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Abstract

The design of optimal strictly positive real (SPR) controllers using numerical optimization is considered.

We focus on how to parameterize the SPR controllers being optimized and the effect of parameterization.

Minimization of the closed-loop H2-norm is the optimization objective function. Various single-input

single-output and multi-input multi-output controller parameterizations using transfer functions/matrices

and state–space equations are considered. Depending on the controller form, constraints are enforced

(i) using simple inequalities guaranteeing SPRness, (ii) in the frequency domain or, (iii) by implementing

the Kalman–Yakubovich–Popov Lemma. None of the parameterizations we consider foster an observer-

based controller structure. Simulated control of a single-link and a two-link flexible manipulators

demonstrates the effectiveness of our proposed controller optimization formulations.

& 2011 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
1. Introduction

The passivity theorem is one of the most celebrated results in input–output systems theory. In
general, a passive system is one that does not generate energy and a very strictly passive system
is one that dissipates energy. The passivity theorem states that a passive system and a very
strictly passive system connected in a negative-feedback loop are input–output stable [1]. This is
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an extremely powerful statement in the context of nonlinear control; stability of a nonlinear yet
passive plant is guaranteed via control in the form of a very strictly passive operator.
In the context of passive mechanical systems, inputs are forces and outputs are rates

such as velocity. Flexible structures possess a large number of vibration modes, and in
robotics applications have dynamics that are nonlinear. Flexible robotic manipulators are
known to be passive via collocation of the joint torques and the angular velocity sensors,
that is when the input–output map is between the joint torques and joint angular velocities.
The passivity property for these collocated systems is independent of the system mass,
stiffness, and modeled vibration modes. The noncollocated map between joint torques and
end-tip velocity of a manipulator is not passive, but the map between a modified set of
joint torques and a modified output, known as the m-tip rate, has been shown to be passive,
thus facilitating passivity-based control of the m-tip rate [2].
Passive and very strictly passive systems that are linear and time-invariant (LTI) are closely

related to positive real (PR) and strictly positive real (SPR) transfer functions or matrices [3]. The
robust stability of nonlinear flexible robotic manipulators is assured via the passivity theorem
when the controllers employed are SPR. In particular, spillover instabilities are avoided. In light
of this important stability result, many authors have attempted to formulate rate controllers such
that they are SPR. Benhabib et al. [4] suggested the use of SPR rate controllers to control large
space structures where the controllers considered were not observer-based. Similarly, McLaren
and Slater [5] investigated implementing positive real LQG controllers for the control of large
space structures. Lozano-Leal and Joshi [6] investigated the design of LQG controllers,
constraining the LQG weight matrices such that the resultant optimal controllers remain SPR.
Haddad et al. [7] extend the work of Lozano-Leal and Joshi [6] to include an H1 performance
bound on the closed-loop, again by constraining the appropriate weighting matrices.
The use of numerical optimization algorithms to find optimal SPR controllers has been

considered in various papers. In Germoel and Gapsik [8] the design of observer-based SPR
compensators using convex numerical optimization was considered. Using linear matrix
inequality (LMI) constraints, the H2-optimal control problem was retooled to yield SPR
controllers. The controllers were full order, meaning that the controllers and the plant
model to be controlled have the same number of system states. Shimomura and Pullen [9]
extended the work of Germoel and Gapsik [8], considering the use of iterative algorithms
that overcome bilinear matrix inequality issues within the optimal SPR optimization
formulation. Again, the resultant controllers were observer-based and full order.
In both Germoel and Gapsik [8] and Shimomura and Pullen [9] the observer gains were

those found via the solution to the unconstrained H2-optimal control problem. In
Damaren [10], the optimization of single-input single-output SPR controllers of varying
order was considered. The SPR controllers were not full order, nor observer-based
compensators. Simple inequality constraints in the frequency domain via a transformation
from the s-domain to the z-domain guaranteed SPRness. In Damaren et al. [11], optimal
SPR controllers that approximate a given observer-based, full order controller were found
by solving a quadratic programming problem with linear inequality constraints. In
Henrion [12] a method using LMIs is presented whereby a transfer function can be
designed to be robustly rendered SPR given a Hurwitz denominator polynomial.
Other than the work of Benhabib et al. [4] and Damaren [10], the existing SPR design schemes

(that is, optimal design schemes) yield controllers that are observer-based, and thus have the
same order as the plant. It remains an open question as to whether or not the optimal SPR
controller that solves the H2 control problem is observer-based, or even should be the same
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order as the plant being controlled. Because unconstrainedH2-optimal controllers are observer-
based, it does not mean that optimal SPR controllers must be observer-based. Also, if the
dimension of the plant is large (as is the case with flexible robotic manipulators and structures),
having a controller that is lower order yet still optimal is desirable. With this in mind, we will
explore various controller parameterizations of various orders that are not observer-based,
constrain the controllers to be SPR (in different ways, depending on the parameterization at
hand), and optimize the controllers numerically by minimizing the closed-loop H2-norm of the
system. One of the questions we hope to shed light on is that of controller order. Additionally,
the existing literature often considers the control of a pinned–pinned Euler–Bernoulli beam
[7–10]. In our work, we consider the tip control of single- and two-link flexible robotic mani-
pulators. Recall that the SPR controllers we parameterize and optimize will be rate (velocity)
controllers. To realize position control, the manipulators must also be compensated by position
(i.e., proportional) control. We will include the proportional control gain as a design variable,
which is equivalent to optimally designing the rigid-body mode of the plant in conjunction with
the rate controller.

The outline of the paper is as follows: in the next section we will briefly review the
conditions which ensure that a system is SPR. We then consider flexible manipulator
modeling and tip-based control. Both two- and single-link flexible manipulator models will
be considered. In Section 4 we will state our numerical optimization objective function.
Although we will consider various controller parameterizations and constraint methods in
this paper, we will always be minimizing the closed-loop H2-norm of the system. We then
move onto the main contributions of the paper. In Section 5 we consider three different
SISO controller parameterizations, as well as ways to constrain the controllers based on
the parameterizations. In Section 6 we then modify the parameterizations (and constraints) for
MIMO controller design. Simulated control of the single- and two-link flexible manipulators is
included. We close with a discussion and final remarks.

2. Strictly positive real transfer functions and matrices

Definition 1 (SPR transfer functions). A real, rational, strictly proper transfer function,
g(s), of the complex variable s is SPR if [13]
1.
 g(s) is real for all real s and g(s) is analytic RefsgZ0,

2.
 RefgðjoÞg40 8o 2 ð�1,1Þ,

3.
 limo-1 o2RefgðjoÞg40.
Definition 2 (SPR transfer matrices and the Kalman–Yakubovich–Popov (KYP) lemma).
A real, rational, strictly proper transfer matrix, GðsÞ, of the complex variable s is SPR if [14,15]
1.
 GðsÞ is real for all real s and all elements of GðsÞ are analytic in RefsgZ0,

2.
 GðjoÞ þGH

ðjoÞ40 8o 2 ð�1,1Þ,

3.
 limo-1 o2fGðjoÞ þGH

ðjoÞg40.
Additionally, if GðsÞ ¼CcðsI�AcÞ
�1Bc where fAc,Bc,Ccg is a minimal realization, and there

exist Pc ¼ PT
c 40 and Qc ¼QT

c 40 such that [16,17]

PcAc þ AT
c Pc ¼�Qc ð1aÞ



J.R. Forbes, C.J. Damaren / Journal of the Franklin Institute 348 (2011) 2191–22152194
PcBc ¼CT
c ð1bÞ

then GðsÞ is SPR.

3. Flexible manipulator modeling

We are interested in controlling (using optimal SPR controllers) a single-link mani-
pulator and a two-link manipulator that carry large payloads. Both manipulators possess
flexible links, as shown in Fig. 1. We will briefly review the differential equations describing
the dynamics of each; for a more complete derivation of the dynamics of flexible systems,
refer to Damaren [2], Damaren and Sharf [18].

3.1. Two-link manipulator modeling

The nonlinear dynamic equations of motion for a two-link flexible robotic manipulator
carrying a large payload (and in general any flexible robotic manipulator with more than
two links) can be written as

Mðh,qeÞ €q þ Kq¼ B̂ðsþ w1Þ þ fnonðh,qe,
_h, _qeÞ

where M¼MT40 and K¼KT
Z0 are the mass and stiffness matrices, B̂ ¼ ½I 0�T, and

fnon ¼ ½f
T
non,y fTnon,e�

T captures the nonlinear inertia forces stemming from centrifugal and

Coriolis accelerations. The generalized coordinates, joint torques, and disturbance torques

are q¼ ½hT qTe �
T, s¼ ½t1 t2�T, and w1, respectively, for the two-link model being considered,

where h¼ ½y1 y2�T are the columnized joint angles, and qe are the columnized elastic
coordinates associated with discretization of flexible links [19].
We will be concerned with the control of the robot tip velocity _qm ¼ 1 ¼ ½vx vy�

T where

_qm ¼ Jyðh,qeÞ
_h þ mJeðh,qeÞ _qe

Here, Jy is the rigid Jacobian and Jyðh,0Þ maps joint rates to spatial velocities if the
manipulator was rigid, and Je is the elastic Jacobian that maps the elastic rates to the tip
rate as if the joints were locked. The mapping between the joint torques and the actual tip
rate is not passive. In Damaren [20] it was shown that for manipulators carrying large
payloads the modified input–output mapping between u¼ J�Ty s and the m-tip rate,

_qm ¼ Jyðh,qeÞ
_h þ mJeðh,qeÞ _qe ¼ m _qm ¼ 1 þ ð1�mÞJyðh,qeÞ

_h ð2Þ
Fig. 1. Single-link and two-link flexible manipulators.
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is passive when 0rmo1. This modified input–output mapping is necessary in order to
implement the passivity theorem. The true-tip rate is captured by m¼ 1, which as
previously mentioned, when combined with u does not represent a passive map. In general,
m should be picked to be as close to one as possible, thus having _qm closely resemble the
true-tip velocity. The numerical simulation to be presented in future sections will use
m¼ 0:8, thus ensuring that the mapping u- _qm is passive.

In the future, we not only implement rate control, but also position control in the form
of proportional control. From the definition of _qm in Eq. (2), by assuming Jyðh,qeÞ ¼

Jyðh,0Þ we can approximate qm as qm6mqm ¼ 1 þ ð1�mÞFrðhÞ. FrðhÞ is the rigid forward
kinematics map, as defined in Damaren [19].

Our control objective is to have the two-link manipulator previously discussed follow a
pre-specified tip trajectory, qd . We can define qd and _qd based on an equivalent rigid robot
joint trajectory, mapped through the forward kinematics, qd ¼ FrðhdÞ. In future sections
we will employ the following desired joint trajectory in order to calculate qd and _qd :

hd ¼ 10
t�ta

tb�ta

� �3

�15
t�ta

tb�ta

� �4

þ 6
t�ta

tb�ta

� �5
" #

ðhb�haÞ þ ha ð3Þ

where ha is the initial joint configuration, hb is the final joint configuration, and tb�ta is
the time allotted for the manipulator to move from joint configuration ha to joint
configuration hb. The manipulator is initially at rest at ha, and is to stop at hb. It is
important to realize that this is only used to provide a smooth desired tip trajectory, qd

[11]. It is not expected that the joint angles will follow the desired joint trajectory.
In most practical applications control would be a combination of feedforward and

feedback control, s¼ sff þ sfb. Feedforward control is essentially a method by which a portion
of the nonlinear dynamics present in a system are canceled out. In the case of a two-link
flexible manipulator carrying a massive payload, an effective feedforward is simply the rigid
inverse dynamics of the system:

sff ¼Myyðhd ,0Þ €hd�fnon,yd

where fnon,yd
is the joint angle partition of fnon evaluated at the desired trajectory. Our feedback

control will be a combination of position and rate control:

sfb ¼�J
T
y ½Kpðqm�qdÞ þ Gð _qm� _qdÞ�

where Kp represent proportional control and G is a system operator representing a linear SPR
controller with transfer matrix GðsÞ. Our two-link manipulator simulations presented in future
sections will employ both feedforward and feedback control.

3.2. Single-link manipulator modeling

The linear equations of motion for a single-link flexible robotic manipulator carrying a
large payload can be written as

M €q þ Kq¼ b̂ðt1 þ w1Þ

where M¼MT40 and K¼KT
Z0 are the mass and stiffness matrices, and b̂ ¼ ½1 0�T. The

generalized coordinates, joint torque, and disturbance torque are q¼ ½y1 qTe �
T, t1, and w1,

respectively, where qe are the columnized elastic coordinates.
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As in the two-link case, we are concerned with the m-tip rate:

_rm ¼ Jy
_y1 þ mJe _qe

where 0rmo1. The input–output map between u¼ J�1y t1 and y¼ _rm is passive for large
payloads. The numerical simulations presented in future sections will use m¼ 0:8, again
ensuring a passive map between u and y. When m¼ 1, the output is the true-tip rate, but the
map between u and _rm ¼ 1 is not passive (that is, the transfer function is not PR).
Like the two-link manipulator, the feedback controller will be composed of position and

rate control. Unlike the two-link case, our control objective will be as that of regulation, rather
than tracking; the single-link manipulator tip position and velocity will be regulated to zero.

4. Optimization objective function

Both the single-link and linearized two-link manipulator differential equations can be
cast into a general state–space form:

_x ¼Axþ B1wþ B2u

z¼C1xþD12u

y¼C2xþD21w ð4Þ

where x 2 Rn are the system states (composed of the number of joint angles, the elastic
coordinates, and both their rates), u 2 Rm is the control input, y 2 Rm are the noisy system
measurements (that being _rm þ w2 in the SISO case or _qm þ w2 in the MIMO case), z 2 Rq

is the regulated output (that being the actual tip position and rate, rm ¼ 1 and _rm ¼ 1 or

qm ¼ 1 and _qm ¼ 1) and w¼ ½wT
1 wT

2 �
T, w 2 Rl represents system disturbances/noise. We will

assume that:
1.
 ðA,B1Þ is controllable and ðC1,AÞ is observable;

2.
 ðA,B2Þ is controllable and ðC2,AÞ is observable;

3.
 DT

12C1 ¼ 0 and DT
12D1240;
4.
 D21B
T
1 ¼ 0 and D21D

T
2140.
Consider a general SPR controller u¼�Gy in state–space form:

_xc ¼Acxc þ Bcy

u¼�Ccxc

Combining the (linearized) plant and controller yields the closed-loop system dynamics:

_x

_xc

" #
¼

A �B2Cc

BcC2 Ac

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Azw

x

xc

" #
|fflffl{zfflffl}

xzw

þ
B1

BcD21

" #
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Bzw

w

z¼ C1 �D12Cc

� �|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Czw

x

xc

" #
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Our optimization objective function will be minimization of the closed-loop H2-norm of the

(linearized) system while varying design variables associated with the parameterization of an

SPR controller. The closed-loop H2-norm can be calculated via

J 2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr BT

zwPBzw

q
The matrix P¼ PT40 is found by solving the Lyapunov equation

PAzw þ AT
zwP¼�C

T
zwCzw

The optimization design variables and constraints (that is, the constraints enforcing
the controller to be SPR) are parameterization dependent, and will be discussed in the
following sections in the SISO and MIMO cases. Also, note that we will be altering the
controller parameterization; the performance index remains static (i.e., the weights B1, C1,
D12, D21 do not change). In fact, the performance index we have chosen yields a traditional
H2 controller that is not SPR, and hence not robust to mass and stiffness perturbations.

Although we are concerned with the design of rate controllers which will be constrained
to be SPR, prior to designing such a controller the plant must be prewrapped with
position-based proportional control. This corresponds to feeding back the m-tip position,
rm or qm, and does not alter the passivity of the system. The proportional control gain,
Kp40 in the SISO case, and Kp ¼KT

p40 in the MIMO case, will be included as design
variables during the optimization process.

There are many numerical optimization methods available, however we elect to use a
Sequential Quadratic Programming (SQP) formulation. For a detailed discussion of an
SQP optimizer, interested readers may consult [21]. Briefly, an SQP method is a gradient-
based optimization procedure that utilizes the Karush–Kuhn–Tucker (KKT) conditions to
ensure that both the optimum solution has been found, and the constraints have been
satisfied.

Because an SQP optimizer is gradient-based, there is no guarantee that the optimization
will converge to a global optimum. Therefore, the solutions presented in the forthcoming
sections are not necessarily global optima, but rather local optima which are dependent on
the initial conditions of the numerical optimization algorithm.

5. Optimization of SISO SPR controllers to control a single-link flexible manipulator

In this section, we will explore different approaches to SISO controller parameterization;
designing the form of the controller, specifying the design variables, and enforcing the
constraints. As previously mentioned, the control objective is regulation of the tip position

and rate to zero. All simulations to follow will use ½rð0Þm ¼ 1 _rð0Þm ¼ 1�
T ¼ ðp=4Þ 1

� �T
(m,m/s)

as initial conditions. The physical values of the single-link manipulator length, mass, tip-mass,
hub inertia, etc. used during optimization and simulation are given in Table 1.

5.1. Third-order SPR controller with deterministic constraints

Marquez and Damaren [22] have developed a formulation such that given a strictly
proper transfer function with a denominator polynomial that is Hurwitz, necessary and
sufficient conditions are formulated that, when met, will always yield a numerator
polynomial that creates an SPR transfer function. The formulation allows the numerator



Table 1

Single-link manipulator physical properties.

Length L 1 (m)

Link mass m 1 (kg)

Modulus of elasticity E 70 � 109 (Pa)

Link height h 75 (mm)

Link base width w 2 (mm)

Link second moment of area I ¼ 1
12

hw3 5 � 10�11 (m4)

Hub mass mhub 1 (kg)

Hub mass moment of inertia Jhub 3:125� 10�4 ðkg m2Þ

Tip mass mtip 1.5 (kg)
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polynomial to be expressed as a function of the denominator polynomial coefficients and
three additional constrained variables: k1, k2, and k3 (in the third-order case).
Consider a third-order controller; the controller input is _rm (not the tip position, rather

the m-tip rate), and the output is the modified joint torque, u¼ J�1y t1. We will assume that
the denominator polynomial renders the transfer function Hurwitz, and in general this is
straightforward to impose as a numerical optimization constraint. A simple Hurwitz or
Routh–Hurwitz check will determine if the poles of the transfer function

gðsÞ ¼CcðsI�AcÞ
�1Bc ¼

n2s2 þ n1sþ n0

s3 þ as2 þ bsþ c
ð5Þ

are in the open left-half complex plane. Following the developments of Marquez and
Damaren [22], the numerator polynomial coefficients are defined as functions of k1, k2 and
k3 as follows:

n2 ¼
bck1 þ ck2 þ ak3

abc�c2
, n1 ¼

c2k1 þ ack2 þ a2k3

abc�c2
, n0 ¼

k3

c

In order for the controller to be SPR (and thus satisfy Definition 2.1) the following inequa-
lities must be met:

k1Z0, k24�2
ffiffiffiffiffiffiffiffiffi
k1k3

p
, k340:

Given the above SISO controller form and parameterization above, the numerical
optimization problem is posed as follows:

Design variables: x¼ ½a b c k1 k2 k3 Kp�;

Constraints: RefliðAcÞgo0 for i¼ 1, . . . ,n, k1Z0, k24�2
ffiffiffiffiffiffiffiffiffi
k1k3

p
, k340, Kp40;

Objective function: Closed-loop H2-norm: J 2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr BT

zwPBzw

q
.

Notice that the proportional control gain is a design variable as well. Additionally, we
are optimizing an order three transfer function, and the controller is not constrained to be
observer-based.

5.1.1. Optimization results

The objective function was minimized to a value of J 2 ¼ 2:8293. The convergence
tolerance was set to 1 � 10�8. The Bode diagram of the optimized SPR controller is shown
in Fig. 2. The simulated system response of the true-tip position and velocity is shown in
Fig. 3. Note, although we are measuring and feeding back the m-tip position and velocity
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(to the proportional and SPR controllers, respectively), we are interested in the true-tip
position and velocity response.
Notice in Fig. 2 that the compensator has high gain at low frequency, and subsequently

rolls off at high frequency. Such a response is desirable in practice for two reasons. First,
high gain at low frequency realizes excellent tracking and regulation. Second, roll off of the
controller at high frequency ensures that high frequency disturbances and signal noise are
rejected.
Referring to Fig. 3, the SPR controller clearly regulates the manipulator tip position and

velocity to zero. In the bottom portion of Fig. 3, we can see that at approximately 0.25 s
the tip is vibrating slightly, but the vibration is quickly suppressed, and then the
manipulator smoothly approaches the desired position. There is some, but still a minimal
amount of overshoot. The manipulator comes to rest after approximately 7 s.
Recall that we seek to optimally design SPR controllers because they are robust to

modeling errors associated with, for example, the flexible manipulator mass distribution.
In Fig. 3 we also show the system response when the tip mass has been increased 1.5 times.
This change will alter the natural frequencies of the system, and can be considered a rather
large modeling perturbation. From Fig. 3 we can clearly see that the system is regulated to
zero, although there is a slight increase in the amount of overshoot and settling time.
5.2. Variable-order SPR controller with frequency domain constraints

In the previous section we optimized a third-order controller. We want to be able to
optimize a controller that is strictly proper (so that the controller rolls off at high frequency),
but of any order. Consider the following controller parameterization, often called a ‘‘Ritz’’
parameterization:

gðsÞ ¼
XN

n ¼ 1

hn

ðs�aÞn�1

ðsþ aÞn
ð6Þ

where N is a finite positive integer, a40, and hn 2 R. Similar controller parameterizations can
be found in Polak and Salcudean [23], Hu et al. [24], Boyd and Barratt [25]; in particular, the
parameterization in Eq. (6) was also used in Damaren [10] where a was held fixed and equal
to one.
Within a numerical optimization setting, the controller parameterization given in Eq. (6)

is attractive for many reasons. First, when a is held fixed, the transfer function g(s) is a
linear function of the coefficients hn. Second, the expansion in Eq. (6) is dense in H2 as
N-1, which is to say, any real rational strictly proper transfer function in H2 can be
uniformly approximated arbitrarily close by using the expansion in Eq. (6).
Using the parameterization presented in Eq. (6), a controller will be optimized in the

following way. First, a controller of order n will be optimized, then the design space will be
expanded and a controller of order nþ1 is optimized. Consider the simplified illustrations
in Fig. 4: a controller of order one (denominator polynomial of order 1) will be optimized
and some optimal h1, a, and Kp values will be found. Next, a controller of order two will be
optimized; the initial conditions for this next optimization will be the optimal values of h1, a,
and Kp from the previous optimization run and h2 will be approximately zero (1 � 10�14).
This ensures that the optimizer is ‘‘starting’’ with a feasible solution and then finding the
optimal solution in the new design space.
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Let us now return to Definition 2.1, the frequency domain requirements for a transfer
function to be SPR. The first of the SPR criteria is straightforward to impose as a
numerical optimization constraint. As mentioned in Section 5.1, a Hurwitz or Routh–
Hurwitz check will determine whether the poles of the transfer function (of any order) are
in the open left-half complex plane. The second SPR condition, that is RefgðjoÞg40, will
be checked at N logarithmically spaced points within each decade over o 2 ð0,1Þ. The last
of the SPR criteria is not specifically enforced as a constraint during the optimization. One
might think that this is a significant problem, however it is not, for it has been proven that
a weak SPR transfer function (i.e., condition 3 is not satisfied) can stabilize a passive
system. Additionally, it is highly unlikely that the optimal values of the design variables
would render the transfer function weak SPR.

Given the variable-order SISO controller parameterization, the numerical optimization
problem is posed as follows:

Design variables: x¼ ½h1 h2 . . . hn a Kp�;
Constraints: RefliðAcÞgo0 for i¼ 1, . . . ,n, RefgðjoÞg40 8o 2 ð0,1Þ;

Objective function: Closed-loop H2-norm: J 2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr BT

zwPBzw

q
.

5.2.1. Optimization results

The optimization was first started with a controller of order one (i.e., gðsÞ ¼ h1=ðsþ aÞ)
and the order was increased to a fifth order controller. The final value of the objective
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function for the optimized fifth-order controller was J 2 ¼ 2:7925. The convergence
tolerance was set to 1 � 10�8. The optimization results are tabulated in Table 2.
The evolution of the controller frequency response and the closed-loop system responses

as the controller order is increased and optimized from n¼1 to 5 is quite interesting. From
the Bode diagrams in Fig. 5 we can see how the controller gradually morphs from a simple
low pass filter to a more complicated and better controller. The controller is ‘‘better’’ in
that, when looking at the system response in Fig. 6, there is less overshoot and the settling
time decreases as the controller order increases and is optimized. What is interesting is that
the optimization formulation has no direct constraint on the tolerable rise time, amount of
overshoot, settling time, etc., but at the same time the system response improves as the
controller increases in complexity and is optimized.
Table 2

Variable-order SISO SPR controller optimization evolution.

n J 2 Kp a h1 h2 h3 h4 h5

1 2.9226 2.1565 67.5816 147.0903 – – – –

2 2.8656 3.0366 51.5546 154.7238 �6.8859 – – –

3 2.8497 3.1642 57.5076 157.9529 5.6230 36.9750 – –

4 2.8043 3.5218 33.1138 124.4998 69.1437 64.4481 �5.0075 –

5 2.7925 3.4857 42.2523 122.7959 48.5093 53.7782 16.5547 47.2096
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Note that as the controller order is increased from n ¼ 1 to 3,4,5, the gain and phase of
the n ¼ 3,4,5 controllers start to take on a similar shape. This can be attributed to the
controllers attempting to dampen the higher order modes of the flexible structure. From
Fig. 6, it can also be seen that some sort of ‘‘law of diminishing returns’’ is coming into
effect. The system response as controlled by the n¼4 and n¼5 order controllers is almost
identical. Note, the order of the controller is less than the order of the plant being
controlled (the plant has an order of six).

Comparing the results of our first controller parameterization discussed in Section 5.1
(i.e., the controller in Eq. (5)) to the present parameterization (i.e., the controller in
Eq. (6)), we see that the controller frequency response presented in Fig. 2 is not all that
different than the controller frequency responses presented in Fig. 5. The DC gain of each
controller is approximately 10 dB, and each controller begins to roll off above 100 rad/s.
These characteristics indicate that each controller has converged to a similar minimum.
Clearly, however, they have not converged to the same (local) minimum because the
frequency responses of the controllers are not identical. The major difference between the
two controllers is the gain and phase response between 1 and 100 rad/s. The controller in
Fig. 2 has a gain and phase response that changes only a moderate amount compared to
the gain and phase responses of the n ¼ 3, 4, 5 controllers in Fig. 5. This difference is most
likely manifested in the different amount of overshoot seen in Figs. 3 and 6. The system
controlled by the controller given in Eq. (5) has more overshoot and a longer settling time
than the system controlled by the Ritz controller given in Eq. (6). This indicates that
having a rich controller parameterization is better. Similarly, if we compare the objective
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function values, we see that the variable controllers of order four and five yield objective
function values that are reduced more than the controller of Section 5.1. Again, this
indicates that having a richer controller parameterization is better.

5.3. Full-order SPR controller with state–space constraints

In the previous optimization formulations, the SPR controllers were presented and
parameterized in the form of transfer functions. It is possible to describe the controller we
wish to optimize in a state–space form. Naturally, a different controller parameterization
should be developed in order to exploit the unique characteristics of an SPR controller in
state–space form.
Recall that the single-link flexible manipulator can be represented in the state–space

form of Eq. (5). We would like to design an SPR controller of the form

_xc ¼ ðA�B2KcÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Ac

xc þ Ke|{z}
Bc

y

u¼� Kc|{z}
Cc

xc ð7Þ

Note, this controller is not an observer-based one. In order to design an SPR controller we
must somehow design Kc and Ke. Let us consider the design of Kc first. From H2-control
theory, recall the optimal regulator formulation (i.e., the Linear Quadratic Regulator
(LQR) formulation): given the weighting matrices Q¼QT40 and R¼RT40, optimal
state feedback of the form

u¼�Kcxc

can be found via

Kc ¼R�1BT
2X

by solving the Algebraic Riccati equation for X. In the traditional H2-optimal control
formulation the matrices Q and R are specifically defined, however we will parameterize Q
and R in order to design Kc to be part of an optimal SPR controller. For simplicity we will
specify Q and R to be diagonal, that is diagfQg and diagfRg, where the diagonal elements
are design variables in the optimization process. Note that in the SISO case, diagfRg is one
variable, r.
With a design strategy for Kc found, Ke should be designed to render the controller in

Eq. (7) SPR. Recall the definition of an SPR controller in state–space form (Definition
2.2): a controller of the form presented in Eq. (7) is SPR if it is controllable, observable, all
eigenvalues of Ac have real parts less than zero and matrices Pc andQc can be found which
satisfy Eqs. (1a) and (1b). We have already specified Cc ¼Kc and Ac ¼A�B2Kc. Given
Qc40, Bc, which is equivalent to Ke, may be found by first solving the Lyapunov equation
in Eq. (1a) for Pc, then solving Eq. (1b) for Bc. As a result, the controller in Eq. (7) will be
SPR. For simplicity, Qc40 will be restricted to be diagonal during the optimization
process.
Note that in the previous optimization formulations, the order of controllers that

successfully stabilized the plant were all less than the order plant itself. Using the above
controller form and parameterization, the order of the controller is equal to that of the
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plant. This form of SPR controller is comparable to that of an H2-optimal controller, but
it is not an observer-based compensator.

Given the state–space SISO controller parameterization, the numerical optimization
problem is posed as follows:

Design variables: x¼ ½diagfQg r diagfQcg Kp�;
Constraints: diagfQg40 , r40 , diagfQcg40 , Kp40;

Objective function: Closed-loop H2-norm: J 2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr BT

zwPBzw

q
.

5.3.1. Optimization results

The objective function was minimized to a value of J 2 ¼ 2:8049. The convergence
tolerance was set to 1 � 10�8. Shown in Fig. 7 is the Bode diagram of the optimized state–
space SPR controller. Following in Fig. 8 is the system response as controlled using the
optimized SPR controller.

In Fig. 7 we can clearly see a rather large change in gain and phase just below 100 rad/s.
The controller is attempting to dampen the higher order mode of the flexible link. If we
compare the controllers from Sections 5.1 and 5.2 to the controller optimized in this
section, we see some similarities. Again, the DC gain of each controller is approximately
10 dB, and each controller rolls off after 100 rad/s. The controller frequency response
shown in Fig. 7 is similar to that of Fig. 5 (for the n ¼ 3, 4, 5 cases) in that the gain and
phase of the controllers change somewhat aggressively. This gain and phase change can be
attributed to damping the higher frequency modes of the flexible structure.
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Fig. 7. Bode diagram of state–space SISO SPR controller.
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6. Optimization of MIMO SPR controllers to control a two-link flexible manipulator

Previously in Section 5 three different SISO SPR controller parameterizations, along with the
corresponding SPR constraints were developed. In this section we would like to extend the
optimization formulations to MIMO systems, to control the nonlinear two-link flexible
manipulator previously discussed. All two-link manipulator simulations presented in the
following section will adhere to the following joint trajectory: the initial position and velocity of

the tip is qm ¼ 1 ¼ ½1,0�
T m and _qm ¼ 1 ¼ ½0,0�

T m=s. The final position and velocity of the tip is

qm ¼ 1 ¼ ½0:8365,�0:4830�
T m and _qm ¼ 1 ¼ ½0,0�

T m=s. This motion corresponds to initial joint

angle of ha ¼ ½01,01�
T and final joint angles of hb ¼ ½�151,�301�

T. Linearization of the two-link
manipulator dynamics is about hb. The physical values of the two-link manipulator link lengths,
link masses, tip-masses, etc. used during optimization and simulation are given in Table 3.

6.1. Diagonal-decoupled SPR controller with deterministic constraints

We will start by constructing a very simple controller composed of third-order transfer
functions:

GðsÞ ¼CcðsI�AcÞ
�1Bc ¼

n2,11s2 þ n1,11sþ n0,11

s3 þ a11s2 þ b11sþ c11
0

0
n2,22s2 þ n1,22sþ n0,22

s3 þ a22s2 þ b22sþ c22

2
6664

3
7775 ð8Þ



Table 3

Two-link manipulator physical properties.

Length L1, L2 0.5 (m)

Link mass m1, m2 0.3375 (kg)

Modulus of elasticity E1, E2 70� 109 ðPaÞ

Link height h1, h2 50 (mm)

Link base width w1, w2 4 (mm)

Link second moment of area I1 ¼ I2 ¼
1
12

hw3 5:2083� 10�10 ðm4Þ

Link 1 payload mass (Motor 2) mtip,1 0.5 (kg)

Link 1 payload inertia Jtip,1 5� 10�4 ðkg m2Þ

Link 2 payload mass mtip,2 2.5 (kg)

Link 2 payload inertia Jtip,2 2:5� 10�3 ðkg m2Þ
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This controller is a diagonal-decoupled controller; the two control outputs u1 and u2 are
not affected by the inputs y2 and y1, respectively. A similar controller to the one above was
used in Forbes and Damaren [26], however, in Forbes and Damaren [26] the poles of each
transfer function were shared.

As in Section 5.1, we will employ the simple parameterization proposed Marquez and
Damaren [22]. The controller will be SPR if the two transfer functions within G(s) are SPR
independently. Strictly positive realness of the transfer functions is guaranteed if the
denominator polynomials are Hurwitz, and the numerator polynomial coefficients satisfy

n2,ii ¼
biiciik1,ii þ ciik2,ii þ aiik3,ii

aiibiicii�c2ii
, n1,ii ¼

c2k1,ii þ aiiciik2,ii þ a2
iik3,ii

aiibiicii�c2ii
, n0,ii ¼

k3,ii

cii

where the parameters k1,ii, k2,ii and k3,ii satisfy

k1,iiZ0, k2,ii4�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1,iik3,ii

p
, k3,ii40, i¼ 1,2

Given the above MIMO controller form and parameterization, the numerical optimization
problem is posed as follows:

Design variables: x¼ ½a11 b11 c11 a22 b22 c22 k1,11 k2,11 k3,11 k1,22 k2,22 k3,22 Kp,11 Kp,12 ¼

Kp,21 Kp,22�;

Constraints: RefljðAcÞgo0 for j ¼ 1, . . . ,n, k1,iiZ0, k2,ii4�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1,iik3,ii

p
, k3,ii40 for

i¼ 1,2, Kp ¼KT
p40;

Objective function: Closed-loop H2-norm: J 2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr BT

zwPBzw

q
.

6.1.1. Optimization results

The objective function was minimized to a value of J 2 ¼ 5538:3361. The convergence
tolerance was set to 1� 10�5. In Fig. 10 the system response while implementing
feedforward and feedback control is shown. The frequency response of the controller
transfer matrix GðjoÞ is shown in Fig. 9. The maximum singular value of GðjoÞ versus

frequency is plotted in the upper part of Fig. 9,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lfGT
ð�joÞGðjoÞg

q
where lð�Þ is the

maximum eigenvalue. The minimum Hermitian part of GðjoÞ versus frequency is plotted in

the lower part of Fig. 9, 1
2
lfGT
ð�joÞ þGðjoÞg where lð�Þ is the minimum eigenvalue. The

maximum singular value of the transfer matrix is representative of gain. For an SPR
transfer matrix, the minimum Hermitian part must be strictly positive. As such, singular
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value and minimum Hermitian part plots provide a graphical means to quickly assess gain
and the SPR nature of GðjoÞ, and in a way are an MIMO version of Bode diagrams.
The frequency response of the controller GðsÞ is rather simple; the controller adds

damping at approximately 4 rad/s. The system response is satisfactory, although there is a
residual vibration in the x direction of the manipulator (as shown in the velocity plot of
Fig. 10), which is undesirable.

6.2. Variable-order MIMO SPR controller with frequency domain constraints

Consider the following transfer matrix:

GðsÞ ¼CcðsI�AcÞ
�1Bc ¼

XN

n ¼ 1

hn

ðs�aÞn�1

ðsþ aÞn

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

gðsÞ

Z

where

Z¼ZT ¼
Z11 Z12

Z21 Z22

" #
40

The above transfer matrix will be SPR provided g(s) is SPR and Z remains positive definite.
The controller will be optimized in the same manner as the controller optimization presented
in Section 5.2, stopping when the order of the denominator polynomial of g(s) is five.
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Fig. 10. Two-link flexible manipulator system response as controlled via diagonal-decoupled SPR controller.
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Given the above MIMO controller form and parameterization above, the numerical
optimization problem is posed as follows:

Design variables: x¼ ½a h1 h2 h3 h4 h5 Z11 Z12 Z22 Kp,11 Kp,12 Kp,22�;

Constraints: RefljðAcÞgo0 for j ¼ 1, . . . ,n, RefgðjoÞg40 8o 2 ð0,1Þ, Z¼ZT40,

Kp ¼KT
p40;

Objective function: Closed-loop H2-norm: J 2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr BT

zwPBzw

q
.

6.2.1. Optimization results

The objective function was minimized to a value of J 2 ¼ 99:0982. The convergence
tolerance was set to 1 � 10�8. The values of the objective function and the parameter
values a and hn as n is increased from one to five are listed in Table 4. The frequency
response of GðsÞ is shown in Fig. 11. The system response of the two-link manipulator is
shown in Fig. 12.

In Table 4, notice that the objective function steadily decreases from J 2 ¼ 166:2870 to
99:0982 as n is increased from one to five. This informs us that a higher order controller is
more effective at minimizing the closed-loop H2-norm. Also notice that as the manipulator
comes to its final set-point there is a some overshoot in both the x and y directions, but
then the manipulator gently stops moving, and there is a very little residual vibration of the



Table 4

Variable-order MIMO SPR controller optimization evolution.

n J 2 a h1 h2 h3 h4 h5

1 166.2870 104.4510 124.5664 – – – –

2 143.5452 105.7637 124.4330 31.9724 – – –

3 136.0341 105.4809 137.5570 59.7808 2.1758 – –

4 105.7945 105.4107 121.6304 47.2990 70.6868 62.5926 –

5 99.0982 105.4056 122.2541 49.1886 72.1574 60.6160 31.1785
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Fig. 11. Iterative SPR controller frequency response.
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manipulator tip. This controller performs better than the diagonal-decoupled controller
developed in Section 6.1.
If we compare the frequency responses of the diagonal-decoupled SPR controller of

Section 6.1 and the variable-order SPR controller developed in this section, they are not
similar. The gain of the variable-order SPR controller is quite high at low frequency, unlike
the diagonal-decoupled controller. Additionally, the variable-order SPR controller has
high frequency dynamics that are active, while the diagonal-decoupled SPR controller has
rolled off. The simple diagonal-decoupled SPR controller, although optimal given the
parameterization, has reach a local optimum within the design space. On the other hand,
the variable-order SPR controller has found a ‘‘better’’ local optimum owing to its richer
parameterization. In general, having a higher order and richer parameterization is better.
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Fig. 12. Two-link flexible manipulator system response as controlled via variable-order MIMO SPR controller.
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6.3. Full-order MIMO SPR controller with state–space constraints

The previous MIMO optimization formulations have relied heavily on the form and
parameterization of transfer functions used to create transfer matrices. As in Section 5.3, it
is possible to formulate the MIMO controller optimization problem using a state–space
controller form and appropriate parameterization.

Recall that the nonlinear two-link flexible manipulator differential equations can be
linearized and expressed in the state–space form of Eq. (4). We would like to design an
MIMO SPR controller of the form presented in Eq. (7). We will use the procedure
presented in Section 5.3 to create Kc and Ke such that the controller is SPR. We refer to
this controller as a full-order controller because, unlike the previous optimization formula-
tions, the controller we seek to optimize and the linearized plant have the same number of
states. Recall that this controller is not observer-based.

Given the state–space MIMO controller parameterization, the numerical optimization
problem is posed as follows:

Design variables: x¼ ½diagfQg diagfRg diagfQcg Kp,11 Kp,12 Kp,22�;

Constraints: diagfQg40 , diagfRg40 , diagfQcg40 , Kp ¼KT
p40;

Objective function: Closed-loop H2-norm; J 2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr BT

zwPBzw

q
.



J.R. Forbes, C.J. Damaren / Journal of the Franklin Institute 348 (2011) 2191–22152212
6.3.1. Optimization results

The objective function was minimized to a value of J 2 ¼ 80:9141. The convergence
tolerance was set to 1 � 10�8. The frequency response of the controller GðsÞ created via the
state–space parameterization and optimization is shown in Fig. 13. Shown in Fig. 14 is the
system response of the two-link manipulator.
The frequency response of the full-order SPR controller is quite interesting. Notice

that the gain is high, but not as high as, for example, the variable-order SPR controller
gain in Fig. 11. Also, note that the full-order SPR controller begins to roll off above
104 rad/s, unlike both the diagonal-decoupled (Section 6.1) and variable-order SPR
controllers.
The performance of the closed-loop system as controlled by the full-order SPR

controller is quite good. There is only a moderate amount of overshoot at the end of the
manipulator maneuver, with no residual vibration. The full-order SPR controller outper-
forms the diagonal-decoupled SPR controller significantly. However, the performance of
the variable-order and full-order SPR controller is essentially the same.
Recall that each controller parameterization is used within an optimization scheme that

minimized the closed-loop H2-norm given a particular set of weights (i.e., the B1, C1, D12,
D21 matrices). Interestingly, the present parameterization is able to attain a smaller closed-
loop H2-norm as compared to the diagonal-decoupled and variable-order parameteriza-
tions. This is due to the fact that the full-order parameterization allows for controllers that
are of greater order (compared to the other parameterizations).
15

20

25

30

35

40

M
ax

im
um

 S
in

gu
la

r V
al

ue

10−2 10−1 100 101 102 103 104
0

5

10

15

20

25

M
in

im
um

 H
er

m
iti

an
 P

ar
t

ω (rad/s)

10−2 10−1 100 101 102 103 104

ω (rad/s)

Fig. 13. Full-order SPR controller frequency response.
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Fig. 14. Two-link flexible manipulator system response as controlled via SPR controller parameterized using

state–space techniques.
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7. Discussion and closing remarks

In this paper, we have presented various SPR controller parameterizations to be used within
a numerical optimization setting. Our optimization objective function is to minimize the
closed-loop H2-norm of the system while varying design variables associated with an SPR
controller. The constraints ensuring SPRness are parameterization dependent. We use the
optimized SPR controller to control single- and two-link flexible manipulators.

The first SISO controller parameterization involved a simple third-order transfer function as
the controller (Section 5.1). The form of the transfer function allowed the results of Marquez
and Damaren [22] to be used to enforce SPRness. In the second SISO controller para-
meterization (Section 5.2) a variable-order controller was optimized between order one and
order five. Frequency domain constraints ensured that the controller would be SPR. The third
SISO controller parameterization tackled SPR controller design using the controllers state–
space matrices (Section 5.3). Simple constraints on three weighting matrices along with the
KYP Lemma ensured the controller be SPR. All the optimization results were successful with
respect to finding an optimal SISO SPR controller. All formulations produced good closed-
loop system responses. The closed-loop H2-norm using the optimized SPR controllers was all
very close, in the range of J 2 ¼ 2:8. This tells us that the three controller parameterizations are
almost all equal with respect to finding the global optimum for an SPR controller.
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The first MIMO controller optimized consists of two decoupled controllers (Section 6.1).
The second MIMO controller considered consisted of a variable-order SPR transfer
function times a positive definite matrix (Section 6.2). The last MIMO formulation utilized
the state–space form of a controller along with the KYP Lemma to enforce the SPR
constraint (Section 6.3). The controller parameterization that led to the lowest value of the
objective function was the full-order formulation (Section 6.3). The objective function was
minimized to a value of J 2 ¼ 80:9141, as compared to J 2 ¼ 5538:3361 for the diagonal-
decoupled controller, and J 2 ¼ 99:0982 for the variable-order controller. These results can
be explained via the number of design variables; the state–space parameterization is the
richest, having a design space with a greater number of design variables to be used during
the quest to find an optimal SPR controller. Also, considering that the diagonal-decoupled
controller could only minimize the closed-loop H2-norm to a value two orders of
magnitude greater than both the variable-order and full-order controller, it is evident that
parameterization is just not rich enough. In particular, having a diagonal structure is not
ideal, as the plant being controlled is not decoupled. To summarize, within a numerical
optimization the controller parameterization should be rich.
As mentioned in the Introduction, finding optimal SPR controllers is a worthwhile pursuit

in the context of passivity-based control. The majority of the formulations in the literature
yield controllers which are observer-based, and of the same order as the plant [5–9]. In our
work we have explored various controller parameterizations that can be used within an
optimization framework to find optimal SPR controllers. In particular, our contributions are
(1) the parameterizations themselves, along with the associated constraints (in both SISO and
MIMO forms), (2) clearly showing that SPR controllers that are not observer-based can
effectively control interesting systems such as flexible manipulators, and (3) showing (through
numerical studies) that richer controller parameterizations are more effective at minimizing the
closed-loop H2-norm (our performance criteria). Indeed, we have not definitively shown that
(through a proof, for example) the optimal SPR controller that solves theH2 control problem
is observer-based, but the evidence put forth in this paper suggests that an optimal SPR
controller does not have to be observer-based. Similarly, we have not definitively shown that
the controllers should have the same order as the plant, however it seems that the controller
parameterization should be very rich, and have an order very close to the order of the plant.
In conclusion, the development and exploration of controller parameterizations to be

used within a numerical optimization setting where the closed-loop H2-norm is minimized
has been interesting. Although the plants controlled in this paper were robotic systems, the
formulations presented in this paper can be applied to any passive/PR plant. In the future
we will explore other optimization objective functions and constraints, such as the
minimization of the closed-loop H1-norm subject to the constraint that the compensator
must be SPR.
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