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The control problem for linearized two-dimensional wall-bounded parallel shear flows is considered as a means of

preventing the laminar-to-turbulent transition. The linearized Navier–Stokes equations are reduced to the Orr–

Sommerfeld equation with wall-normal velocity actuation entering through the boundary conditions on the wall. An

analysis of the work-energy balance is used to identify appropriate sensor outputs that could lead to a passive closed-

loop system using simple feedback laws. These sensor outputs correspond to the second spatial derivative (normal

direction) of the streamwise velocity at the wall, and it is demonstrated that they can be realized by pressure

measurements made at appropriate locations along the wall. Spatial discretization of the Orr–Sommerfeld equation

in thewall-normal direction is accomplished usingHermite cubic finite elements, and the resulting spectrum is shown

to agree with literature values for both plane Poiseuille flow and the Blasius boundary layer. Both cases are shown to

be stabilized by simple constant-gain output feedback using the special choice of sensor measurement. In each case,

this holds for a single gain andawide range ofReynolds numbersandwavenumbers.However, the closed-loop system

produced in the Poiseuille case is shown to be passive (i.e., it has a positive-real transfer function), whereas in the

Blasius case, it is nonminimum-phase and hence is not passive.

I. Introduction

I T IS well known that the skin friction drag produced by wall-
bounded shear flows greatly depends on whether the flow is

laminar or turbulent, with the former producing less drag. Oneway of
studying the transition between the two types of flow is by examining
the instability of small perturbations produced about a nominal
laminar flow. This can be performed by determining the eigenvalues
of the linearized model governing the perturbations [1]. In two
dimensions with a nominal parallel flow, this approach leads to
consideration of the Orr–Sommerfeld equation. In this light, a
possible approach to preventing or spatially delaying transition is to
prevent the instability from occurring via the introduction of
appropriate sensors and actuators aswell as the use of active feedback
control [2]. From a control systems perspective, the problem is one of
feedback stabilization by output feedback.
The Orr–Sommerfeld equation results from the two-dimensional

linearized Navier–Stokes equations, where the base flow is a
parallel shear flow. It is developed from the assumption that
perturbations in the streamwise direction are oscillatory in the
horizontal spatial coordinate, and historically it has been studied by
also assuming time-harmonic solutions. This leads to an eigen-
problem that is usually identified as the Orr–Sommerfeld equation.
The study of this eigenproblem occupied the better part of flow
transition studies in the last century and is detailed in [1]. In
particular, much work was centered on determining the critical
values of the Reynolds number and wave number that led to
instability and transition.
When researchers began to study active feedback control as a

means of preventing the transition by stabilization, it seemed natural
to use the linearized Navier–Stokes equation and its creations: the
Orr–Sommerfeld equation and its cousin, the Squire system of
equations. The latter occurs when one considers three-dimensional
perturbations and describes the spanwise behavior; it is coupled to the

Orr–Sommerfeld equation. The history and use of both equations in

developing linear state-space models of a flow control problems is

described in [2].

The two most studied flows in the context of active control design

using the Orr–Sommerfeld equation are plane Poiseuille flow [3,4]

and the Blasius boundary layer [5,6]. This paper will consider both

flows. Both are parallel shear flows described in [1]. The Poiseuille

flow corresponds to the fully developed flow in a channel between

two parallel infinite plates (this will be described in more detail in

Sec. III.B). The Blasius boundary layer is the two-dimensional

laminar flow over a semi-infinite flat plate (this will be described in

more detail in Sec. III.C). Although not strictly a parallel flow, it will

be treated as such in this work.

It may seemodd that we propose to use two-dimensional modeling

and linear stability analysis as the basis for a controller design, when

it is now widely recognized that transition to turbulence is a

nonlinear, three-dimensional phenomenon [7]. In fact, it is generally

recognized that transition typically occurs before the critical

Reynolds number predicted by linear theory and arises from the large

transient energy growth due to the nonnormal nature of the equations

involved. This leads to nonlinear behavior, which leads to turbulence.

Despite this scenario, many authors have argued that, for control

system design, linear models “might well be good enough” [8]. The

reasoning is that linear control systems can deal with the initial stage

of the process (linear amplification of disturbances), thus preventing

the subsequent nonlinear transition behavior. The justification of a

two-dimensional approach that ignores the Squire system is Squire’s

theorem, which states that the critical Reynolds number in the two-

dimensional analysis is always less than that in the corresponding

three-dimensional analysis [1]. In [3], linear feedback controllers

developed using a two-dimensional model of Poiseuille flow were

shown to attenuate finite two-dimensional perturbations.
Many of the important characteristics of a control problem are

governed by the type and location of the sensors and actuators. In a

linear time-invariant (LTI) control problem, the location of the zeros

of the corresponding transfer function (matrix) are affected by these

things. In particular, zeros located in the right half of the complex

plane lead to the nonminimum-phase property, which leads to

instability when high-gain output feedback is used. Stable systems

with a stable inverse are termed minimum-phase and are easier to

control. In the LTI case, the corresponding transfer function has no

poles or zeros in the open right half-plane. Sensor and actuator

location has been considered by [3] in the Poiseuille case and [6] in

the Blasius case.
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An important class of systems enjoy the property of passivity and

are termed passive [9]. Such systems only store or dissipate energy,
and the study of this property originated in the field of passive
electrical circuits [10]. A stronger property than passivity is strict

passivity, which corresponds to systems that only consume
(dissipate) energy. The celebrated passivity theorem [9] states that the

negative feedback interconnection of a passive system and a strictly
passive system is L2-stable, where L2 is the space of temporally

square-integrable functions; that is, L2 inputs produce L2 outputs
(finite energy inputs produce finite energy outputs). Hence, passive
systems can be stabilized by a simple constant-gain negative output

feedback (the simplest strictly passive system).
In the control of mechanical systems within the realm of solid

mechanics, linear elastic structures with collocated force inputs and
velocity outputs (or collocated torque inputs and angular velocity

outputs) are passive [11]. They can be robustly stabilized by strictly
passive negative feedback because the passivity property is present

regardless of the details of the mass distribution, vibration
frequencies, mode shapes, and number of modes maintained in the

spatial discretization. Hence, so-called spillover instabilities,
produced by a lower-order controller applied to a structure
containing vibration modes other than those used to design the

controller, are avoided.
Given the utility of the passivity property, we examine the

possibility of obtaining it in the context of the Orr–Sommerfeld
equation, where the actuation is implemented by varying the wall-

normal velocity. A fundamental question is what are the
corresponding sensor outputs that could potentially lead to a passive

system? We answer this question by examining the work-energy
balance of the Orr–Sommerfeld equation. The relevant outputs are
shown to be the second spatial derivative (normal direction) of the

streamwise velocity perturbation at the wall, and it is demonstrated
that they can be realized by pressure measurements made at

appropriate locations along the wall. Although passivity cannot be
achieved for the open-loop system, it is numerically demonstrated

that an appropriate closed-loop system enjoys this property in the
Poiseuille case but not in the Blasius case.
For our numerical examples, spatial discretization of the Orr–

Sommerfeld equation in the wall-normal direction is accomplished

using Hermite cubic finite elements, which were originally used for
Poiseuille flows in [12]. Our application to controlled flows and the
Blasius boundary layer is novel. The resulting eigenvalue spectra are

shown to agree with literature values for both plane Poiseuille flow
and the Blasius boundary layer. From the control standpoint, these

two cases are shown to have some fundamental differences. Both are
shown to be stabilized by simple constant-gain output feedback using

the special choice of sensormeasurements. However, the closed-loop
system produced in the Poiseuille case is shown to be passive (i.e., it
has a positive-real transfer function), whereas in the Blasius case, it is

nonminimum-phase and hence is not passive. This is our main
contribution. Passivity ideas have been employed in [13] in the

stabilization of a Poiseuille flow where dynamic linear controller
designs were employed to render the closed-loop system to be

passive.
The paper is organized as follows. Section II defines and illustrates

the key notions involving passivity in the context of controlling
flexible structures, awell known application. Section III develops the

Orr–Sommerfeld equation, and by using energy as a storage function,
a key set of inputs and outputs are defined for use in a passivity-based
control strategy. They are then interpreted as physical quantities,

namely wall-normal velocity inputs and specially chosen pressure
measurements. Section IV presents the spatial discretization of the

Orr–Sommerfeld equation based on the finite element method. The
closed-loop state-space equations for Poiseuille andBlasius flows are

developed in Sec. V for the simplest feedback strategy, the use of a
single gain. The eigenvalues are numerically calculated as a function
of Reynolds number, wave number, and feedback gain. Stability

diagrams and root locus plots are presented for both flow types. Time-
domain simulations are presented in Sec. VI, and Sec. VII presents

some concluding remarks.

II. Passivity-Based Control

A. Input-Output Stability Theory

Consider a vector function of time z�t�. We have that z ∈ L2 if

the L2-norm satisfies kzk2 �
�������������������������������
∫ ∞
0 z

T�t�z�t� dt
q

< ∞; we use the

symbol � �T to denote the matrix transpose and � �H to denote the
complex-conjugate transpose. In addition, z ∈ L2e (the extended

L2-space) if kzk2T �
������������������������������
∫ T
0z

T�t�z�t� dt
q

< ∞, 0 ≤ T < ∞. Note that

L2 ⊂ L2e. Consider a system z�t� � �Gν��t� where the operator
G:L2e → L2e (possibly nonlinear and time-varying) maps the input
ν ∈ L2e into the output z ∈ L2e (note that the symbol ν will not be
used in this paper to refer to a fluid’s kinematic viscosity). For a
square system (the number of inputs is equal to the number of
outputs), the operator G is defined to be strictly passive if

∫ T
0z

T�t�ν�t� dt ≥ β� ϵ∫ T
0 ν

T�t�ν�t� dt, 0 ≤ T < ∞ for some ϵ > 0

and real constant β. If this property is satisfied with ϵ � 0, then the
system is passive. The system is L2-stable if ν ∈ L2 implies
that z � Gν ∈ L2.
Linear time-invariant (LTI) systems can be described using

transfer functions: z�s� � G�s�ν�s� where z�s� denotes the Laplace
transform of z�t� (a common abuse of notation) and G�s� is the
system transfer (function) matrix. The quantity s denotes the
complex-valued Laplace transform variable and i � ������

−1
p

. Note
that G�s� � C�sI −A�−1B�D for LTI systems described by
the standard state-space model _x�t� � Ax�t� � Bν�t�, z�t� �
Cx�t� �Dν�t�. Here, I is the identity matrix of appropriate
dimension, and �·� denotes the time derivative. If the system is
minimal (i.e., it is controllable and observable), then L2-stability
corresponds to the matrix A having eigenvalues with negative-
real parts.
Passive LTI systems of this form correspond to the casewhereG�s�

is a positive-real (PR) transfer function. When G�s� is a proper real
rational matrix function of s, it is positive-real if no element of G�s�
has a pole in R efsg > 0; He�G�iω�� � �1∕2��G�iω� � GH�iω�� ≥
0 for all realωwith iω not a pole ofG�s� (He�� denotes theHermitian
part of a square matrix); and if iω0 is a pole of any element ofG�s�, it
is at most a simple pole and the residuematrix lims→iω0

�s − iω0�G�s�
is nonnegative-definite Hermitian. A stronger property than
positive-real is strictly positive-real (SPR). A proper real rational
matrix function of s is SPR if no element of G�s� has a pole in
R efsg ≥ 0; He�G�iω�� > 0 for all real ω ∈ �−∞;∞�; and
limω→∞ω

2He�G�iω�� > 0.
The importance of passivity for feedback design lies in the

celebrated passivity theorem [9], which addresses the feedback
system shown in Fig. 1. It may be described by z � G�d −Hz� for
operators G: L2e → L2e and H: L2e → L2e. The passivity theorem
states that, if G is passive and H is strictly passive, then d ∈ L2

implies that z ∈ L2. It can be shown that this stability property holds
ifG corresponds to an LTI systemwith an SPR transfermatrix, andH
corresponds to an LTI system with a PR transfer matrix [14].
Another important problem is the selection of the feedback

operatorH so that the closed-loop system (i.e., themapping fromd to
z) is passive. This has important ramifications for disturbance
rejection and the robustness of the stabilization with respect to
passive perturbationsΔmodeled as negative feedback aroundG. For
example, if in Fig. 2,Δ is a passive system and the negative feedback
interconnection of G and H is strictly passive, then d ∈ L2 implies
that z ∈ L2. This has ramifications for our problem because, in [13],
it is noted that, in some cases, the nonlinearities in the Navier–Stokes

Fig. 1 Feedback system.
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equations can be shown to be a passive negative feedback around a
nominal model based on the linearized Navier–Stokes equations.

B. Example of Passivity Analysis in the Control of Flexible Structures

Historically, a key application of passivity in the control of
mechanical systems has been the control of flexible structures using
collocated actuators and sensors. In this subsection, we summarize
the passivity analysis in this case because it may be familiar to many
readers and is key motivation for our approach to the fluid-control
problem in the next section. This subsection will highlight the
relationship of a positive-real transfer function to a passive system,
the use of energy as a storage function for establishing passivity, and
the role of collocated (dual) actuators and sensors in producing a
passive system.
Consider a constrained (no rigid-body motion permitted) linear

elastic flexible structure with deformation field w�r; t� �
�w1 w2 w3 �T, where the spatial coordinates are given by
r � � r1 r2 r3 �T. It occupies an undeformed volume V. It is
assumed that a force actuator acts at location ra in the direction na

with a force given by ν�t�. The partial differential equation (PDE)
describing the motion [15] is

M �w�r; t� �D _w�r; t� �Kw�r; t� � naδ�r − ra�ν�t� (1)

Here,M is themass operator,D is the damping operator, andK is
the stiffness operator, all of which are assumed to be self-adjoint,
positive-definite, and may contain spatial partial derivatives. In
addition, δ�r� denotes the Dirac delta function. The output
measurement is taken to be a velocity measurement at location rs in
the direction ns:

z�t� � nT
s _w�rs; t� (2)

The undamped eigenvalue problem corresponding to the
undamped, unforced version of Eq. (1) is

−ω2
αMψα �Kψα � 0; α � 1; 2; 3; : : : (3)

where ωα > 0 are the undamped natural frequencies, and ψα are the
undamped eigenfunctions. The orthogonality relations are taken to be

Z
V
ψT
α Mψβ dV � δαβ; (4)

Z
V
ψT
α Kψβ dV � ω2

αδaβ (5)

Z
V
ψT
α Dψβ dV � 2ζαωαδαβ; (6)

where ζα > 0 are the modal damping ratios, and δαβ is the Kronecker
delta. Although the undamped eigenfunctions are not guaranteed to
possess orthogonality with respect to the damping operator, it is

assumed to be the case here for simplicity of exposition. This would

happen, for example, whenD is a linear combination ofM andK.
We adopt the modal expansion

w�r; t� �
X∞
α�1

ψα�r�ηα�t� (7)

where ηα�t� are the modal coordinates. Substituting this into the

sensor Eq. (2) leads to

z�t� �
X∞
α�1

nT
s ψα�rs�_ηα�t� (8)

�
X∞
α�1

ψ s;α _ηα�t�; ψ s;α � nT
s ψα�rs� (9)

Substituting themodal expansion [Eq. (7)] into the PDE in Eq. (1),

premultiplying by ψT
α and integrating over V while using the

orthogonality relations, leads to the modal equations of motion:

�ηα�t� � 2ζαωα _ηα�t� � ω2
αηα�t� � ψa;αν�t�; α � 1; 2; 3; : : :

(10)

where ψa;α � nT
aψα�ra�.

Taking Laplace transforms of Eqs. (9) and (10) gives

z�s� �
X∞
α�1

sψ s;αηα�s�

ηα�s� �
ψa;α

s2 � 2ζαωαs� ω2
α
ν�s�; α � 1; 2; 3; : : :

Combining these yields

z�s� �
�X∞
α�1

sCα

s2 � 2ζαωαs� ω2
α

�
ν�s�; Cα � ψ s;αψa;α (11)

The bracketed expression is the relevant transfer function relating

the input ν�s� to the output z�s�.
In the case of a collocated actuator and sensor, na � ns and

ra � rs, and henceψa;α � ψ s;α. This yieldsCα ≥ 0 in Eq. (11), and it
is straightforward to show that eachmodal contribution to the transfer

function is positive-real and hence so is a sumof such terms. It is clear

that the passivity property is independent of the specific values of the

natural frequencies, damping ratios (which may be zero in the

limiting casewhereD � 0), eigenfunctions, and the number of terms

in the modal expansion, and it hinges only on the collocation

property [11].
An alternative approach to demonstrate passivity is to consider the

energy

E�t� � 1

2

Z
V

_wT M _w dV � 1

2

Z
V
wT Kw dV ≥ 0 (12)

It follows using this in conjunction with the PDE and sensor

equations that

_E �
Z
V
_wT�M �w�Kw� dV (13)

� −
Z
V

_wT D _w dV � nT
a _w�ra;t�ν�t�

� −
Z
V
_wT D �w dV � z�t�ν�t� (14)

in the collocated case. Integrating over the interval �0; T� produces

Fig. 2 Feedback system with passive feedback perturbation.
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Z
T

0

z�t�ν�t�dt � E�T�−E�0� �
Z

T

0

Z
V
_wT D _wdV dt ≥ β � −E�0�

(15)

which is a statement of passivity. This analysis is readily extended to
multiple actuators and sensors and does not rely on the ability of the
damping operator to be diagonalized by the undamped mode shapes.
Hence, flexible mechanical structures with collocated force actuators
and linear velocity sensors are passive systems, which are relatively
easy to stabilize on the basis of the passivity theorem. It is useful to
note that the simplest strictly passive negative feedback, ν�t� �
−Kz�t� with K > 0, renders _E�t� � −∫ V _wT D _w dV − Kz2�t� ≤ 0
according to Eq. (14). The next section seeks to determine
appropriate sensors and actuators for the Orr–Sommerfeld problem.

III. Orr–Sommerfeld Equation and Passivity Analysis

We consider a two-dimensional flow field occupying the region
�x; y� ∈ �0;∞� × �a; b� with a base parallel laminar flow �U�y�; 0�
and associated pressure field P�x; y�. Assuming small perturbations
u�x; y; t�, v�x; y; t�, and p�x; y; t�, the linearized incompressible
Navier–Stokes equations [1] are

∂u
∂x

� ∂v
∂y

� 0 (16)

∂u
∂t

�U
∂u
∂x

�U 0v � −
∂p
∂x

� 1

Re

�
∂2u
∂x2

� ∂2u
∂y2

�
(17)

∂v
∂t

�U
∂v
∂x

� −
∂p
∂y

� 1

Re

�
∂2v
∂x2

� ∂2v
∂y2

�
(18)

where U 0�y� � dU�y�∕dy. It has been assumed that quantities are
nondimensionalized using the velocity U0 and distance H. The
Reynolds number is given by Re � ρU0H∕μ, where ρ is the fluid
density, and μ is the absolute viscosity. The boundary conditions are
taken to be u�x; a; t� � u�x; b; t� � v�x; b; t� � 0, and the control
variable is taken to be v�x; a; t�, which corresponds to wall-normal
blowing and suction.
Let us introduce the stream function Ψ�x; y; t�, with the velocity

components expressed in terms of it as

u � ∂Ψ
∂y

; v � −
∂Ψ
∂x

(19)

These satisfy Eq. (16) and,when substituted into Eqs. (17) and (18)
while eliminating the pressure, yield

∇2 _Ψ� �U∇2 −U 0 0� ∂Ψ
∂x

� 1

Re
∇2∇2Ψ (20)

where ∇2 is the Laplacian in x and y. This equation for the stream
function was also developed in [3].
Introducing the spatial Fourier transform in the x direction, or

alternatively letting

Ψ�x; y; t� � R efϕ�y; t� exp�iαx�g (21)

whereϕ�y; t� is the complex amplitude andα is the realwave number,
leads to the Orr–Sommerfeld equation [1]:

−�D2 − α2� _ϕ� �Re�−1�D2 − α2�2ϕ
� iα�U 0 0�y� −U�y��D2 − α2��ϕ � 0 (22)

where Dϕ ≡ ∂ϕ∕∂y. The boundary conditions are ϕy�a; t� �
ϕ�b; t� � ϕy�b; t� � 0, and the (real) control inputs are ν�t� �
�Refϕ�a; t�gJ mfϕ�a; t�g�T � �νr�t�νi�t��T; the vector ν should not

be confused with the scalar velocity components u and v. Noting that
the velocity components satisfy

u�x; y; t� � R efDϕ�y; t� exp�iαx�g (23)

v�x; y; t� � −R efiαϕ�y; t� exp�iαx�g (24)

we see that the control input ν can ultimately be related to the

wall velocity vw�x; t� � v�x; a; t� � αJmfϕ�a; t�g cos αx�
αR efϕ�a; t�g sin αx. This will be done in more detail in the

following section. For now, we note that the control input provides

additional boundary conditions for ϕ�a; t�.
The energy is taken to be

E�t� � α

4π

Z
2π∕α

0

Z
b

a
�u2 � v2� dy dx

� 1

2

Z
b

a
�ϕ�

yϕy � α2ϕ�ϕ� dy ≥ 0 (25)

Note that the subscript notation ��y indicates the corresponding

partial derivative; the superscript ��� denotes the complex conjugate.

Taking the time derivative yields

_E � 1

2

Z
b

a
� _ϕ�

yϕy � ϕ�
y
_ϕy � α2 _ϕ�ϕ� α2ϕ� _ϕ� dy

Integrating the first two terms by parts and introducing the

boundary conditions yields

_E � 1

2

Z
b

a
fϕ�−D2 � α2� _ϕ� � ϕ��−D2 � α2� _ϕg dy

which, after introducing the Orr–Sommerfeld equation and its

complex conjugate, leads to

_E�−
1

2

Z
b

a
ϕf�Re−1�D2−α2�2ϕ��iα�U�y��D2−α2�−U00�y��ϕ�gdy

−
1

2

Z
b

a
ϕ�f�Re−1�D2−α2�2ϕ−iα�U�y��D2−α2�−U00�y��ϕgdy

Integrating by parts the terms containing D4 twice and the terms

containing D2 once while enforcing the boundary conditions yields

_E � −Re−1
�
α4

Z
b

a
jϕj2 dy� 2α2

Z
b

a
jDϕj2 dy�

Z
b

a
jD2ϕj2 dy

�

− α

Z
b

a
U 0�y�Jm�ϕϕ�

y � dy� Re−1 R e�ϕ�D3ϕ�y�a (26)

Now, note that the last term in Eq. (26) can be written as

Re−1 R e�ϕ�D3ϕ�y�a � Re−1 �R efD3ϕ�a; t�gR efϕ�a; t�g
� JmfD3ϕ�a; t�gJ mfϕ�a; t�g�

When an analogy is made between the placement of this term

in Eq. (26) and that of the term z�t�ν�t� in Eq. (14), the obser-

vation is defined to be z�t� � �R efD3ϕ�a; t�gJmfD3ϕ�a; t�g�T �
�zr�t�zi�t��T. At this stage, the output z is strictly a mathematical

notion, but it will be related to physically measurable pressure

quantities in the next section. For now,we note that, by comparison of

this choice with the streamwise velocity perturbation in Eq. (23), it

can be related to the second spatial derivative (normal direction) of

this quantity at the wall.
Now, noting that R e�ϕ�D3ϕ�y�a � zT�t�ν�t�, while integrating

Eq. (26) with respect to time, yields
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Z
T

0

zTν dt �
Z

T

0

�
α4

Z
b

a
jϕj2 dy� 2α2

Z
b

a
jDϕj2 dy

�
Z

b

a
jD2ϕj2 dy

�
dt� ReE�T�

� αRe

Z
T

0

Z
b

a
U 0�y�Jm�ϕϕ�

y � dy dt − ReE�0� (27)

Clearly, the first term on the right-hand side and E�T� are
nonnegative. However, the third term containing the Reynolds
number is indefinite and, potentially, destroys the passivity of the
mapping from the input ν to the output z. In the absence of this term,
the mapping is passive. However, there are still stabilizing influences
to be had using this sensor/actuator pair. For example, using the
simplest strictly passive output feedback law

ν�t� � − �Kz�t�; �K > 0 (28)

may lead to a passive (closed-loop) system. Introducing it into
Eq. (26) yields

_E � −Re−1
�
α4

Z
b

a
jϕj2 dy� 2α2

Z
b

a
jDϕj2 dy�

Z
b

a
jD2ϕj2 dy

�

− Re−1 �KzTz − α

Z
b

a
U 0�y�Jm�ϕϕ�

y � dy (29)

which demonstrates the potential of the output feedback law to lead to
an energy-dissipative closed-loop system if the two terms containing
Re−1 are able to dominate the last term.

A. Realization of the Special Output Using Pressure Measurements

We would now like to relate the input/output pair �ν; z� to more
physically meaningful quantities. The wall-normal velocity satisfies

vw�x; t� � v�x; a; t�
� −R efiαϕ�a; t� exp�iαx�g (30)

� αJ mfϕ�a; t�g cos αx� αR efϕ�a; t�g sin αx (31)

� �νr�t� cos αx − �νi�t� sin αx

where the following quantities have been defined:

�νr�t� � αJmfϕ�a; t�g � ανi�t� � vw�0; t�

�νi�t� � −αR efϕ�a; t�g � −ανr�t� � vw�3π∕�2α�; t�

The corresponding sensed variables are defined to be

�zr�t� � J mfϕyyy�a; t�g∕α � zi�t�∕α;
�zi�t� � −R efϕyyy�a; t�g∕α � −zr�t�∕α (32)

and we note that zTν � �zT �ν, where �ν � � �νr �νi �T and �z �
� �zr �zi �T.
Because by Eq. (23) uyy�x; a; t� � R efϕyyy�a; t�g cos αx−

Jmfϕyyy�a; t�g sin αx, it is readily shown that

�zi�t� �
1

2

Z
3π∕�2α�

π∕�2α�
uyy�x; a; t� dx (33)

�zr�t� � −
1

2

Z
π∕α

0

uyy�x; a; t� dx (34)

Now, considering the x component of the linearized Navier–
Stokes equation in Eq. (17) and evaluating it at the lowerwall (x � a)

while applying the boundary conditions u�x; a; t� � ux�x; a; t� �
ut�x; a; t� � 0 gives

U 0�a�v�x; a; t� � ∂p�x; a; t�
∂x

� 1

Re
uyy�x; a; t� (35)

Integrating both sides gives

Z
x2

x1

uyy�x; a; t� dx

� Re

�
p�x2; a; t� − p�x1; a; t� �U 0�a�

Z
x2

x1

v�x; a; t� dx
�

(36)

Setting x1 � π∕α and x2 � 0 and using Eq. (34) gives

�zr�t� �
Re

2
�p�0; a; t� − p�π∕α; a; t�� � ReU 0�a�

α
�νi�t� (37)

Setting x1 � π∕�2α� and x2 � 3π∕�2α� and using Eq. (33) gives

�zi�t� �
Re

2
�p�3π∕�2α�; a; t� − p�π∕�2α�; a; t�� − ReU 0�a�

α
�νr�t�
(38)

Columnizing the two results produces

�z�t� � Re

2
Δp�t� �Q�ν�t� (39)

where

Δp �
�

p�0; a; t� − p�π∕α; a; t�
p�3π∕�2α�; a; t� − p�π∕�2α�; a; t�

�
;

Q � ReU 0�a�
α

�
0 1

−1 0

�
(40)

Introducing the output feedback law

�ν�t� � −K �z�t� (41)

in Eq. (39) yields a feedback law using pressure measurements along
the wall:

�ν�t� � −
KRe

2
�I� KQ�−1Δp�t� (42)

Comparing the feedback law in Eq. (41)with that in Eq. (28), while
noting �νr�t� � ανi�t�, �νi�t� � −ανr�t�, �zr�t� � zi�t�∕α, and
�zi�t� � −zr�t�∕α, reveals that �K � K∕α2, or ν�t� � −�K∕α2�z�t�,
for the proposed controller. This is the simplest way to implement the
control law mathematically. Physically, we note that, at each wave
number, four pressure measurements are required on the wall at the
locations xs;j � �j − 1�π∕�2α�, j � 1; 2; 3; 4, as per Eqs. (39) and
(40). The physical feedback law is Eq. (42).
In the remainder of the paper, we shall examine twowall-bounded

parallel shear flows: the two-dimensional Poiseuille channel flow,
and the two-dimensional Blasius boundary-layer flow. One of our
objectives is to compare the two flows from the point of view of
feedback stabilization using the input/output pair developed
previously and examine the possibility of rendering the closed-loop
system passive.

B. Poiseuille Flow

The Poiseuille flow is depicted in Fig. 3. The half-channel width is
H, and the flow velocity at the midline �y � 0� is U0. The nominal
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nondimensionalized flow velocity is U�y� � 1 − y2. The upper and
lower boundaries correspond to a � −1 and b � 1, with boundary
conditions as discussed in the previous section.

C. Blasius Boundary Layer

The Blasius boundary layer [16] is depicted in Fig. 4. Although
the nominal laminar flow �U;V� is known to be nonparallel (V ≠ 0),
we shall make the approximation V � 0 and take U�y� to be the

Blasius solution: U�y� � df�η�∕dη, where η � yd
�����������������������
ρU0∕�μxd�

p �
1.7207876573y (xd and yd refer to dimensional coordinates), and

f�η� is the solution of 2d3f∕dη3 � �d2f∕dη2�f � 0, with

df�0�∕dη � f�0� � 0 and d2f�0�∕dη2 � 0.33205733622, which
yields the correct asymptotic boundary condition df�η�∕dη � 1 as
η → ∞. The displacement thickness is given by H � δ� �
1.7207876573

�����������������������
μxd∕�ρU0�

p
, where the freestream velocity is U0.

The local Reynolds number will be denoted by Re � ρU0δ
�∕μ, and

δ� will nondimensionalize length. Although b → ∞, we will use a

finite computational domain with b � �16∕H� �����������������������
μxd∕�ρU0�

p
(dimensionless), and at this boundary, we will impose the inviscid
asymptotic solution ϕy�b; t� � −αϕ�b; t�, corresponding to the fact
that ϕ ∝ exp�−αy� as y → ∞.

IV. Spatial Discretization Using Finite Elements

It is assumed that the y domain �a; b� is broken into Ne equally
sized finite elements (width l), with the value of y at the nodes
(element boundaries) denoted by yj � �j − 1�l, j � 1; : : : Ne � 1,
where l � �b − a�∕Ne. Let us denote the value of ϕ and its
derivative at the nodes by ϕj�t� � ϕ�yj; t� and ϕ 0

j�t� � ϕy�yj; t�.
Within the jth element, the following trial solution is assumed:

ϕ�y; t� � � 1 ŷ ŷ2 ŷ3 �

2
64

1 0 0 0

0 l 0 0

−3 −2l 3 −l
2 l −2 l

3
75�ϕj�t�ϕ 0

j�t�ϕj�1�t�ϕ 0
j�1�t��T � YT�ŷ�Lq�j��t� (43)

where y � �j − 1� ŷ�l, and ŷ is a local element coordinate system

with 0 ≤ ŷ ≤ 1. This element description was used in [12] in the case

of Poiseuille flow. Our application to the Blasius flow and the

controlled Orr–Sommerfeld equation is novel.
Based on Eq. (43), the finite element description of the Orr–

Sommerfeld solution is given by

ϕ�y; t� �
XNe

j�1

Φj�y�q�j��t� (44)

where

Φj�y� �
�
YT�ŷ�L; �j − 1�l ≤ y ≤ jl
0; otherwise

(45)

In preparation for a weak (variational) solution of the problem, we

introduce a variation

δϕ�y; t� �
XNe

j�1

Φj�y�δq�j��t� (46)

satisfying the boundary conditions

δϕ�a; t� � δϕ 0�a; t� � 0; δϕ�b; t� � δϕ 0�b; t� � 0 (47)

for the Poiseuille problem. In the case of the Blasius boundary layer,

the boundary conditions at y � b are not applied. Instead, we opt to

enforce the conditions ϕ 0�b; t� � −αϕ�b; t� and δϕ 0�b; t� �
−αδϕ�b; t�, which correspond to the inviscid asymptotic solution

of the Orr–Sommerfeld equation, ϕ�y; t� ∝ e−αy.
Premultiplying the Orr–Sommerfeld equation in Eq. (22) by δϕ

and integrating by parts (from y � a to y � b) yields

Z
b

a
�α2δϕ _ϕ�D�δϕ�D _ϕ� dy − δϕD _ϕjy�b

� 1

Re

Z
b

a
�D2�δϕ�D2ϕ� 2α2D�δϕ�Dϕ� α4δϕϕ� dy

� 1

Re
�δϕD3ϕ −D�δϕ�D2ϕ − 2α2δϕDϕ�jy�b

� iα

Z
b

a
�α2U�y�δϕϕ�U 0 0�y�δϕϕ�U�y�D�δϕ�Dϕ

�U 0�y�δϕDϕ� dy−iαU�y�δϕDϕ

				
y�b

� 0 (48)

where it has been observed that δϕ�a; t� � δϕy�a; t� � 0 because

these quantities are prescribed. Substituting Eqs. (44) and (46) into

Eq. (48) yields

XNe

j�1

δq�j�T�Mr;j _qj � �Kr;j � iKi;j�q�j�� � 0 (49)

where

Fig. 3 Poiseuille flow.

Fig. 4 Blasius boundary layer.
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Mr;j�LT

Z
1

0

�
α2Y�ŷ�YT�ŷ�� 1

l2

d

dŷ
Y�ŷ� d

dŷ
YT�ŷ�

�
dŷL

Kr;j�
1

Re
LT

Z
1

0

�
α4Y�ŷ�YT�ŷ��2α2

1

l2

d

dŷ
Y�ŷ� d

dŷ
YT�ŷ�

1

l4

d2

dŷ2
Y�ŷ� d

2

dŷ2
YT�ŷ�

�
dŷL

Ki;j�αLT

Z
1

0

�
��α2U��j−1� ŷ�l��U 0 0��j−1� ŷ�l��Y�ŷ�YT�ŷ�

�U��j−1� ŷ�l� 1
l2

d

dŷ
Y�ŷ� d

dŷ
YT�ŷ�

� 1

l
U 0��j−1� ŷ�l�Y�ŷ� d

dŷ
YT�ŷ�

�
dŷL

In the Poiseuille case, the terms evaluated at y � b in Eq. (48) are
zero. In the Blasius case, they add additional terms to the matrices
Mr;Ne

, Kr;Ne
, and Ki;Ne

.

Defining q̂ � �ϕ1ϕ
0
1 · · · ϕNe�1ϕ

0
Ne�1�T with the corresponding

definition for δq̂, Eq. (49) can be written as

δq̂T�M̂r
_̂q� �K̂r � iK̂i�q̂� � 0 (50)

where the global matrices M̂r, K̂r, and K̂i are assembled from their
elemental counterparts using the usual procedures of the finite
element method. Because the left-hand side of Eq. (50) must vanish
for all variations δq̂, we arrive at

M̂r
_̂q� �K̂r � iK̂i�q̂ � 0 (51)

and we momentarily ignore the rows corresponding to δqj � 0.
The boundary conditions are now applied by setting ϕ 0

1 � 0 and
taking the terms involvingϕ1 to the right-hand side of the equation to
form the control input. In the Poiseuille case, we also set
ϕNe�1 � ϕ 0

Ne�1 � 0. In the Blasius case, we set ϕ 0
Ne�1 � −αϕNe�1.

Defining q � �ϕ2ϕ
0
2 · · · ϕNe

ϕ 0
Ne
ϕNe�1�T (ϕNe�1 is omitted in the

Poiseuille case) and removing the appropriate rows and columns
from M̂r, K̂r, and K̂i yields

Mr _q� �Kr � iKi�q � �B1r � iB1i�ϕ1 � B2r
_ϕ1 (52)

whereMr, Kr, and Ki are the reduced matrices. In the Blasius case,
additional terms are added to the last row and last column of each
matrix on the left-hand side to enforce ϕ 0

Ne�1 � −αϕNe�1. It is
straightforward to formB1r from the (3,1) and (4,1) entries of K̂r,B1i

from the (3,1) and (4,1) entries of K̂i, andB2r from the (3,1) and (4,1)
entries of M̂r.
Defining the (real) state vector to be _̂x � �qTr qTi �T, where qr �

R efqg and qi � ℑmfqg, and defining the control input to be
ν � �R efϕ1gJmfϕ1g�T, the state-space model can be written as

_̂x � Ax̂� B̂1ν� B̂2 _ν (53)

z � Cx̂� D̂ν (54)

where

A �
�−M−1

r Kr M−1
r Ki

−M−1
r Ki −M−1

r Kr

�
;

B̂1 �
�
M−1

r B1r −M−1
r B1i

M−1
r B1i M−1

r B1r

�
;

B̂2 �
�
M−1

r B2r 0

0 M−1
r B2r

�

The (real) output is taken to be z�t� �
�R efϕyyy�a; t�gJmfϕyyy�a; t�g�T so that C and D̂ can be easily

formed by taking three derivatives of the trial solution in Eq. (44). In
particular, D̂ � diagf12∕l3; 12∕l3g. The term containing _ν can be
removed by defining a new state vector x � x̂ − B̂2ν. The ensuing
state description is

_x � Ax� Bν; B � B̂1 �AB̂2 (55)

z � Cx�Dν; D � D̂� CB̂2 (56)

State-space models of the Orr–Sommerfeld equation are discussed
in [17]. Our use of the finite element method in this regard has several
advantages. Chief among these are the physically meaningful nature
of the elements of q and the presence of the control inputs as nodal
degrees of freedom.

V. Stability Analysis

On the basis of the previous passivity analysis, the following
output feedback is now considered:

ν�t� � − �Kz�t� � d�t�; �K � K∕α2 (57)

which is a strictly passive negative feedback. The input d�t�
corresponds to the exogenous input in Fig. 1. Wrapping this around
the system in Eqs. (55) and (56) produces the closed-loop system

_x� �Ax� �Bd; �A�A−B�I� �KD�−1 �KC; �B�B�I� �KD�−1
(58)

z� �Cx� �Dd; �C�C−D�I� �KD�−1 �KC; �D�D�I� �KD�−1
(59)

with corresponding transfer function matrix �G�s� �
�C�sI − �A�−1 �B� �D, where z�s� � �G�s�d�s�. In the numerical
examples to follow, Ne � 240 finite elements are employed.

A. Poiseuille Case

The eigenvalues of �A (the closed-loop system poles) clearly
depend on �K. We begin with the open-loop case, K � �K � 0 so that
�A � A. The first 10 eigenvalues of A (with smallest positive
imaginary parts) are given in Table 1 for Re � 2000 and α � 1.
There, they are compared with the results of [18], which used an
expansion in Chebyshev polynomials to discretize the Orr–
Sommerfeld equation. There is agreement to six significant figures in
all cases.
The eigenvalues of �A for 0 ≤ K < ∞ are graphically depicted in

the root locus plot in Fig. 5. The root locus plot considers the classic
case of Re � 10;000 and α � 1 used by [3,19]. For K � 0, the
eigenvalues are the open-loop poles and are depicted by the symbol
X. The system is unstable at this Reynolds number and wave number
because there are poles located in the right half-plane at

Table 1 Orr–Sommerfeld eigenvalues for Poiseuille
case, Re � 2000, α � 1

Schmid andHenningson [18] Damaren �Ne � 240�
R efλ∕αg Jmfλ∕αg R efλ∕αg Jmfλ∕αg
−0.01979866 0.31210030 −0.01979863 0.31210026
−0.07671992 0.42418427 −0.07671979 0.42418411
−0.07804706 0.92078667 −0.07804705 0.92078666
−0.07820060 0.92091806 −0.07820059 0.92091805
−0.13990151 0.85717055 −0.13990146 0.85717051
−0.14031674 0.85758968 −0.14031669 0.85758963
−0.20190508 0.79399812 −0.20190490 0.79399800
−0.20232063 0.79413424 −0.20232049 0.79413410
−0.22134137 0.63912513 −0.22134066 0.63912471
−0.22356175 0.53442105 −0.22356121 0.53442090
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λ∕α � 0.00373973	 i0.2375259. This compares with Orszag’s
value of λ∕α � 0.00373967	 i0.2375265. As K → ∞, the closed-
loop eigenvalues tend toward the system open-loop zeros, which are
the eigenvalues ofA − BD−1C (they are indicated by squares). This
follows from that fact that �A → A −BD−1C asK → ∞ in Eq. (58).
In the present case, the system is minimum-phase because all of the
zeros lie in the left half-plane, although there is a pair of zeros close to
the imaginary axis at λ∕α � −0.003571	 i0.666043. The dotted
line corresponds to a locus of closed-loop poles that starts off the left
side of the plot and converges almost to the imaginary axis at high
gain.Also, note the pole-zero cancellations associatedwith the line of
poles and zeros along the line ℑmfλg∕α � 0.67, which ultimately
heads toward λ � i1. The cancellations are associated with the fact
that these modes are uncontrollable or unobservable or both from the
wall-based sensing and actuation as discussed in [8].
Stability diagrams for various values ofK are given in Fig. 6. These

diagrams consider the stability of �Re; α� pairs for a givenvalue ofK.
For lower values of K, the size of the instability region is larger than
the open-loop case. However, for K � 0.01, the entire depicted
region is stable for all �Re; α� pairs using this single gain value. Note
that the root loci in Fig. 5 are consistent with Fig. 6 (i.e., at small gain,
the feedback makes things worse, consistent with a nonpassive
system).

B. Blasius Case

In the case of the Blasius boundary-layer flow, the open-loop
eigenvalues are given in Table 2 for Re � 800 (based on
displacement thickness) and α � 1. They are compared with those of
[18], which used Chebyshev polynomials, but the handling of the
boundary condition at infinity was not clear. There is agreement to
four significant figures with the discrepancy probably due to the
approximate nature of our use of the inviscid boundary condition at a
finite upper boundary.
The root locus plot is given in Fig. 7 for the case of Re � 998,

α � 0.308 considered by [20]. In the open-loop case, there are
unstable eigenvalues at λ∕α � 0.007933	 i0.364115, which agrees
well with those obtained by [20], λ∕α � 0.0079	 i0.3641, and
those obtained by [21], λ∕α � 0.007960	 i0.364123. Interestingly,
our results show that there are unstable zeros very close to these
values (the zeros are located at λ∕α � 0.001968	 i0.360180);
hence, the Blasius flow for this case is nonminimum-phase. Once
again, the dotted line corresponds to a locus of closed-loop poles that
starts off the left side of the plot and converges almost to the
imaginary axis at high gain.

The high-frequency line of poles and zeros (roughly along the line

λ∕α � i1) is an approximation to the continuous spectrum, which

arises due to the semi-infinite domain. Our finite computational

Re{      }λ/α

Im{      }λ/α

0.0

0.2

0.4

0.6

0.8

1.0

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

Fig. 5 Root locus plot for Poiseuille flow (Re � 10;000, α � 1.0; ×:
open-loop poles, squares: open-loop zeros, solid line: locus of closed-loop
poles).
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Fig. 6 Stability diagrams for Poiseuille flow.

Table 2 Orr–Sommerfeld eigenvalues for Blasius
case, Re � 800, α � 1

Schmid andHenningson [18] Damaren �Ne � 240�
R efλ∕αg Jmfλ∕αg R efλ∕αg Jmfλ∕αg

−0.08240950 0.29440241 −0.08239432 0.29438052
−0.16979273 0.46408909 −0.16975992 0.46402206
−0.21355653 0.58341130 −0.21357389 0.58337109
−0.21441674 0.23752687 −0.21439803 0.23752579
−0.28694526 0.67030439 −0.28682292 0.67030004
−0.29556202 0.42182040 −0.29550007 0.42181289
−0.35409567 0.78475538 −0.35410324 0.78465371
−0.35864989 0.57920596 −0.35852178 0.57917397
−0.40824449 0.72486516 −0.40802471 0.72477547
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domain results in discrete eigenvalues. These eigenvalues can be
compared with the exact continuous spectrum from [22]:
λ � −�1� γ2��α∕Re� 	 i1≗ − �1� γ2��3.1 × 10−4� 	 i1, γ ∈ R.
In [22], it is stated that the corresponding eigenfunctions “are
essentially freestream modes and do not penetrate very far into the
boundary layer.” For this reason they have very poor controllability
and observability with respect to the plate-mounted sensing and
actuation, which leads to pole-zero cancellations. Our closest
eigenvalue to the imaginary axis is located at −5.5 × 10−4	
i0.999995, which can be compared to the preceding exact result. As
the computational boundary at y � b increases, the real part migrates
toward the exact result.
Stability diagrams for various values of K are shown in Fig. 8.

Initially, the instability region becomes larger, but at K � 0.25, the
entire depicted region is stable. It should not be concluded that this is
the case for larger values of K, which is expected given the
occurrence of right half-plane zeros. Again, it is noted that the root
locus plot is consistent with the stability diagrams (i.e., at small gain,
the feedback makes things worse, consistent with a nonpassive
system).

VI. Feedback Passivation

As shown in the previous section, the open-loop systems (K � 0)
are not stable at all wave numbers and Reynolds numbers. Passive
linear time-invariant systems must have poles in the closed left half-
plane, which is clearly not the case for the unstable regions in Figs. 6
and 8. However, there exists the possibility that the closed-loop
system described by Eqs. (58) and (59) is rendered passive by the
output feedback. For systems with nonzero high-frequency gain
(D ≠ 0), the necessary and sufficient condition for this to be possible
are DetD ≠ 0 and A −BD−1C having eigenvalues with negative-
real parts (i.e., the system is minimum-phase [23]).

A. Poiseuille Case

For the case of Re � 10; 000, α � 1, K � 0.001, the eigenvalues
of the Hermitian part of �G�iω� are shown in Fig. 9 as a function ofω.
This matrix is positive-definite for all frequencies, showing that the
transfer matrix is positive-real (in fact, strictly positive-real), and
hence the system is passive. It was verified that all �Re; α� pairs
depicted in Fig. 6 for K � 0.01 enjoy this property.

B. Blasius Case

For the case of Re � 998, α � 0.308, K � 0.25, the eigenvalues
of theHermitian part of �G�iω� are shown in Fig. 10 as a function ofω.

This matrix is not positive-definite for all frequencies, showing that
the transfer matrix is not positive-real, and hence the system is not
passive. This is expected given the right half-plane zero in Fig. 7. A

search for �Re; α� pairs that had a positive-real transfer matrix for
K � 0.25 did not find any such pair.
Because our emphasis has been on the choice of inputs and

outputs, it was decided to start with a simple controller design.

Readers may wonder if there are other controller designs that can
render the closed-loop transfer function matrix positive-real (hence a
passive system). These are as follows: constant-gain output feedback

but restricted to strictly proper plants (i.e., D � 0) [24]; linear
dynamic compensators but restricted to strictly proper plants [25];
and linear dynamic compensatorswith no restriction to strictly proper

plants [26]. It is unclear from these paperswhether the problemcan be
solved for nonminimum-phase systems (like the Blasius case), but

[24] shows that, if the problem for a strictly proper plant cannot be
solved with constant output feedback, it cannot be solved using a
dynamic compensator with proper controller transfer function

matrix. If this result extends to proper plants (D not necessarily zero),

Re{      }λ/α

Im{      }λ/α

0.0

0.2

0.4

0.6

0.8

1.0

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

Fig. 7 Root locus plot for Blasius flow (Re � 998, α � 0.308; ×: open-
looppoles, squares: open-loop zeros, solid line: locus of closed-looppoles).

α

α

α

α

α

Re

Re

Re

Re

Re

K=0

K=0.001

K=0.01

K=0.1

K=0.25

stable
unstable

0.0

0.2

0.4

0.6

0.8

102 103 104 105

0.0

0.2

0.4

0.6

0.8

102 103 104 105

0.0

0.2

0.4

0.6

0.8

102 103 104 105

0.0

0.2

0.4

0.6

0.8

102 103 104 105

0.0

0.2

0.4

0.6

0.8

102 103 104 105

Fig. 8 Stability diagrams for Blasius flow.
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then the Blasius case cannot be made positive-real with any proper
dynamic compensator.

VII. Time-Domain Simulations

This section shows results from simulating the behavior of the

system defined by Eqs. (57–59). Taking the external disturbance

d � 0 with nonzero initial conditions x�0� yields

x�t� � exp� �At�x�0� (60)

ν�t� � − �K �Cx�t� (61)

The latter quantity can be used to evaluate thewall-normal velocity

vw� �x; t� usingEq. (31), wherewe opt to evaluate it at �x � π∕�4α�.We

will also determine the streamwise velocity perturbation u� �x; y; t�
using expression (23), where y � −0.975 for the Poiseuille example
and y � 0.344 for the Blasius example. These locations are chosen

because they produce the largest velocity magnitudes. The energy

ratioE�t�∕E�0� is calculated using Eq. (25). It is readily shown using
the results of Sec. IV that

E�t� � 1

2
xT�t�Mx�t�; M � blockdiagfMr;Mrg (62)

The initial conditions x�0� are chosen to provide the largest

transient energy growth [27], i.e., to maximize the quantity

J � sup
T≥0

sup
x�0�

�
E�T�
E�0�

�

� sup
T≥0

sup
x�0�

�
xT�0� exp� �ATT�M exp� �AT�x�0�

xT�0�Mx�0�
�

This leads to a generalized symmetric eigenproblem nested within

a search over T ≥ 0. The maximum eigenvalue for given T yields the

maximum energy ratio E�T�∕E�0�, and the eigenvector correspond-
ing to it yields the optimal initial condition. The corresponding

optimal perturbations uopt�y� � ϵu� �x; y; 0� and vopt�y� � ϵv� �x; y; 0�
can be determined from the eigenvector xopt�t� corresponding to the
largest eigenvalue. It is assumed that the eigenvector is normalized to

�1∕2�xToptMxopt � 1, and ϵ is a scaling. In the results to be presented,
ϵ � 0.001 for the Poiseuille case and ϵ � 0.01 for the Blasius case.
These were selected to yield maximum perturbations on the order of

1% of the maximum value of U�y� (U0). Note that when calculating

velocities u and v, one must use the state vector x̂�t� �
x�t� � B̂2ν�t�.

A. Poiseuille Case

For these simulation results, the following parameters were used:

Re � 10;000, α � 1, K � 0.001. The optimal perturbations are

presented in Fig. 11. The energy ratio E�t�∕E�0�, the wall-normal

velocity vw� �x; t�, and the streamwise perturbation velocity

component u� �x;−0.975; t� are given in Fig. 12. We note that the

wall-normal velocity (the control input) is of the same order as the

initial optimal perturbations. The time constant (time to half-

amplitude) for the energy decay is τ ≈ 7.

B. Blasius Case

For these simulation results, the following parameters were used:

Re � 998, α � 0.308, K � 0.05. The optimal perturbations are

presented in Fig. 13. Note that the dimensionless wall-normal

λ{He[G(i    )]}
_

ω

ω (rad/s)

-0.05

0.00

0.05

0.10

0.15

10-3 10-2 10-1 100

Fig. 10 Eigenvalues of the Hermitian part for Blasius flow; Re � 998,
α � 0.308, K � 0.25.
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Fig. 11 Optimal perturbations for Poiseuille flow;Re � 10;000, α � 1,
K � 0.001, ϵ � 0.001.
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Fig. 9 Eigenvalues of the Hermitian part for Poiseuille flow;
Re � 10;000, α � 1.0, K � 0.001.
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coordinate y has been multiplied by 1.7207876573 so that it

corresponds to the natural boundary-layer coordinate η �
yd

�����������������������
ρU0∕�μxd�

p
, which was introduced in Sec. III.C. The energy

ratio E�t�∕E�0�, the wall-normal velocity vw� �x; t�, and the

streamwise perturbation velocity component u� �x; 0.344; t� are given
in Fig. 14. We note that the wall-normal velocity is of the same order

as the initial optimal perturbations. The time constant for the energy

decay is τ ≈ 20.

VIII. Conclusions

The important property of passivity has been examined in the case

of the boundary-feedback controlled Orr–Sommerfeld equation. A

study of the work-energy balance was used to select the appropriate

sensed variables corresponding to wall-normal velocity actuation.

This corresponded to the second derivative (wall-normal direction) of

the transverse velocity, which can be constructed from pressure

measurements at judiciously chosen points along the wall. Although

this choice of sensing and actuation did not lead to passivity in the

open-loop case, it was demonstrated that a simple negative output

feedback lawproduces a passive closed-loop system.Thiswas shown

to be true for the case of Poiseuille flow when the gain was

sufficiently large. In the case of the Blasius boundary-layer base flow,

the systemwas nonminimum-phase and hence could not be rendered

passive by output feedback. However, for sufficiently large feedback

gains (but not too large), the system is stabilized for a wide variety of

Reynolds numbers and wave numbers using a single feedback gain.

This is also true for Poiseuille flow.

References

[1] Drazin, P. G., and Reid, W. H., Hydrodynamic Stability, Cambridge
Univ. Press, Cambridge, England, U.K., 1981, Chap. 4.
doi:10.1017/CBO9780511616938

[2] Bewley, T. R., “FlowControl: NewChallenges for a NewRenaissance,”
Progress in Aerospace Sciences, Vol. 37, No. 1, 2001, pp. 21–58.
doi:10.1016/S0376-0421(00)00016-6

[3] Joshi, S. S., Speyer, J. L., and Kim, J., “A Systems Theory Approach to
the Feedback Stabilization of Infinitesimal and Finite-Amplitude
Disturbances in Plane Poiseuille Flow,” Journal of Fluid Mechanics,
Vol. 332, No. 2, 1997, pp. 157–184.

[4] Bewley, T. R., and Liu, S., “Optimal and Robust Control and Estimation
of Linear Paths to Transition,” Journal of Fluid Mechanics, Vol. 365,
No. 6, 1998, pp. 305–349.
doi:10.1017/S0022112098001281

u
opt

1.72y

0

5

10

15

0.000 0.005 0.010 0.015 0.020 0.025 0.030

v
opt

1.72y

0

5

10

15

-0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0.00

Fig. 13 Optimal perturbations for Blasius flow; Re � 998, α � 0.308,
K � 0.05, ϵ � 0.01.

time t

E(t)/E(0)

0

100

200

300

400

500

0 100 200 300 400 500

time t

_
v   (x,t)w

-0.10

0.00

0.10

0 100 200 300 400 500

time t

_
u(x,y,t)
(y=0.344)

-0.01

0.00

0.01

0.02

0.03

0 100 200 300 400 500

Fig. 14 Energy ratio, wall-normal velocity, and streamwise velocity
perturbation for Blasius flow;Re � 998, α � 0.308,K � 0.05, ϵ � 0.01,
�x � π∕�4α�.

time t

E(t)/E(0)

0

50

100

150

200

250

0 20 40 60 80 100

time t

_
v   (x,t)w

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0 20 40 60 80 100

time t

_
u(x,y,t)

(y=-0.975)

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

0 20 40 60 80 100

Fig. 12 Energy ratio, wall-normal velocity, and streamwise velocity

perturbation for Poiseuille flow; Re � 10;000, α � 1, K � 0.001,
ϵ � 0.001, �x � π∕�4α�.

1612 DAMAREN

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
T

O
R

O
N

T
O

 o
n 

Ju
ne

 1
6,

 2
01

6 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
17

63
 

http://dx.doi.org/10.1017/CBO9780511616938
http://dx.doi.org/10.1017/CBO9780511616938
http://dx.doi.org/10.1016/S0376-0421(00)00016-6
http://dx.doi.org/10.1016/S0376-0421(00)00016-6
http://dx.doi.org/10.1017/S0022112098001281
http://dx.doi.org/10.1017/S0022112098001281


[5] Bagheri, S., Brandt, L., and Henningson, D. S., “Input-Output
Analysis, Model Reduction, and Control of the Flat-Plate Boundary
Layer,” Journal of Fluid Mechanics, Vol. 620, No. 2, 2009, pp. 263–
298.
doi:10.1017/S0022112008004394

[6] Belson, B. A., Semeraro, O., Rowley, C. W., and Henningson, D. S.,
“Feedback Control of Instabilities in the Two-Dimensional Blasius
BoundaryLayer: TheRole of Sensors andActuators,”Physics of Fluids,
Vol. 25, No. 5, 2013, Paper 054106.
doi:10.1063/1.4804390

[7] Butler, K. M., and Farrell, B. F., “Three-Dimensional Optimal
Perturbations in Viscous Shear Flow,” Physics of Fluids A: Fluid

Dynamics, Vol. 4, No. 8, 1992, pp. 1637–1650.
doi:10.1063/1.858386

[8] Kim, J., and Bewley, T. R., “A Linear Systems Approach to Flow
Control,” Annual Review of Fluid Mechanics, Vol. 39, 2007, pp. 383–
417.
doi:10.1146/annurev.fluid.39.050905.110153

[9] Desoer, C. A., and Vidyasagar, M., Feedback Systems: Input-Output

Properties, Academic Press, New York, 1975, Chap. 6.
doi:10.1137/1.9780898719055.ch6

[10] Youla,D.C., Castriota, L. J., andCarlin,H. J., “BoundedReal Scattering
Matrices and the Foundations of Linear Passive Network Theory,” IRE
Transactions on Circuit Theory, Vol. 6, No. 1, 1959, pp. 102–124.
doi:10.1109/TCT.1959.1086518

[11] Benhabib, R. J., Iwens, R. P., and Jackson, R. L., “Stability of
Large Space Structure Control Systems Using Positivity Concepts,”
Journal of Guidance, Control, and Dynamics, Vol. 4, No. 5, 1981,
pp. 487–494.
doi:10.2514/3.56100

[12] Mamou, M., and Khalid, M., “Finite Element Solution of the Orr–
Sommerfeld Equation Using High Precision Hermite Elements: Plane
Poiseuille Flow,” International Journal for Numerical Methods in

Fluids, Vol. 44, No. 7, 2004, pp. 721–735.
doi:10.1002/(ISSN)1097-0363

[13] Sharma,A. S.,Morrison, J. F.,McKeon,B. J., Limbeer,D. J.N.,Koberg,
W. H., and Kerwin, S. J., “Relaminarisation of ReT � 100 Globally
StabilisingLinear FeedbackControl,”Physics of Fluids, Vol. 23,No. 12,
2011, Paper 125105.
doi:10.1063/1.3662449

[14] Marquez, H. J.,Nonlinear Control Systems, Wiley, Hoboken, NJ, 2003,
Chap. 8.

[15] Meirovitch, L., Analytical Methods in Vibrations, Macmillan, Toronto,
ON, 1967, Chap. 5.

[16] Schlichting, H., Boundary-Layer Theory, 7th ed., McGraw–Hill, New
York, 1979, Chap. 7.

[17] Or, A. C., Speyer, J. L., andKim, J., “State-SpaceApproximations of the
Orr–Sommerfeld System with Boundary Inputs and Outputs,” Journal
ofGuidance,Control, andDynamics, Vol. 33,No. 3, 2010, pp. 794–802.
doi:10.2514/1.46479

[18] Schmid, P. J., and Henningson, D. S., Stability and Transition in Shear
Flows, Springer–Verlag, 2001, Sec. A.7.
doi:10.1007/978-1-4613-0185-1

[19] Orszag, S. A., “Accurate Solution of the Orr–Sommerfeld Stability
Equation,” Journal of Fluid Mechanics, Vol. 50, No. 4, 1971, pp. 689–
703.
doi:10.1017/S0022112071002842

[20] Jordinson, R., “Spectrum of Eigenvalues of the Orr–Sommerfeld
Equation for Blasius Flow,” Physics of Fluids, Vol. 14, No. 11, 1971,
pp. 2535–2537.
doi:10.1063/1.1693363

[21] Grosch, C. E., and Orszag, S. A., “Numerical Solution of Problems in
Unbounded Regions: Coordinate Transforms,” Journal of Computa-

tional Physics, Vol. 25, No. 3, 1977, pp. 273–295.
doi:10.1016/0021-9991(77)90102-4

[22] Grosch, C. E., and Salwen, H., “The Continuous Spectrum of the Orr–
Sommerfeld Equation. Part 1. The Spectrum and the Eigenfunctions,”
Journal of Fluid Mechanics, Vol. 87, No. 1, 1978, pp. 33–54.
doi:10.1017/S0022112078002918

[23] Abdallah, C., Dorato, P., and Karni, S., “SPR Design Using Feedback,”
Proceedings of the American Control Conference, IEEE Publ.,
Piscataway, NJ,, 1991, pp. 1742–1743.

[24] Huang, C. H., Ioannou, P. A.,Maroulas, J., and Safonov,M. G., “Design
of Strictly Positive Real Systems Using Constant Output Feedback,”
IEEE Transactions on Automatic Control, Vol. 44, No. 3, 1999,
pp. 569–573.
doi:10.1109/9.751352

[25] Sun,W., Khargonekar, P. P., and Shim, P., “Solution to the Positive Real
Control Problem for Linear Time-Invariant Systems,” IEEE Trans-

actions on Automatic Control, Vol. 39, No. 10, 1994, pp. 2034–2046.
doi:10.1109/9.328822

[26] Safonov, M. G., Jonckheere, E. A., Verma, M., and Limebeer, D. J. N.,
“Synthesis of Positive Real Multivariable Feedback Systems,”
International Journal of Control, Vol. 45, No. 3, 1987, pp. 817–842.
doi:10.1080/00207178708933772

[27] Farrell, B. F., “Optimal Excitation of Perturbations in Viscous Shear
Flows,” Physics of Fluids, Vol. 31, No. 8, 1988, pp. 2093–2102.
doi:10.1063/1.866609

DAMAREN 1613

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
T

O
R

O
N

T
O

 o
n 

Ju
ne

 1
6,

 2
01

6 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
17

63
 

http://dx.doi.org/10.1017/S0022112008004394
http://dx.doi.org/10.1017/S0022112008004394
http://dx.doi.org/10.1063/1.4804390
http://dx.doi.org/10.1063/1.4804390
http://dx.doi.org/10.1063/1.4804390
http://dx.doi.org/10.1063/1.858386
http://dx.doi.org/10.1063/1.858386
http://dx.doi.org/10.1063/1.858386
http://dx.doi.org/10.1146/annurev.fluid.39.050905.110153
http://dx.doi.org/10.1146/annurev.fluid.39.050905.110153
http://dx.doi.org/10.1146/annurev.fluid.39.050905.110153
http://dx.doi.org/10.1146/annurev.fluid.39.050905.110153
http://dx.doi.org/10.1146/annurev.fluid.39.050905.110153
http://dx.doi.org/10.1146/annurev.fluid.39.050905.110153
http://dx.doi.org/10.1137/1.9780898719055.ch6
http://dx.doi.org/10.1137/1.9780898719055.ch6
http://dx.doi.org/10.1137/1.9780898719055.ch6
http://dx.doi.org/10.1137/1.9780898719055.ch6
http://dx.doi.org/10.1109/TCT.1959.1086518
http://dx.doi.org/10.1109/TCT.1959.1086518
http://dx.doi.org/10.1109/TCT.1959.1086518
http://dx.doi.org/10.1109/TCT.1959.1086518
http://dx.doi.org/10.2514/3.56100
http://dx.doi.org/10.2514/3.56100
http://dx.doi.org/10.2514/3.56100
http://dx.doi.org/10.1002/(ISSN)1097-0363
http://dx.doi.org/10.1002/(ISSN)1097-0363
http://dx.doi.org/10.1063/1.3662449
http://dx.doi.org/10.1063/1.3662449
http://dx.doi.org/10.1063/1.3662449
http://dx.doi.org/10.2514/1.46479
http://dx.doi.org/10.2514/1.46479
http://dx.doi.org/10.2514/1.46479
http://dx.doi.org/10.1007/978-1-4613-0185-1
http://dx.doi.org/10.1007/978-1-4613-0185-1
http://dx.doi.org/10.1017/S0022112071002842
http://dx.doi.org/10.1017/S0022112071002842
http://dx.doi.org/10.1063/1.1693363
http://dx.doi.org/10.1063/1.1693363
http://dx.doi.org/10.1063/1.1693363
http://dx.doi.org/10.1016/0021-9991(77)90102-4
http://dx.doi.org/10.1016/0021-9991(77)90102-4
http://dx.doi.org/10.1017/S0022112078002918
http://dx.doi.org/10.1017/S0022112078002918
http://dx.doi.org/10.1109/9.751352
http://dx.doi.org/10.1109/9.751352
http://dx.doi.org/10.1109/9.751352
http://dx.doi.org/10.1109/9.328822
http://dx.doi.org/10.1109/9.328822
http://dx.doi.org/10.1109/9.328822
http://dx.doi.org/10.1080/00207178708933772
http://dx.doi.org/10.1080/00207178708933772
http://dx.doi.org/10.1063/1.866609
http://dx.doi.org/10.1063/1.866609
http://dx.doi.org/10.1063/1.866609

