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ABSTRACT : The concept of strictly positive real (SPR) transfer functions is examined. It is shown 
that commonly used frequency domain conditions for SPR do not satisfy some of the most basic 
elements of the definition and properties of this class of functions. For a given Hurwitz polynomial 
a, a degree n, we find the set of all possible polynomials b that make the ratio b/a SPR, and (i) 
proper, and (ii) improper. Further, we show that the set of all possible bs can be parametrized in 
terms of, respectively, n+ 1 and n+2 numbers that satisfy a simple constraint. Copyright © 1996 
Published by Elsevier Science Ltd 

L Introduction 

In science and engineering, a theory is usually developed expanding the notion of a 
few simple concepts and definitions which are relevant to a particular problem. In 
systems and control, one of the most fundamental concepts encountered over the past 
40 years is that of strictly positive real (SPR) transfer functions. The concept has its 
origins in the notion of positive real (PR), introduced in circuit theory. Positive realness 
in turn, was the fundamental tool used in the development of the theory of synthesis 
of passive networks. See for example (1, 2) and the references therein. 

In control theory, SPR transfer functions played a fundamental role in the solution 
of the Lur'e problem (3) and more recently in the stability of adaptive systems, and the 
control of passive plants, such as flexible manipulators and large space structures with 
colocated sensors and actuators. In the latter case, it is possible to show that any 
(possible nonlinear) passive plant is always stabilized by any SPR compensator. Notice 
the formidable robustness implications of this statement. The result implies that, 
assuming colocation, an SPR compensator will ensure closed loop stability, no matter 
how large the uncertainty in the plant parameters. 

Even with all of the research conducted during the last 40 years, SPR is possibly the 
concept that has originated more errors and confusion in the history of circuit and 
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systems theory. Indeed, more often than not, the definition of SPR is incorrectly stated 
in technical papers. Errors usually arise from the fact that many authors choose to 
state the definition of  SPR using frequency domain conditions. This is a very tempting 
option. However, care must be exercised in this case since it is very easy to overlook 
some of the conditions that must be satisfied by an SPR function. 

The objective of  this paper is 2-fold. In the first place, we state the definition of an 
SPR transfer function, and clearly state necessary and sufficient conditions for SPR in 
the frequency domain. Our intention here is to clarify some obscure points in these 
concepts which seem to have been distorted and erroneously used over the years. Once 
the definition has been clarified, we study the following problem: given a polynomial a 
of degree n, and with all of  its roots in the left half of  the complex plane, find the set 
of all possible polynomials b that make the rational function b/a SPR. Moreover, we 
show that i fa  and b have the same degree, then the set of all possible b that make b/a SPR 
can be parametrized in terms of  n + 1 real numbers which satisfy a simple constraint. In 
the case where b has order n + 1 (i.e. b/a is improper), n + 2 real numbers are necessary. 
This is an important problem with applications in several areas, and constitutes an 
extension of  a previous article by the authors (4). The same problem was considered 
there with restriction to the strictly proper case (i.e. b had degree n -  1). The present 
extensions are nontrivial, particularly in the improper case. 

II. SPR Transfer Functions 

In this section we state the definition of  SPR and formulate equivalent conditions in 
the frequency domain. In the sequel, ~ denotes the set of polynomials of nth degree 
in the indetermined variable s, with coefficients in the field ~ of real numbers. ~ 
represents the linear space of  n-tuples in ~ .  

Definition 1: A rational function H(s) = b(s)/a(s), where b(s)~ ~m and a(s)~ ~ is 
said to be SPR if for some e > 0, Re[H(s-e)] >1 0 for all Re[s] > 0. It is straightforward 
to show that this implies that I m - n [  ~< 1. 

Remarks: This definition of SPR was introduced by J. H. Taylor in Ref. (5) and 
shown to be equivalent to the so-called Kalman-Yakubovich Lemma.~ The original 
motivation comes from network theory: an SPR function corresponds to the driving 
point impedance of a dissipative network, i.e. a network composed of resistors, lossy 
inductors and lossy capacitors. 

We now define three different classes of functions, with increasing order of  
complexity. 

Definition 2: Consider a rational function H(s)= b(s)/a(s), where b ( s ) ~ m  and 
a(s) ~ ~n. Then, H(s) is said to be in the class ~ if and only if 

(i) a is a Hurwitz polynomial (i.e. all of  its roots lie in the open left half of the 
complex plane) 

(ii) Re[H(jo~)] > 0, Vow[0, ~ ) .  

t Only strictly proper transfer functions were discussed in Ref. (5). 
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Definition 3: H(s) is said to be weak SPR if it is in the class .~ and 

(i) the degrees of  the numerator and denominator polynomials differ by, at most, 
one 

(ii) if O(b) > O(a), then 

l i rn [H(jco)]/ j to > 0 (1) 

where t?(b) denotes the degree of  the polynomial b, and similarly for a. 

Definition 4: H(s) is said to be SPR if it is weak SPR and in addition, if O(b) ~ O(a), 
then one of the following conditions must be satisfied 

(i) if t3(b) < c3(a), then 

(ii) if (?(b) > O(a), then 

l im oo2Re[H(jw)] > 0 

lim Re[H(jco)] > O. 
t o ~ c ~  

(2) 

(3) 

Remarks: The equivalence between Definitions 1 and 4 was established by Iannou and 
Tao in Ref. (6). Whenever confusion seems likely, SPR transfer functions will be 
referred to as strong SPR. Notice that according to Definitions 3 and 4, if O(a) = ~(b) 
there is no distinction between weak and strong SPR transfer functions. Moreover, if 
t?(b) = t3(a), then H(s) is SPR if and only if it is in the class .~. 

Before we discuss some of  the differences among these definitions, we prove Lemma 
1 below. This lemma is often loosely quoted as being satisfied by SPR transfer functions, 
even when SPR functions are defined to be the functions in the class .~. Our proof  and 
examples will clearly show that this is however not the case. 

Lemma 1: Consider a rational function H(s)=b(s)/a(s), where b(s)=bmsm+ 
bin_is ~-~ + • + b 0 ,  a(s) = s~+a,_~s "-l +'"+ao.  We have 

(i) H(s) is weak SPR if and only if H -  1 (s) is weak SPR 
(ii) H(s) is SPR if and only if H- l (s )  is SPR. 

Proof'. Assume H(s) is weak SPR. It is clear that if the numerator and denominator 
of H(s) differ by, at most, one, then the same is true of  H-l(s). Assume now that 
H(jco) = A + j B .  Then, H - l ( j c o ) = ( A - - j B ) / ( A 2 + B 2 ) .  Therefore, the real parts of  
H(jco)  and H-~(jco)  have the same sign and then, property (ii) and Definition 2 is 
satisfied by H(jco)  if and only if it is satisfied by H -  ~ (jco). 

We now show that b(s) must be Hurwitz. By the principle of  the argument we know 
that if C~ is the image under H(s) of  the standard D contour, defined as the closed path 
which is the boundary of  the right half of  the disk of  radius R ---, oe with center zero, 
then Cl satisfies the encirclement condition 

N = Z -  P (4) 

where N is the number of  encirclements of C~ about the origin of the complex plane in 
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the counterclockwise direction when s moves around D in the same direction. Z and 
P = 0 are the number of  zeros and poles of H(s) enclosed by D. If  H(s) is weak 
SPR, then Re[H(jco)] > 0, V co, so as s moves along the imaginary axis from - 
towards ~ following the D contour, Re[H(j~o)] remains positive. Let ~ denote the 
semicircle Re a°, -~r/2 ~< 0 ~< re/2 of  the D contour. Taking R sufficiently large, and 
recalling that the degrees of  a and b differ by at most one, H(s) approximates one of 
the following functions: (i) H(s) = 0 (if a(b) < ~3(a)); H(s) = b,/a, (if O(b) = 0(a)); and 
H(s) = bins (if d(b) > O(a)). 

It is clear that in the first case Re[H(s)] = O, ¥ s ~ 7. Similarly in case (ii) 

lira H(jo~) = b./a. = lirn H(ReJ°), O~ [ - ~ / 2 ,  re/2] 

which cannot be less than zero because H(s) is weak SPR. Therefore, since a, = 1 > 0 
and b, # 0 by assumption, we must have b,/a, = b, > 0. Finally in case (iii) we have 
lim,o~[H(jog)]/j~o = bin. Thus bm> 0 by Eq. (1) in Definition 3. It follows that 
Re[H(s)] > O, V s ~ .  It is then clear that in all cases we have Re[H(s)] >~ O, Vse~,  and 
then the number of  encirclements of  the origin by CI is N = 0. Also, since P = 0, Eq. 
(4) implies that Z = 0 and b(s) is Hurwitz. To complete the proof  we must show that 
when d(a) > O(b), H-l ( jo~)  satisfies Eq. (1). To this end we notice that since a(s) and 
b(s) are Hurwitz, their coefficients ai and bj have all the same sign for all i = 1, . . . ,  n, 
j = 1 . . . . .  n -  1. Thus a0 > 0, since a, = 1 by assumption. Also H(0) = a(O)/b(O) = 
ao/bo > 0, since H(s) is weak SPR. Thus, b0 > 0, and consequently bj > 0 for all j = 
1 . . . . .  n -  1. It follows that l imo,~H(jog)/ jo9 =bm ~ > 0. This completes the proof  of 
part (a). 
(b) We must consider separately three cases, namely: (i) 8(b) = 0(a); (ii) d(b) < 0(a); 
and (iii) O(b) > O(a). Case (i) is straightforward since in this case H(s) is SPR if and 
only if it is weak SPR (see the remarks after Definition 5). Consider now case (ii) and 
suppose without loss of  generality that n is even. We have 

b~_ls ~-1 + " " + b 0  
n ( s )  = 

s ' + a .  ~s "-~ + . . . + a o  

and 

l i m  oJ2Re[H(j~o)] = a, lb, l - -b , -2 .  (5) 

Similarly 

H-1 (S)  -=- 
sn +a. -~s  "-~ + ' " + a o  

b , - l s  ~-l + ' " + b o  

and 

lim Re[H-L (jog)] = 
an_lbn 1-bn_2 

b~ 
(6) 

Therefore comparing Eqns (5) and (6) we conclude that H(s) satisfies Eq. (2) if and 
only if H- l (s )  satisfies Eq. (3), and the result follows. Case (iii) is entirely similar. 
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Remarks: Many authors define SPR functions to be what we have called functions in 
the class 2. The problem with this definition is that without the stronger assumptions 
made in Definition 3, the behaviour of H(s) for values of s in the right half of the 
complex plane is not captured by H(jog). In particular, condition (i) in Definition 3 
ensures that H(s) is positive real. Consider the following examples. 

Example 1. Let H(s) = Hi(s)+H2(s). Thus 

Re[n(fio9)] = Re[HL (2"~0)] + Re[H2 (2"~0)]. 

Now assume that Hi(s) = 1/(s+ 1) and H2(s) = s 3. We have, Hz( jw)  = - j ~ o  3, and so 
Re[Hz(j~o)] = 0, It follows that 

Re[H(jog)] = Re[H, (jog)] > 0. 

Thus, H(s)e.~. However, H(s) = (s4+s3+ 1)/(s+ 1) which is nonminimum phase (i.e. 
its numerator has roots in the right half of the complex plane), and improper with 
relative degree 3. It follows that H(s) does not represent the driving point impedance 
of a dissipative network and it should not be labeled SPR. 

Example 1 may seem artificial because the function H(s) is improper with relative 
degree 3. This was done to show the need for assumption (i) in Definition 3. 

Example 2. Let H(s) = Hi(s)+ H3(s), and assume that H~(s) is as in example 1, and 
H3(S ) = --S. Thus, H3(jog)= - j ~ o  and again Re[H3(jm)] = 0. We have H(s)e.~, 
H(s) = (--sZ--s+ 1)/(s+ 1) which is also nonminimum phase. However, the relative 
degree is in this case 1. Even though H(s)~.~ [or H(s) is SPR, according to some 
authors], it is clear that no passive network can be constructed with a driving point 
impedance H(s). Note that condition (ii) in Definition 3 is not satisfied. 

It is clear from the previous examples that the inverse of a function in the class .~ is 
not necessarily in the same class. The necessity of assumptions (i) and (ii) in the 
frequency domain conditions for SPR was pointed out by Ioannou and Tao in Ref. 
(6). See also (5) for some historical remarks regarding this condition and its relation 
with the Kalman-Yakubovich lemma, and (7) for further discussion of the importance 
of this condition in the stabilization of a class of nonlinear systems containing feedback. 

III. Case I: d (b) = d (a) 

In this section we solve the following problem: given a Hurwitz polynomial a E ~", 
find the set of all possible polynomials b e ~  that make b/a SPR. Moreover, we 
show that this set can be parametrized using n + 1 real numbers that satisfy a simple 
constraint. 

We first define the notation used throughout this section. Given a Hurwitz poly- 
nomial a e ~", we define the following sets 

~$ = {b ~ ~ :  H(s) = b(s)/a(s) ~ .~}. 

5°p = {b~:~:n = m}. 

Given Hurwitz polynomials a, ~ is the set of all polynomials b e ~m, for arbitrary m, 
that make the rational function b/a belong to the class .~, and 5~p is the subset of 
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consisting of  all polynomials b e ~ that satisfy 0(b) = a(a). It is then immediate from 
Definitions 2 4  that 5ep consists of  the set of  all polynomials b E N that make b/a SPR 
and proper. 

Part (i) of  the following theorem is taken from Ref. (4). We will outline the proof  
for the sake of completeness, and because it is fundamental in the rest of  the paper. 

Theorem I 
Let a ~ ~n be Hurwitz. We have 

(i) b(s) e ~ "  belongs to the set ~ if and only if there exist functions u(s), v(s), r(s), 
and k(s), such that 

b(s) = a(s)r(s) + [u(s) -v (s )]k(s )  (7) 

where u(s) and v(s) are, respectively, even and odd polynomials which satisfy 
the Bezout identity 

ae(s)u(s) + ao(S)V(S) = 1. (8) 

Here ae and ao denote the even and odd parts of a(s). The function r(s) is an 
arbitrary odd polynomial, and k(s) is an even polynomial that satisfies the 
inequality k( jo))  > 0, V o) e 9t. 

(ii) For  given b(s), the even polynomial k(s) is uniquely determined. 
(iii) For  each b(s), the polynomial r(s) is uniquely determined by k(s). 

Proof'. (i) Partitioning a and b into its even and odd parts we have: 

b(s) b ( s ) a ( -  s) [beae - boao] + [aebo - beao] 
H(s) - a(s) - a ( s ) a ( - s )  - 2 2 (9) 

ae -- ao 

Here [b,a~- boa °] and [aebo- b~ao] are the even and odd parts of the numerator of the 
right hand side of Eq. (9), and since the denominator [a~-ao  z] is always real and 
positive, H(s) ~ ~ if and only if 

b e (s)ae (s) -- bo (S)ao (s) -= k(s) (1 O) 

for an even polynomials k(s) which satisfies k ( j e ) )  > O, ~/ o) e 91. 
Given k(s), all possible solutions of Eq. (9) can be obtained by adding the homo- 

geneous solution and a particular solution. It is immediate that beh = aor, and bob = aer 
satisfy the homogeneous equation be(s)a~(s)-bo(s)ao(S) = 0 for any polynomial r(s). 
To find a particular solution we use the fact that the even and odd parts of  a(s) 
are coprime [see Lemma 1 in (4)], and thus there exist an even function u and 
an odd function v that satisfy Eq. (8). Multiplying Eq. (8) by k(s) we obtain 
ae(S)U(s)k(s) + ao(S)V(s)k(s) = k(s), which, when compared to Eq. (10), yields 

beds)  = u(s)k(s) ,  b o p ( S )  = - v ( s ) k ( s ) .  (1 l)  

It follows that 

bo(s) = bob(s) + bop(S) = ao(s)r(s) + u(s)k(s)  
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bo (s) = bob (s) + bop (s) = ae (s)r(s) - v(s)k(s) 

and the result follows by forming b --- be-bo.  See Ref. (4) for further details. 
(ii) This is immediate from Eq. (10). Suppose that there exists two polynomials k~(s) 

and k2(s) that satisfy this equation. Then, we have k t - k 2 = ( b o a e - b o a o ) -  
beae-(boao) = 0. Thus, kl = k2.  

(iii) Given a(s) ~ 0, suppose that there exist two polynomials r~(s) and r2(s) which 
satisfy Eq. (7) for the same k(s). We have 

b(s) = a(s)r, (s) + [u(s) - v(s)]k(s) = a(s)r2 (s) + [u(s) - v(s)]k(s). 

Thus, a(s)[rl(s)-r2(s)] = 0, and using the fact that the set of  real polynomials is an 
integral domain (i.e. it has no zero divisors), we have [r~- r:] = 0, and so r~ = rz. 

Definition 6: Let h(s) ~ ~"  be defined by 

h ( s ) = h n s ~ + h , _ l  s" l + . . . + h o .  

With this polynomial we will associate the vector of coefficients h ~ ~"+~, given by 

/z= [h, h, 1 " '"  ho] Tl • 

Theorem H 
Given a Hurwitz polynomial a, of  degree n/> 2, the set Sap c ~ can be parametrized 

using n + 1 real numbers k~, k2 . . . . .  kn+ 1, which are chosen such that 

n+l 
k(s) = y~ ( - 1 ) "  's2~i-'~k, > 0, (12) 

i=1 

k(jog) > 0, V~o ~> 0 (13) 

but are otherwise arbitrary. Moreover, denoting a(s) = s" + a,_ ~s"- ~ +.  • • + ao, and 
b(s) = b ,s"+b,  ~s"-~ + . . .  +bo, then any member of  5ep can be determined by 

6 =  .~-- 1 ]~ (14)  

where 6 and k are the associated vectors of  coefficients of  the polynomials b(s) and 
k(s), and the matrix X has the form: 

X =  

1 0 0 0 . . .  0 

- a , _ 2  a,_l  - 1  0 . . .  0 

--an 4 a n - - 3  - - a n - - 2  a n -  I . . .  0 

- : : : : 

ao - - a l  a 2  - - a 3  • • • 

0 0 - a o  al • .. - a 2  

0 0 0 0 . . .  ao 

(15) 

Proof'. Given a ( s ) =  s~+a ,_ lS~-~+. . .+ao ,  any b~Sap has the form b ( s ) =  n,s~+ 
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b,_ is ~- 1 + . . .  +b0. We can separate a and b into their even and odd parts. Substituting 
for ae, ao, be and bo in Eq. (10), and matching powers o f s  leads to the identity 

t?=x6 

where G and k are the associated vectors of coefficients of the polynomials b(s) and 
k(s), and Xis the square matrix defined by Eq. (15). By using similarity transformations, 
the matrix X can be converted into the Sylvester matrix originated by the polynomials 
ae and ao, (8). It then follows from the fact that ae and ao are coprime for any Hurwitz 
polynomial, that Xis nonsingular, and so invertible. Thus, it is clear from Eq. (10) that 
if k(" ) satisfies the constraint k(jco) > 0, V co E 9t, then the polynomial b(s) originated 
by Eq. (14) belongs to 6ep. 

To complete the proof we must show that this equation generates the entire set 6ep. 
To see this notice that according to Theorem 1, every polynomials b e 6ep c ~ can be 
written in the form given by Eq. (7) with u( ' ) ,  v( ' ) ,  r ( ' ) ,  and k ( ' )  defined as in 
Theorem 1. Moreover, given k( ' ) ,  each polynomial b e 6ep is uniquely determined by 
r(s). Assume now without loss of generality that n is even. Since k(s) satisfies Eq. (10), 
we have O(k)= 2n. Also, O(u)= n - 2 ,  and O(v)= n - 1 ,  as can be easily seen by 
application of the Euclidean algorithm (9). Thus, we have O[(u-v)k] - -3n-1 .  It 
follows from Eq. (7) that O(b) = n if and only if t~(r) = 2 n -  1, and r(s) is chosen so 
that the coefficients of the first 2 n -  1 powers contained in a(s)r(s) are cancelled with 
the corresponding coefficients of (u-v)k .  That such a polynomial r(s) exists can be 
shown using the constructive procedure used in Ref. (4), or by noticing that, by part 
(ii) of theorem 1, any b(s) e ~p uniquely determines k(s), given by Eq. (10). Thus, since 
SPp c ~ ,  part (i) of theorem 1 implies the existence of an odd polynomial r(s) that 
produces the desired b(s). 

IV. Case II: ¢?(b) > d(a) 

In this section we show that, given a Hurwitz polynomial a ~ ~", the set of all possible 
b E ~,+1 that make b/a SPR can be parametrized using n + 2 real numbers with simple 
constraints. We also show how to separate the set of weak and strong SPR, More 
explicitly, we will obtain weak SPR functions as a special case of the set strong SPR, 
by forcing one of the n + 2 parameters to be identically zero. 

Given a Hurwitz polynomial a ~ ~", we define the following two sets 

~fTa I = { b ~  "+ l  ~ ~ :  l i r n  [H(jco)]/ j f~o --- ~ > 0} 

~'~1 = { b ~ / / ' ~ l :  lina Re[H(j~o) l > 0}. 

In words: " ~ ' ~ I  is the set of all polynomials b s ~"  that satisfy: (i) b/a belongs to the 
class .~; (ii) t3(b) = O(a)+ 1; and (iii) satisfy the condition lim~o~[H(je~)]/jco = ~ > 0. 
E q u i v a l e n t l y ,  "~//'~.,Q° I is the set of all polynomials b that make b/a improper and weak 
SPR. Similarly, 6e~ is the subset of "#/'b°~ that makes b/a (strong) SPR. 

Before we present the main result of this section, we notice that the approach taken 
in Section III is not feasible here. To see this, notice that if 3(b) = n +  1, while O(a) = n 
we have, a(s)= s"+a,_~s~-~+...+ao, and b(s)= b,+lS~+~+b,s"+ .. '+b0. Suppose 
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now tha t  n is even. In  this case 0(a¢) = n, O(ao) = n -  1, O(b¢) = n, and t3(bo) = n + 1. 
Thus,  f rom Eq. (10), O(k) = O(b~)+O(a~) = O(bo)+O(ao) = 2n. Similarly, if  n is odd,  
then O(a¢) = n -  1, O(ao) = n, O(b~) = n +  I, and  0(bo) = n, and so, once again  Eq. (10) 
shows tha t  t3(k) = 2n. Expand ing  the p roduc t  b ,ao-boao  = k and match ing  coefficients 
we obtain:  

k.+,] [b.+l l 
= Y 

1 o 

r = [ w  X]. (16) 

Here  X i s  given by Eq. (15) and We~R "+~ is the co lumn matr ix  of  the fo rm 

W = [ - a n _ ~  a , -3  " "  al 0 " . 0 ]  r 

if  n is even, and 

(17) 

W =  [--a._l a . - 3  " '"  ao 0 " " 0 ]  r (18) 

if  n is odd.  Therefore ,  in this case the mat r ix  Y is rectangular  and  consequent ly  not  
invertible. It  follows tha t  the bgs are not  uniquely determined by the k~s. 

The  following theorem shows that  a pa ramet r i za t ion  o f  all imprope r  SPR transfer  
funct ions with a c o m m o n  d e n o m i n a t o r  can still be found.  

Theorem I I I  

Given  a Hurwi tz  po lynomia l  a e ~" ,  n t> 2, the set 5PI can be paramet r ized  using n + 2 
real numbers  k~, k2 . . . . .  k ._ ~, q~ chosen such that  

n+l  

k(s)  = ~ ( -  1)" - ' sZ( ' - ' )k i  > 0, (19) 
i= l  

k(j~o)  > O, V 09 >~ 0 (20) 

q5 > 0 (21) 

Moreover ,  denot ing a(s) = s" + a , _ S  - j  + . . . + a  °, and but  are otherwise arbi t rary .  
b(s) = b.+ 1 Sn+l + b.s" + " - +  bo, then any  m e m b e r  o f  ~/~1 c a n  be writ ten as follows 

6 = ~ [ 1  d, d, , . . .  d0] T (22) 

where the d~s, i = 0 . . . . .  n are the coefficients o f  the vector  associated with the po lynomia l  
d(s) = d,s" + d,_ ~s"- ' + . . .  + do, defined by 

d = X - '  (~b - ' / ~ -  W). (23) 

Proof'. Given  a(s) = s~ + a ,_  lS "-1 +" " + ao, i f b e S e i  then we can write 

bn+lS n+l +b , s "  + . .  ' + b 0  
H ( s )  = 

sn "[- a n -  I S n -  I + " " + ao 

where b.+ l = l i m ~ [ H ( j ~ o ) ] / j c o  > 0 by (i) in Definit ion 4. Thus,  we can write 
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s "+1 +dns"+d,_ ,s  "-1 +'" "+do 
H ( s )  = bn+ , (24) 

s .+a._~s ~ 1 + ' " + a o  

= b,+,/?(s) (25) 

It is straightforward to show that H(s) is SPR if and only if /7(s)  is SPR. We now 
define ~b = bn+~, an arbitrary positive real number, and proceed as in Theorem 2 with 
k(s) = ¢[he(s)ae(s)-ho(s)ao(s)], where h~ and h~o are the even and odd part of the 
numerator polynomial of  H. Expanding the product and matching coefficients we 
obtain 

Thus, a = x l (~b- lk-  w) and then b is given by Eq. (22). The result follows by the 
same arguments of Theorem 2. 

Remarks: The preceeding theorem is not thorough enough to distinguish between SPR 
and the less stringent notion of  weak SPR. This distinction is of  great theoretical 
importance. Notice that an SPR function (and not a weak SPR one) represents the 
driving point impedance of a realizable passive network, i.e. one formed by combining 
resistances, lossy inductors, and lossy capacitors. Our next result will clearly separate 
these two cases. 

Theorem I V  
Given a Hurwitz polynomial a of degree n >~ 2, the polynomial b e ~"+~ belongs to 

the set ~ c ¢USe~ if and only if k,+~ ~ 0 in the parametrization of Theorem 3. 

Proof'. We have 

Re[/~(jog)] = h~e(Jo9)ae(Jo9)-h-o(jo9)ao(jo9) 
2 ae (2"o9) -- ao 2 (jog) 

and since O(k(s)) = O([a~(s)- ao z (s)]) = 2n, we have 

lirn Re[H(jog)] = 4) l irn Re[/7(y'og)] = k.+~ 

and the result follows. 

V. Examples 

5.1 Example 1 
Consider the polynomial a = sZ+als+ao. We are interested in the set of all poly- 

nomials b(s) of  degree •(b) = 2 that make the rational function b/a SPR. Define now 
k(s) = k3s 4 -  kzs2+ k~. By the Sturm's Theorem (8) k(s) satisfies the positivity condition 

k(jo9) > 0, V o9 7> 0 if and only if k3 > 0, kl > 0, and k2 > - 2 kw/~-~k~. We have 

k2 = - a 0  al - 1  bl = X / )  

kl 0 0 a0 b0 

therefore 
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[ 21 Loral ° 0 0]ik31 bl ao,'l  Oo ' k2 
bo 0 al kl 

and 

H(s) = 
k3s2+(alao)-l(a~k3+aok2+kl)s+kl/ao 

s2+a~s+ao 

5.2 Example 2 
Given the same polynomial a(s) used in Example 1, we look for the set of all 

polynomials b(s) of  degree O(b) = 3 that make b/a SPR. In this case, Eq. (23) implies 
that 

d =  X - ' ( ~ - ' t ? -  W) 

Thus, 

:  aa° O O]I + a 
= - l o  ao dl c~ ao 

do 0 al kl 

q~s 3 + (k3 + dpal)s 2 + (a,ao) - ~ [a2 (k3 + c~al) +aok2 + kl]s + k,/ao 
H(s)  - 

s2+als+ao 

Where we have used Eq. (22) to obtain 6. This expression contains all SPR functions 
with denominator a(s). The set of  weak SPR functions with the same denominator is 
obtained by letting k3 = 0. 

VI. Conclusions 

A detailed study of the properties of  SPR transfer functions was carried out. Several 
in,consistencies in the use of  popular frequency domain conditions for SPR were pointed 
out, and supported by simple examples. A parametrization of all possible polynomials 
b that make the ratio b/a weak or strong SPR for a given Hurwitz polynomial a was 
obtained. Moreover, the important distinction between weak and strong SPR was 
clarified and given a simple solution, for the first time, for improper rational functions. 
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