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Nomenclature

a = semimajor axis, km
e = eccentricity
e = orbital element vector
F = reference frame
f = true anomaly, rad
H = Hamiltonian
h = specific orbit angular momentum magnitude,

km2 ⋅ s−1 ⋅ kg−1
i = inclination, rad
M = mean anomaly, rad
n = mean motion, rad ⋅ s−1
p = semilatus rectum, km
r = orbit radius magnitude, km
r = position vector, km
t = time
vk = discrete input vector, km
α0 = initial relative orbit phase angle, rad
ρ = relative orbit radius, km
λ = costate vector
θ = true latitude, rad
Φ = state transition matrix
Ω = right ascension of ascending node, rad
ω = argument of periapsis, rad
�·� 0 = derivative with respect to tk
δ�t − τ� = Dirac-delta function

Subscripts

i = initial
k = discrete input index
r = reference
� = Earth related

Superscripts

� = optimal quantity
� = postimpulse quantity
− = preimpulse quantity
��·� = mean value

I. Introduction

S PACECRAFT formation flight is an important mission archi-
tecture for space-based interferometry and astronomical obser-

vation missions. Atmospheric drag and the J2 gravity perturbation,
resulting from the Earth’s oblateness, are the most significant pertur-
bations a formation experiences in low Earth orbit and deleteriously
alter an uncontrolled spacecraft’s relative motion. Control of the
relative motion of the spacecraft, whether it is to mitigate the effect of
perturbations or to reconfigure the formation into a new geometry, is
critical to the success of a formation-flying mission. Tomaximize the
lifetime of themission, minimumΔV control strategies are desirable.
We are interested in the control of spacecraft formations using a

discrete number of impulsive thrusts. This Note presents a new
method for determining the optimal thrust application times for an
impulsive formation keeping and reconfiguration strategy.Necessary
and sufficient conditions for a minimum with respect to impulse
application time for a general continuous, linear, time-varying system
with discrete inputs are presented. The necessary and sufficient
conditions are employed to develop a novel method for determining
the optimal impulsive thrust vectors and application times for
performing spacecraft formation maneuvers.
For the formation flying problem, a number of models exist for the

relative motion of one spacecraft with respect to another. In this work,
the relative deputy spacecraft state is representedwithmean differential
orbital elements δ �e � �ed − �ec, where e � � a e i Ω ω M 	⊤
is the classical orbital element set and subscripts c and d refer to chief
and deputy spacecrafts, respectively. Alternative element sets can also
be used to avoid singularities that occur when e � 0 or i � 0 deg.
Mean orbital elements refer to Brouwer’s [1] transformed set of orbital
elements that include only the secular effects of the J2 zonal harmonic.
The mean differential orbital elements model is advantageous since it
includes the effect of differential J2 and is valid for formations in both
low- and high-eccentricity orbits. For this work, it is assumed that the
spacecraft in formation have similar ballistic coefficients, resulting in
negligible differential drag. Consequently, the effects of differential
drag are not considered.
Previous works that have investigated formation control through

differential orbital element regulation using impulsive thrusts include
[2–7], with [3] specifically considering the optimization of impulse
application times. Primer vector theory was used in [8] to determine
necessary conditions for an optimal, impulsively controlled, trajec-
tory, but due to its use of the Hill–Clohessy–Wiltshire (HCW)
equations, the results are only valid for circular orbits, and they do not
consider the J2 perturbation. We note that, in general, primer vector
theory is applicable to elliptical orbits. Reference [9] showed that
there is a maximum number of impulses that can satisfy optimality
conditions.
Our work differs from previous work in that analytical necessary

and sufficient conditions are presented for the optimal impulse mag-
nitudes aswell as the optimal impulse times. This ismade possible by
the quadratic nature of the function to be minimized. We also em-
phasize that our method has the computational advantage of Newton
root solving vs constrained numerical optimization.

II. Impulse Application Time Optimization

In this section, the calculus of variations is used to derive necessary
and sufficient conditions for a minimum of a performance index with
respect to the times at which the impulsive action is applied.
Consider a general, linear time-varying system with N discrete

inputs
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_x�t� � A�t�x�t� �B�t�
XN
k�1
vkδ�t − tk� (1)

where δ�t� is the Dirac-delta function. Equation (1) can be integrated
over a control interval t ∈ �t0; tf 	 to yield

x�tf� � Φ�tf; t0�x�t0� �
XN
k�1

Φ�tf; tk�B�tk�vk (2)

whereΦ�·; ·� is the state transition matrix of the system.
The control problem we are interested in solving is to transfer our

state from an initial state x�t0� � x0 to some desired terminal state
x�tf� � xr, using N discrete inputs, applied at optimal times in the
control interval. For spacecraft equipped with gimbaled thrusters, the
L1-norm cost

J�vk; tk� �
XN
k�1
kvkk2 (3)

where kvkk2 �
�����������
v⊤k vk

p
, is appropriate for calculating optimal thrust

solutions [7]; however; for general optimal control problems, a
quadratic penalty function often leads to an elegant control law. For
this problem, the following quadratic performance index is chosen:

J�vk; tk� �
1

2

XN
k�1
kvkk22 (4)

Although using Eq. (4) does not result in a minimum fuel strategy,
it does penalize excessive fuel usage in a quadratic fashion, ef-
fectively restricting excessive control effort. Furthermore, Beigelman
and Gurfil [7] argue that this performance index leads to improved
fuel balancing between spacecraft when there are multiple deputies.
To facilitate comparisons with existing control strategies, the per-
formance of the proposed control law is quantified using the L1-
norm cost.
Equation (2) can be rewritten to form the general equality

constraint

0 � c −
XN
k�1
Bkvk (5)

where c � x�tf� −Φ�tf; t0�x�t0� andBk � Φ�tf; tk�B�tk�.Φ is the
state transition matrix of the system, and B�tk� is the system’s input
matrix evaluated at t � tk.
The optimal control problem we wish to solve is

minimize J�vk; tk� �
1

2

XN
k�1
kvkk22

with respect to vk; tk

subject to 0 � c −
XN
k�1
Bkvk (6)

A. Necessary Condition for Extremum

The constrained cost function is

J�vk; tk� �
1

2

XN
k�1
v⊤k vk � λ⊤

�
c −

XN
k�1
Bkvk

�
(7)

where λ is the costate vector. The calculus of variations is applied to
determine necessary conditions for a minimum. Since we wish to
optimize our control input and the times at which the control is
applied, per [10], the differential of the control input d�·� is taken, not
the variation δ�·�. The differential of a functional is defined as

dx�tk� � δx�tk� � x 0�tk�dtk (8)

where �·� 0 � d�·�∕dtk. These two notations are used interchangeably
in this Note. Taking the differential of J yields

dJ �
XN
k�1

�
�v⊤k − λ⊤Bk� dvk − λ⊤

∂Bk
∂tk

vk dtk

�
(9)

The first-order condition for an extremum of J is dJ � 0.
Examining the coefficients of the differentials in Eq. (9) yields

∂J
∂vk
� v⊤k − λ⊤Bk � 0 (10)

∂J
∂tk
� −λ⊤

∂Bk
∂tk

vk � 0 (11)

Solving Eq. (10) yields the optimal thrusts:

v�k � B⊤
k λ (12)

Substituting Eq. (12) into Eq. (5) for vk and solving for λ yields

λ � B−1c (13)

whereB �
P

N
k�1BkB

⊤
k . The optimal impulsive thrust is then given by

v�k � B⊤
kB

−1c (14)

B. Sufficient Condition for Minimum

Equation (11) is only an extremal (necessary but not sufficient)
condition for optimal timings. In this section, we derive a sufficient
condition based on the second differential of the performance index.
The second-order condition for a minimum is d2J ≥ 0.
The second differential of our performance index is

d2J �
XN
k�1

�
dv⊤k dvk − 2λ⊤

∂Bk
∂tk

dvkdtk − λ⊤
∂2Bk
∂t2k

vkdt
2
k

�
(15)

Since the input vectors are prescribed using the optimal control law
in Eq. (12), then thevariations of the input vector δvk are zero, and the
input vector differentials reduce to dvk � v 0kdtk, where

v 0k �
∂Bk
∂tk

⊤
λ�B⊤

k λ
0 (16)

The second differential becomes

d2J �
XN
k�1

�
λ 0⊤Bkv 0k − λ⊤

∂Bk
∂tk

v 0k − λ⊤
∂2Bk
∂t2k

vk

�
dt2k (17)

Taking the derivative of the constraint equation, Eq. (5), with
respect to tk provides the relationship

XN
k�1
Bkv

0
k � −

XN
k�1

∂Bk
∂tk

vk (18)

which, when substituted into Eq. (17), yields

d2J�−
XN
k�1

�
λ0⊤

∂Bk
∂tk
vk�λ⊤

∂2Bk
∂t2k

vk�λ⊤
∂Bk
∂tk
v0k

�
dt2k�

XN
k�1

dMk

dtk
dt2k

(19)

whereMk ≔ −λ⊤�∂Bk∕∂tk�vk � 0 is the necessary condition for an
extremizing time from Eq. (11). Therefore, a sufficient condition on
tk to be a minimizing thrust time is dMk∕dtk ≥ 0, for all t � tk,
k � 1; : : : ; N.
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III. Spacecraft Formation Applications

A. Mean Differential Orbital Element Dynamics

Consider a two-spacecraft formation in whichwewish to control the
relativemotion of one spacecraftwith respect to the other. The reference
spacecraft, towhichwe refer as the chief, is assumed tobe uncontrolled,
while the controlled spacecraft is referred to as the deputy. We use the
mean differential element dynamics to model the relative motion. The
J2 perturbation causes short- and long-term oscillations as well as a
secular change in the osculating orbital elements of a spacecraft. Mean
orbital elements have had the effect of the short- and long-term
oscillations removed so that only the secular change remains. This is
advantageous for formation control, since additional control is not
expended to correct for the short- and long-term oscillations.
Based on the dynamics in [11], the dynamics of the mean orbital

elements of spacecraft with some impulsive control are

�e�t� �A� �e�t�	 �
XN
k�1

∂ϵ� �e�
∂�e�

⊤
B�e�t�	vkδ�t − tk� (20)

where

A� �e�t�	 �

2
666666666666664

0

0

0

− 3
2
J2 �n

�
R�
�p

�
2
cos �i

3
4
J2 �n

�
R�
�p

�
2�5 cos2 �i − 1�

�n� 3
4
J2 �n �η

�
R�
�p

�
2�3 cos2 �i − 1�

3
777777777777775

;

B�e� �

2
6666666666664

2a2e sin f
h

2a2p
Rh 0

p sin f
h

�p�r� cos f�Re
h 0

0 0 r cos θ
h

0 0 r sin θ
h sin i

− p cos f
he

�p�r� sin f
he − r sin θ

h tan i

b�p cos f−2Re�
ahe

b�p�r� sin f
ahe 0

3
7777777777775

(21)

and �η �
�������������
1 − �e2
p

, �p � �a�η2, and �n �
��������������
μ�∕ �a3

p
. B�e�t�	 is the

matrix of Gauss’s variational equations, which relate accelerations in
the spacecraft orbital frame to changes in the orbital elements.
The orbit’s specific angular momentum is h, r is the orbit radius, b

is the orbit’s semiminor axis, f is the true anomaly, θ is the true
latitude, and ϵ�e� is a function that transforms osculating elements to
mean elements and can be found in [11] and is based on Brouwer’s
theory presented in [1]. For the purposes of designing a controller,
∂ϵ∕∂e can be approximated as an identity since off-diagonal terms are
of the order of J2 or smaller [11].
The linearized dynamics of the mean differential orbital elements

of deputy spacecraft controlled by N impulsive thrusts are

δ_�e�t� � _�ed�t� − _�ec�t�

≈ A� �ec�t��δ �e�t� �
XN
k�1
B� �ec�t��vkδ�t − tk� (22)

where

(23)

The nonzero terms of the matrix A� �ec� can be found in [11]. The
linearized term �∂B� �ec�∕∂ �e�δ �e�t� is considered negligible and is not
included in Eq. (22) per [6], where it is concluded that the term
is small and can be neglected for formations in low Earth orbit with
relative positions and velocities of up to 25 km and 40 m∕s,
respectively.
The relative position and velocity of the deputy spacecraft are

given in the local-vertical–local-horizontal (LVLH) reference frame
FH and is illustrated with respect to the Earth-centric inertial
reference frame F I in Fig. 1.

B. Root-Finding Algorithm

For an optimally timed N-impulse maneuver, Eq. (11) must be
satisfied for each impulse time, tk, k � 1; : : : ; N. For the results in
this Note, Newton’s method [12] for root finding is employed to
determine the roots of each optimality condition, Mk�t1; : : : ; tN�.
To employ Newton’s method, we need dMk∕dtk, k � 1; : : : ; N,

and dMk∕dtl, for k � 1; : : : ; N, l � 1; : : : ; N, l ≠ k. It is possible
to derive analytical expressions for these derivatives rather than rely
on their numerical calculation. An expression for the derivative
dMk∕dtk is already known from Eq. (19). We proceed by evaluating
the derivatives needed to calculate dMk∕dtk and dMk∕dtl. The
derivative of the costate vector [Eq. (13)] with respect to an impulsive
application time tk is

dλ
dtk
� −B−1 dB

dtk
B−1c (24)

where

dB
dtk
� ∂Bk

∂tk
B⊤
k �Bk

∂B⊤
k

∂tk
(25)

The derivative of the discrete input vector with respect to the
impulse application time is then

dvk
dtk
� ∂Bk

∂tk

⊤
λ�B⊤

k

dλ
dtk

(26)

The input matrix for the mean differential orbital element
dynamics under consideration is

Bk � Φ�tf; tk�B� �ec� (27)

Themean differential element state transitionmatrix, for the classical
orbital element set, is equal to Φ�tf; tk� � 1�A� �ec��tf − tk�, since
the matrix A� �ec� is nilpotent. The first and second derivatives of Bk
with respect to the impulse time are

∂Bk
∂tk
�

∂Φ�tf; tk�
∂tk

B� �ec� �Φ�tf; tk�
∂B� �ec�
∂tk

(28)

and

Fig. 1 Local-vertical–local-horizontal frame.
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∂2Bk
∂t2k
�

∂2Φ�tf; tk�
∂t2k

B� �ec� � 2
∂Φ�tf; tk�

∂tk
∂B� �ec�
∂tk

�Φ�tf; tk�
∂2B� �ec�

∂t2k
(29)

and for the classical orbital element set, the first and second derivatives
of the state transition matrix with respect to impulse time are
∂Φ�tf; tk�∕∂tk � −A� �ec� and ∂2Φ�tf; tk�∕∂t2k � 0, respectively. The
derivatives of Gauss’s variational equations with respect to impulsive
time can be evaluated using the chain rule, such that

∂B� �ec�
∂tk

� ∂B� �ec�
∂fk

dfk
dtk

(30)

and

∂2B� �ec�
∂t2k

� ∂2B� �ec�
∂f2k

dfk
dtk
� ∂B� �ec�

∂fk
d2fk
dt2k

(31)

where the derivative of the true anomaly with respect to impulse
time is dfk∕dtk � h∕r2 and the second derivative is d2fk∕dt2k �
−2�e sin fk∕�1� e cos fk���dfk∕dtk�2. Note that we have assumed
that all the orbital elements except the true anomaly remain constant.
Lastly, the derivative of one optimal time condition with respect to
another impulse application time, dMk∕dtl, k ≠ l, is

dMk

dtl
� −

dλ
dtl

⊤ ∂Bk
∂tk

vk − λ⊤
∂Bk
∂tk

B⊤
k

dλ
dtl

(32)

IV. Numerical Examples

The following results are obtained from the numerical integration
of the inertial equations of motion,

�r�t� � −
μ

r3
r�t� � fJ2�t; r� �

XN
k�1
vkδ�t − tk� (33)

for the chief and deputy spacecraft. The impulsive control vk is only
applied to the deputy spacecraft.TheJ2 perturbation is theonly applied
perturbation. It is assumed that the chief and deputy spacecraft share a
similar geometry and ballistic coefficient, so differential drag on the
spacecraft at the example altitude of 720 km is negligible.
The optimal solutions presented in what follows were calculated

using the described root-finding method. The second-order con-
ditions were evaluated in each example and indicated the solutions

were local minima. Typically, four to five iterations were required for
the algorithm to converge to a minimizing solution.

A. Formation Keeping

This section demonstrates formation keeping with optimally timed
impulsive thrusts. Two formation examples are considered: a
projected-circular orbit (PCO) formation in low Earth orbit (LEO) and
a PCO-like formation in highly elliptical orbit (HEO). It is known as a
PCO because it inscribes a circular trajectory in the θ–h plane of the
LVLH frame. The initial mean orbital elements for a PCO formation
with a ρ � 1 km radius and an initial phase angle of α0 � 0 deg in
near-polar orbit are given in Table 1.
A two-thrust maintenance strategy is considered, with a control

interval of one orbital period. For the PCO formation in LEO, we find
that, depending on the initial guesses of firing times, f10 and f20 , the
root-finding algorithm converges to one of threeminima, one ofwhich
is a global minimum. The firing times of the three minima, given in
terms of a chief true anomaly, and their L1-norm cost are given in
Table 2.Table 2 also shows that for this example theglobalminimum is
nearly identical to the solution of the analytical, nonoptimized, two-
thrust formation-keeping solution from [13]. Note that the algorithm
determined firing times as times t1 and t2 in units of secondsmeasured
from the beginning of the control interval. The times have been
converted to the chief spacecraft true anomaly at times t1 and t2 in order
to present the times in an orbital mechanics context.
For formations in LEO, where orbit eccentricity is very small, the

orbit radius terms in Gauss’s variational equations remain effectively
constant. For these cases, it is clear from Eq. (21) that the optimal
correction of differential right ascension of the ascending node occurs at
θ � 90∕270 deg. Additionally, the small orbit eccentricity enhances
the effect of along-track thrusts on the differential argument of perigee
and differential mean anomaly, making it inexpensive to affect those
elements relative to affecting the differential right ascension. Conse-
quently, for similarly sized errors in differential right ascension, the
argument of perigee, and themean anomaly, the thrust timing should be
optimized for right ascension. It is for this reason that the optimal times
listed in Table 2 correspond to optimal times for correcting differential
right ascension. For the considered example in LEO, one orbit of
uncontrolled drift results in errors in these elements that are all of order
10−4 rad. Specifically, errors in differential right ascension, the
argument of perigee, and themean anomaly are1.0 × 10−4,4.8 × 10−4,
and −4.7 × 10−4 rad, respectively.
The analytical thrust times are based on the arctangent of the ratio

of the differential right ascension error to the differential inclination
error [13]. For formation keeping, since there is no secular drift in
inclination, the differential inclination error is negligible, and
consequently, the analytically determined thrusts are typically near

Table 1 Initial conditions for the low-Earth-orbit PCO and highly elliptical orbit

formations

Case Chief �ec
�a, km �e �i, rad �Ω, rad �ω, rad �M, rad

LEO 7092.0 0.0020 1.69296 0.0 0.43633 0.0
HEO 42095.7 0.8182 0.87276 0.0 0.0 0.2053

Deputy δ �ei∕r
�a, m �e �i × 10−4, rad �Ω × 10−5, rad �ω × 10−3, rad �M × 10−3 rad

LEO 0.671 0.0 1.2779 6.0038 −35.2436 35.2509
HEO −1.115 0.0 0.4132 0.0 −0.0145 0.0083

Table 2 Optimal timing solution for the formation keeping of both LEO and HEO examples;

analytical, two-thrust solution presented for comparison

Optimally determined firing times Analytically obtained firing times

f10 , deg f20 , deg f�1 , deg f�2 , deg
P
kvkk2 × 10−3, m∕s f1, deg f2, deg

P
kvkk2 × 10−3, m∕s

LEO case

0.135 108.218 62.542 67.536 7.813 — — — — — —

0.218 108.218 65.025 245.163 7.792 65.0 245.0 7.798
215.866 287.782 241.794 248.506 7.812 — — — — — —

HEO case

0.536 188.582 142.538 217.458 4.591 90.0 270.0 94.290
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f� ω � 90∕270 deg. As discussed, this is near optimal for LEO
formations. For formations inHEOs, however, these times cease to be
optimal as the various effects of large eccentricity significantly alter
the behavior ofGauss’s variational equations. Table 2 shows that for a
formation in HEO, but defined by the same ρ and α0 as in the LEO
case, the optimal thrust timing is significantly different from the
analytical times and results in a lower formation-keeping cost. Initial
conditions for the HEO case are given in Table 1.

B. Formation Reconfiguration

Optimal time solutions for formation reconfiguration were
investigated previously by Sengupta et al. [3], whose two-thrust
solutions were obtained using a numerical optimization package that
optimized the L1-norm cost, Eq. (3). In this section, the proposed
optimal time strategy is applied to HEO examples considered in [3].
The chief spacecraft mean orbital elements for the examples are
specified in Table 1.
The initial and target relative trajectories are parameterized by a

specific relative orbit radius ρ and initial phase α0. Two initial
formations are considered, each with a relative radius ρi � 10 km and
one with α0i � 0 deg and the other with α0i � 90 deg. Reconfigura-
tions to new relative trajectories of ρr � 20 kmwith phase angles vary-
ing from α0r � 0 deg to α0r � 90 deg are considered. The reference
elements for both initial formations, as well as the target differential
elements for each formation, are given in Tables A1 and A2.
Figure 2a compares the L1-norm cost of the thrust solutions

calculated by the proposedmethodwith the results of [3]. For cases in
which α0i � 0 deg and α0r ≤ 30 deg, the optimal thrust solutions
for [3] outperform the proposed strategy in terms of the L1 cost. The
cases in which α0i � 90 deg and α0r > 40 deg yield similar
solutions and only differ slightly for α0r < 40 deg.
Thrust application times calculated by the proposed method did

not differ greatly from those presented in [3]. The proposed algorithm
calculated times that were consistently later than those from [3], but

they followed the same trends as α0r was varied. The thrust times for
α0i � 0 deg and α0i � 90 deg are shown in Figs. 2b and 2c, res-
pectively. Our choice of performance index, combinedwith our using
the linear mean element dynamics inside the root-solving algorithm
to determine the optimal times, contributes to the slight differences
between our results and [3].

V. Conclusions

Necessary and sufficient conditions for minimizing impulsive
thrust vectors and application times have been derived, and a novel
method for their calculation has been demonstrated. Given an initial
guess of application times, t0 � �t1; : : : ; tN 	, the proposed method
converges to a local minimum, although not necessarily a global
minimum. Global minimization could be achieved by applying our
method to a series of different initial guesses.
In the context of the formation-flying problem, the presented

optimal timing theory is well suited for application to the linear time-
varyingdynamics ofmeandifferential elements.Although in thisNote,
the classical orbital element set has been employed, which is suitable
for e ≠ 0 deg and i ≠ 0 deg, the optimal timing conditions presented
are applicable to alternative orbital element sets as well. The method
has been shown to yield smaller ΔV costs for formation keeping than
existing nonoptimal strategies, particularly for formations in highly
elliptical orbits. It has also been shown to improve upon previous
optimal formation reconfiguration results, for some cases.
Unlike primer vector theory applied to the Hill–Clohessy–

Wiltshire equations, the proposed method is suitable for formations
in highly elliptical orbits. Primer vector theory, however, can provide
additional information about whether the number of impulses in the
control interval should be increased or decreased, something that the
proposed method does not do.While an upper limit on the number of
optimal thrusts does exist (see Ref. [9]), a necessary or sufficient
condition for an optimal number of thrusts N remains an open
problem.

Formation Phase Angle Phase Angle

Phase Angle

a) Plot of 1-norm cost as α0r
α0 i varies b) Chief true anomaly at thrust application, for = 0 deg

α0 i
c) Chief true anomaly at thrust application, for = 90 deg

Fig. 2 Comparison of the proposed reconfiguration strategy minimizing the L1-norm cost with the results of Sengupta et al. [3].
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Appendix: Reference Orbital Elements

See Tables A1 and A2.
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Table A2 Initial and reference mean differential orbital elements for HEO formation, for

ρi � 10 km, α0i � 90 deg, ρr � 20 km, α0f � 0–90 deg, based on thrust solutions from [3]

α0i∕f , deg δ �a, m δ �e × 10−4 δ�i × 10−4, rad δ �Ω × 10−4, rad δ �ω × 10−4, rad δ �M × 10−4, rad

Initial

90 −5.022 −3.091 0.000 −3.101 0.000 0.000
Target

0 1.053 0.010 4.752 0.013 −4.910 2.870
10 −17.828 −1.073 4.689 −1.068 −4.164 2.833
20 −13.067 −2.127 4.463 −2.114 −3.361 2.701
30 −13.588 −3.072 4.116 −3.094 −2.511 2.471
40 4.717 −2.552 3.640 −3.975 −1.659 2.187
50 −11.690 −2.276 3.058 −4.737 −0.803 1.818
60 1.196 −2.539 2.380 −5.358 0.006 1.422
70 1.680 −2.857 1.627 −5.816 0.758 0.976
80 10.021 −3.056 0.827 −6.096 1.428 0.484
90 −10.910 −3.169 −0.001 −6.190 1.992 0.006

Table A1 Initial and reference mean differential orbital elements for HEO formation, for

ρi � 10 km, α0i � 0 deg, ρr � 20 km, and α0f � 0 − 90 deg, based on thrust solutions from [3]

α0i∕f , deg δ �a, m δ �e × 10−5 δ�i × 10−4, rad δ �Ω × 10−4, rad δ �ω × 10−4, rad δ �M × 10−4, rad

Initial

0 −7.056 −3.961 2.376 0.000 0.000 1.452
Target

0 −8.830 −1.293 5.426 −0.382 −1.205 2.881
10 −14.994 1.540 4.681 −1.067 −0.719 2.852
20 3.984 0.984 4.465 −2.112 0.082 2.717
30 2.434 −1.586 4.133 −3.104 0.935 2.520
40 −22.254 −3.346 3.636 −3.979 1.791 2.246
50 2.476 −4.960 3.054 −4.748 2.643 1.870
60 21.477 −6.637 2.375 −5.365 3.459 1.404
70 9.496 −8.428 1.625 −5.821 4.214 0.962
80 −2.265 −10.29 0.828 −6.105 4.883 0.513
90 13.046 −12.01 0.008 −6.196 5.450 −0.034
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