�t� solution used for the plant’s design. For
practical applications, such sudden changes may not be desirable,
motivating future work on the passivity-based design schemes in
hopes of circumventing the resetting action used in Sec. IV.B.
Alternatively, although all the dynamic compensators exhibit similar
steady behaviors in Fig. 7, they seem to have reduced the undesirable
ω2 jumps to an extent, which seems logical owing to the filtering
properties of compensators.
Table 3 lists the quantitative norms (defined identically to those in

Tables 1 and 2) corresponding to the constant-gain controllers for
these zero initial condition simulation cases. The numbers suggest
that the two-impulse controller is, once again, worse than the purely
magnetic one in terms of disturbance rejection. The five-impulse
controller, however, improves all of the parameters, reducing the

Fig. 7 Steady-state performance of dynamic compensator, with quaternions and angular velocity: passivity-based five-impulse hybrid (solid lines), two-
impulse hybrid (dashed lines), and solely magnetic (dashed–dotted lines).
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magnetic torques by 30% compared to the solely magnetic case, as
well as exhibiting a significant 40% decrease in both rotation angles
and angular velocities. Once again, the passivity-based constant-gain
controllers have generally better performance than the reference PD
law, other than in terms of angular velocity, where the latter performs
better than the passive magnetic and two-impulse controllers.
Presented in Table 4 are the steady-state performance norms

computed for the passivity-based dynamic compensators. In general,

the changes resulting from incorporating the impulses are not as
pronounced as those in Table 3 for the constant-gain controllers.
Unlike the two-impulse constant-gain controller, however, the two-
impulse dynamic compensator does exhibit improved attitude and
angular velocity compared to the corresponding solely magnetic
controller, but at the cost of larger energy consumption. Similar
comments hold for the five-impulse controller, which causes about
30 and 20% decreases in the angular velocities and rotation angles

Table 4 Steady-state performance of reference PD (based on [28]) vs magnetic, two-impulse, and
five-impulse dynamic compensators over 10T

Parameter Description Reference PD Magnetic Two-impulse Five-impulse Unit

E10T Electrical energy usage 8.39 × 10−5 6.40 × 10−5 7.21 × 10−5 7.20 × 10−5 MJ
kτck10T Magnetic torque norm 5.28 × 10−6 4.16 × 10−6 4.37 × 10−6 4.21 × 10−6 N ⋅m
kτdk10T Impulsive torque norm 0 0 1.68 × 10−5 2.50 × 10−5 N ⋅m
kωk10T Angular velocity norm 2.71 × 10−5 2.26 × 10−5 2.00 × 10−5 1.57 × 10−5 rad∕s
kϕk10T Rotation angle norm 6.34 × 10−2 2.49 × 10−2 2.14 × 10−2 2.00 × 10−2 rad

Fig. 8 Attitude performance of five-impulse a) constant-gain controller and b) dynamic compensator: without sensor noise (solid lines) and with sensor
noise (dashed lines).

Table 3 Steady-state performance of reference PD (based on [28]) vs magnetic, two-impulse, and
five-impulse constant-gain controllers over 10T

Parameter Description Reference PD Magnetic Two-impulse Five-impulse Unit

E10T Electrical energy usage 8.39 × 10−5 5.61 × 10−5 7.36 × 10−5 3.96 × 10−5 MJ
kτck10T Magnetic torque norm 5.28 × 10−6 4.02 × 10−6 4.26 × 10−6 3.58 × 10−6 N ⋅m
kτdk10T Impulsive torque norm 0 0 5.59 × 10−5 6.80 × 10−5 N ⋅m
kωk10T Angular velocity norm 2.71 × 10−5 3.27 × 10−5 2.97 × 10−5 1.98 × 10−5 rad∕s
kϕk10T Rotation angle norm 6.34 × 10−2 4.55 × 10−2 6.01 × 10−2 2.78 × 10−2 rad
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(compare to the 12 and 14% reductions obtained by the constant-gain
five-impulse controller), respectively, but also consumes about 12%
more energy. The reader is also reminded that all of the passivity-
based controllers are guaranteed to satisfy (via their plant output
design in Sec. IV.B and controller designs in Secs IV.C and IV.D) the
hybrid (algebraic) KYP conditions outlined in Theorems 2.3 and 2.4,
hence establishing the system’s stability. This, in itself, is an
advantage over similar (but not necessarily passive) attitude
controllers.

C. Measurement Noise Effects

The attitude and rate measurements obtained and used for feedback
control are never perfect, and there is always at least someunpredictable
sensor noise present, the mean magnitude of which depends on the
types of the sensors being used. To test the influence of measurement
noise on the performance of the proposed passivity-based hybrid
controllers, the state vector x�t� consisting of the direct attitude
(converted to quaternions) and rate measurements is perturbed by a
randomly generated zero-mean Gaussian white noise vector.
Specifically, following the approach suggested in ([41] section
25.1.2),MATLAB’s built-in randomnumbergenerator randn�� isused
to produce avector of randomnumbers [namely, ρ ∼N �0; 1� ∈ R6×1];
and the noisevectors to be added to the states are set toE






Λ

p
ρ, whereE

andΛ are obtained by diagonalizing the covariance matrix of the noise
distribution asΣ � EΛE⊺. Thismatrix is assumed tobeconstant, and it
is set to Σ � blockdiagfσ2ϵ13×3; σ2ω13×3g.
For the results reported in this section, the variance parameters

associated with the attitude and rate measurements are set to σ2ϵ �
5 × 10−11 and σ2ω � 5 × 10−9, respectively, resulting in mean values
of around 1.5 × 10−5 and 1.5 × 10−4 rad∕s perturbations in ϵ and ω,
respectively. These are relatively large noises to consider for most
spacecraft, so the resulting effects should be viewed as somewhat
exaggerated.
Figures 8a and 8b compare the attitude control performance of the

constant-gain controller and the dynamic compensator, respectively,
with (dashed) and without (solid) the presence of measurement noise.
Table 5 lists the performance parameters computed for each case over
10 orbits. The same design parameters as those in Sec. V.A are used,
with the five-impulse case of both controllers selected. The same initial
conditions as those in Sec. V.A are used: ϵ0 � � 0.50 0.50 0.50 �⊺,
η0 � 0.50, and ω0 � � 0.10 0.10 0.10 �⊺ rad∕s.
As is evident from both Fig. 8 and Table 5, the dynamic

compensator is much more immune to erroneous state knowledge,
and it is thus expected to perform better than the constant-gain
controller when significant sensor noise is anticipated. For example,
when noise is added, the constant-gain controller uses about 175%
more impulsive torque and results in a 40% increase in the rotation
angles, whereas these numbers barely change for the dynamic
compensator. Once again, this improved performance can be

attributed to the dynamic compensator’s filtering nature, and it
provides another reason for why one should consider choosing the
passivity-based compensator over the constant-gain controller,
despite the former’s significantly more complicated design
procedure.

VI. Conclusions

Novel passivity-based attitude control schemes using magnetic
torquers and impulsive thrusters in tandemhave beenpresented.Hybrid
(continuous/impulsive) controllers were developed by designing the
output dynamics that artificially modify the plant’s full state
measurement in a manner that guarantees its hybrid passivity in a
linearized sense. To this end, a set of hybrid extendedKYPconditions is
used while evoking a hybrid extension of the passivity theorem to
stabilize the system using input strictly passive negative feedback
control. Two designs were proposed for an input strictly passive
controller: a constant-gain proportional controller, and a dynamic
compensator thatmakes useof a set of hybrid algebraicKYPconditions
to guarantee input strict passivity. Improvements in terms of
controllability and gain limitation were expected as a result of using an
auxiliary impulsive thrustmechanism,and thanks to thepassivity-based
approach, the controllers were anticipated to have good robustness and
physically intuitive stability properties. In addition, the filtering
properties of the dynamic compensator were expected and shown to
result in improved sensor noise rejection. Numerical simulation results
showed the functionalityof all typesof passivity-based controllers used,
as well as transient and steady-state performance improvements as a
result of adding an impulsive mechanism with a sufficient number of
impulses. Further performance improvements, especially in the
presence of sensor noise, were achieved by using a dynamic
compensator instead of constant gains.

Appendix: Proofs of Auxiliary Theorems and Lemmas

Proof of Lemma 2.1: Consider the vector αv� βw, with arbitrary
scalars α and β, for which

�kαv� βwkh�2 �
Z

∞

0

�αvc � βwc�⊺�αvc � βwc� dt

�
X∞
k�1

�αvd � βwd�⊺�αvd � βwd�⩾0 (A1)

because the inner product of a vector with itself is always
nonnegative. The time or index dependence of all vectors is omitted
for clarity. We observe that v � 0 or w � 0 would trivially satisfy
Eq. (A1). Assuming v ≠ 0 and w ≠ 0, we let α � 1∕kvkh and
β � −1∕kwkh in Eq. (A1):

Table 5 Measurement noise effects on five-impulse constant-gain controller and dynamic compensator over 10T

Parameter Description Constant (no noise) Constant (noise) Dynamic (no noise) Dynamic (noise) Unit

E10T Electrical energy usage 2.36 × 101 2.36 × 101 2.61 × 101 2.61 × 101 MJ
kτck10T Magnetic torque norm 1.85 × 10−3 1.85 × 10−3 1.90 × 10−3 1.90 × 10−3 N ⋅m
kτdk10T Impulsive torque norm 2.12 × 10−3 5.82 × 10−3 3.98 × 10−3 3.97 × 10−3 N ⋅m
kωk10T Angular velocity norm 4.59 × 10−3 4.32 × 10−3 4.65 × 10−3 4.65 × 10−3 rad∕s
kϕk10T Rotation angle norm 6.22 × 10−1 8.75 × 10−1 6.90 × 10−1 6.93 × 10−1 rad
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and rearranging the result yields Eq. (3a), as required. An identical
approach can be used for Eq. (3b). □

Proof Theorem 2.1: Consider an arbitrary time instance: t̂ > 0.
The difference between the value of V evaluated at t � t̂ and t � 0
can be interpreted as the total sumof the changes over the first and last
intervals (that of t̂) and the instantaneous changes at each impulse
time:

V�t̂�−V�0��V�t̂��
XN̂−1

k�1

�−V�t�k ��V�t�k �−V�t−k ��V�t−k ��−V�0�

� �V�t̂�−V�t�
N̂−1

����V�t−
N̂−1

�−V�t�
N̂−2

��� · · ·

��V�t−1 �−V�0���
XN̂−1

k�1

�V�t�k �−V�t−k �� (A3)

where N̂ − 1 indicates the number of impulses before t̂,
i.e., tN̂−1 < t̂ < tN̂ .
Substituting the conditions of Eq. (6) into Eq. (A3) yields the

following:

V�t̂� − V�0�⩽
Z

t̂

t�
N̂−1

y⊺cuc dτ�
Z

t−
N̂−1

t�
N̂−2

y⊺cuc dτ� · · ·

�
Z

t−
1

0

y⊺c�τ�uc�τ� dτ�
XN̂−1

k�1

y⊺dkudk (A4)

where the τ dependence of the integrands is omitted. Lastly, because
y⊺cuc would have zero area at each point t � tk, these points can also
be included to obtain, upon evoking the condition V�t̂�⩾0,

−V�0�⩽
Z

t̂

0

y⊺c�τ�uc�τ� dτ�
XN̂−1

k�1

y⊺dkudk � hyjuih
t̂

(A5)

which establishes the passivity of the system y � Gu, with β �
−V�0�⩽0 as in Eq. (4) of Definition 2.4.
Similarly, substituting the conditions of Eq. (7) into Eq. (A3)

produces

V�t̂� − V�0�⩽
Z

t̂

t�
N̂−1

y⊺cuc dτ − ϵc�N̂−1�

Z
t̂

t�
N̂−1

u⊺cuc dτ

�
Z

t−
N̂−1

t�
N̂−2

y⊺cuc dτ − ϵc�N̂−2�

Z
t−
N̂−1

t�
N̂−2

u⊺cuc dτ

� · · · �
Z

t−
1

0

y⊺cuc dτ − ϵc0

Z
t−
1

0

u⊺cuc dτ�
XN̂−1

k�1

y⊺dkudk

−
XN̂−1

k�1

ϵdku
⊺
dkudk (A6)

where the τ dependence of the integrands is omitted. After
rearranging and using the same argument as that for Eq. (A5), one
obtains the following:

−V�0��
XN̂−1

κ�0

ϵcκ

Z
t−κ�1

t�κ
u⊺c�τ�uc�τ�dτ�

XN̂−1

k�1

ϵdku
⊺
dkudk⩽

Z
t̂

0

y⊺c�τ�uc�τ�dτ

�
XN̂−1

k�1

y⊺dkudk�hyjuih
t̂

(A7)

Finally, defining ϵ � minffϵcκg ∪ fϵdkgg > 0 (i.e., the smallest of
all ϵc and ϵd; all of which are positive), Eq. (A7) implies the
following:

−V�0� � ϵ�kukh
t̂
�2 � −V�0� � ϵ

�Z
t̂

0

u⊺c�τ�uc�τ� dτ

�
XN̂−1

k�1

u⊺dkudk

	
⩽hyjuih

t̂
(A8)

which establishes the input strict passivity of the system y � Gu,
with β � −V�0�⩽0 as in Eq. (5) of Definition 2.4. □
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