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The Relationship Between Recursive 
Multibody Dynamics and Discrete- 

Time Optimal Control 
Gabriele M. T. D’Eleuterio, Member, ZEEE, and Christopher J. Damaren, Member, ZEEE 

Abstract-A recursive algorithm, based on a Newton-Euler 
formulation, is developed for the solution of the simulation 
dynamics problem for a chain of rigid bodies. Arbitrary joint 
constraints are permitted, that is, joints may allow translational 
and/or rotational degrees of freedom. The recursive procedure 
is also shown to be identical to that encountered in a discrete-time 
optimal control problem. For each relevant quantity in the 
multibody dynamics problem, there exists an analog in the 
context of optimal control. The performance index that is 
minimized in the control problem is identified as Gibbs’ func- 
tion for the chain of bodies. 

I. INTRODUCTION 

HE motion of multibody systems has been a subject of T longstanding concern in analytical dynamics. With the 
advent of robotic systems in terrestrial and space applica- 
tions, its importance has transcended mere academic interest. 
The laws governing multibody dynamics have been known 
for centuries, but, perhaps, in no other field does there exist 
such a wide variety of approaches to the formulation and the 
solution of the equations of motion. The object of this paper 
is to present a recursive algorithm, founded on a 
Newton-Euler formulation, for the solution of the simulation 
dynamics problem for rigid-body chains. It is furthermore 
shown that this recursive procedure is identical to, and 
indeed derivable from, the recursive solution to the two-point 
boundary value problem associated with discrete-time opti- 
mal control. 

In the field of multibody dynamics there are essentially two 
problems to consider: the inverse dynamics problem and the 
simulation dynamics problem. The former, on which a 
large body of literature already exists, is concerned with the 
solution of the control forces and torques necessary to achieve 
a desired trajectory. Simulation dynamics (also known as 
forward dynamics) deals with the converse, that is, solving 
for the motion of a multibody system given the control 
inputs. It is the latter that we shall address here. 
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There exist myriad approaches to the formulation of the 
motion equations for multibody systems, each with its own 
peculiar features. Among the most popular approaches are 
the Lagrangian formulation [ 11,  the Newton-Euler method 
[2], and the Gibbs-Appell-Kane equations [3]. (For the 
interested reader, Likins [4] has conducted a thorough study 
of several formulational alternatives for mechanical systems .) 
Although a sweeping statement on the superiority of any one 
approach would be folly, the Newton-Euler method is rather 
attractive from the standpoint of physical insight and compu- 
tational efficiency. It is thus the Newton-Euler formulation 
that will form our basis. 

The concept of recursion in multibody simulation dynam- 
ics was introduced by Armstrong [5]. Recursive methods 
mathematically exploit the topological nature of multibody 
systems. Unlike the usual “conventional” approach in which 
a system is considered in its entirety and the motion equations 
written accordingly, in a recursive procedure, the system is 
treated on a body-by-body basis. As a result, the computa- 
tional effort required in a recursive algorithm grows linearly 
with the number of bodies. By contrast, “global” ap- 
proaches, which require Gaussian elimination or the equiva- 
lent, typically obey a cubic relationship [6]. 

Armstrong devised a recursive procedure for an n-link 
rigid-body manipulator with spherical (three rotational de- 
grees of freedom) joints, which could be modified to handle 
hinge (one rotational degree of freedom) joints as well. 
Featherstone [7] later proposed an alternative algorithm for 
rigid-body chains with hinge joints. The difference between 
Armstrong’s and Featherstone’s methods lies in the manner 
in which the constraint forces are eliminated. 

Others have also investigated the application of recursive 
techniques to multibody dynamics. Golla [8] has developed 
an alternate recursive algorithm founded on Newton-Euler. 
Bae and Haug [9], [lo] have forged a recursive procedure 
based on a variational approach and have considered closed 
kinematic loops as well. In addition, Book [ l ]  has employed 
recursion in a Lagrangian formulation. 

The present recursive algorithm may be regarded as a 
generalization of Featherstone’s method in that the elimina- 
tion of the constraint forces is done in a similar fashion. 
(Featherstone [ l l ]  has, in fact, also considered how his 
method can be extended to account for more general con- 
straints at the joints.) As we shall see in due course, the 
algorithm can also be related directly to a comparable gener- 
alization of Armstrong’s procedure [ 121. 
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In its most general form, our method is applicable to 
topological trees of elastic bodies with arbitrary joint con- 
straints. For explanatory purposes, though, only chains of 
rigid bodies are addressed in this paper. However, arbitrary 
translational and/or rotational interbody constraints, a key 
feature of the algorithm, are allowed; that is, each joint may 
permit at least one degree of freedom and at most six. But 
without loss in generality, we shall take the translational 
displacements to be small. 

The paper, as its title implies, contains two main themes. 
One is the development of the recursive algorithm itself and 
the other is the relationship of the recursive algorithm to 
discrete-time optimal control. The latter was motivated by the 
work of Rodriquez [ 131, who recognized the correspondence 
between the equations of multibody dynamics and the those 
of optimal filtering (the Kalman filter) and smoothing (the 
Bryson-Frazier smoother). In this work, we demonstrate a 
one-to-one correspondence between the multibody simulation 
dynamics problem and the discrete-time optimal control prob- 
lem-the dual of the estimation (smoothing) problem. The 
recursive feedback solution for the control in terms of the 
state is precisely that which yields the joint accelerations in 
terms of the (absolute) body accelerations. The analogy is 
moreover made complete by identifying the performance 
index, in the multibody analysis, as Gibbs' function [14]. 

II. EQUATIONS OF MOTION 
Let us consider a chain of contiguous bodies 

Bo, Bl, . , SN as shown in Fig. 1. Interbody joints may 
permit arbitrary relative (rotational and/or translational) mo- 
tion. Each joint, therefore, possesses at least one degree of 
freedom and at most six. For convenience, we shall assume 
interbody translations to be small; however, the extension to 
large translations can be incorporated into the present formu- 
lation. For additional details on the derivation of the equa- 
tions of motion, the reader should consult Sincarsin and 
Hughes [ 151. 

The motion of Bfl is defined by the velocity v, of @', and 
the angular velocity w ,  of a,,. (See Fig. 2.) Both v, and U, 
are measured with respect to inertial space but are expressed 
in %, a reference frame attached to 3,. We shall define 

as the generalized velocity (cf. twist velocity) of B, at 0,. 
We furthermore introduce the accompanying definition for a 
generalized force (cf. wrench) acting at 0,: 

f i - '  
f ,"-'  i2 [ g;-l] (2) 

where f i-' and g;-' are the reaction forces and torques on 
8, due to B,- as expressed in 8. 

The resulting equation of motion for g,, can be written as 

&nun = f n T  + f n l  (3) 

Fig. 1 .  A chain of rigid bodies. 

Fig. 2. Body 91n. 

is the (constant) mass matrix corresponding to a,, that is, 
m,, c ,  and J, are the zeroeth (mass), first and second 
moments of inertia (about 0,) of 3,. Also, f n T  is the total 
external (generalized) force acting on 3, , including inter- 
body forces, and f n l ,  which accounts for the nonlinear 
inertial terms (owing to centrifugal and Coriolis effects), can 
be neatly written as 

f n l =  ( V , X I T & n V n  (4) 
where 

and ( e ) "  operating on a Cartesian (3 x 1) column matrix, 
such as v,, w ,  or c,, is the matrix equivalent of the vector 
cross product. In a rate-linear model, one would set f n l  = 0. 

A. Interbody Constraints 
The set of equations (3) does not yet describe a chain of 

bodies since it does not take into consideration the interbody 
constraint imposed by the joints. To do so, we begin by 
observing that 

v n  = z n , n - l v n - l  + Vn,int ( 5 )  

which introduces the relative interbody generalized velocity 
of 88, with respect to 3, '. In addition 

is the generalized transformation matrix between B,- 
and 3,; C,,,-, is the rotation matrix from 5- to E and 
r:- is the position of flfl with respect to flfl- 1. The 
geometric constraints imposed by the joints can thus be 
expressed formally as 
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where gn is a projection matrix and U,, is the column of 
free joint (rate) variables. The absolute velocities U, can be 
obtained recursively from U, -, and U,,,. 

We also note that 

f n T  = s n r l , n f , " + l  - f , " - '  + f n , e x t  ( 7 )  

where fn ,ex t  is due solely to external influences. Further- 
more, the generalized interbody forces f ,"-'  can be ex- 
pressed as a sum of control forces f , , ,  and constraint forces 
f n , 0 ,  i.e., 

f,"-' = - 9 n f n . c  - ' n f n , o .  (8) 
The projection matrix g,, is the complement of pn. 

As stated at the outset, interbody translations have been 
assumed small. This is tantamount to assuming that the 
outboard origin Onf on 3,- is coincident with the inboard 
origin On on B,,. However, the extension to large interbody 
translations is inherent in the present analysis since it can be 
shown [12] that the form of all the foregoing equations 
remains intact when the assumption is relaxed. 

B. Projection Matrices 
A few words are perhaps in order regarding the projection 

matrices. First, as a simple yet very important example, 
consider a joint with a single rotational degree of freedom 
about, say, the third axis of an appropriately chosen refer- 
ence frame. The corresponding projection matrix @,, is 

g n =  [o 0 0 0 0 11'. 

We may also add that unY = f3,  where y3 is the angle of 
rotation. 

In general, 9, is not constant, as above, but rather is 
dependent on configuration. Contemplation of a universal 
joint will quickly reveal this fact. The columns of 9, are in 
general not orthonormal but 

9pn = .an (9) 

where .an 
matrix s,, satisfies 

is nonsingular. The complementary projection 

9;gn = 0. (10) 
Without loss in generality, the columns of gn  can be taken 
as orthonormal. 

C. Kinematical Equations 

equations ( 3 )  can be summarized in terms of gn,n-l: 
The kinematical equations accompanying the dynamical 

we can extract from (1 1) 

145 

nient and expedient representation of rotational joint degrees 
of freedom. Interbody translation is given by the integration 
of v , , , ,~  and would be reflected in r:- 

111. SIMULATION DYNAMICS 

The recursive method presented here is a generalization of 
Featherstone's method applicable to rigid multibody chains 
with arbitrary interbody constraints. The development, in 
fact, runs parallel to a similar generalization of Armstrong's 
recursive method [12]. The essential difference is that the 
former is based on an affine relationship of the total interbody 
force of the absolute (generalized) body acceleration while 
the latter relates explicitly only the interbody constraint force. 
The generalized Featherstone approach is particularly appeal- 
ing because of its direct analogy to the discrete-time optimal 
problem. As shall be demonstrated, however, a simple equiv- 
alence exists between the two schemes. 

Let' 

' n  = an + a n , n o n  

a,, = ~ n , n - l a n - l  + @,U,,,. 

(14) 

(15) 

such that 

Differentiating (5) and inserting (14) reveals that we must 
have 

a n , n o n  = $ n , n - l a n - l , n o n  + g n , n - l u n - l  + @nufl, (16) 

for (15) to hold. In essence, the acceleration quantities a,, 
account for the rate-linear effects and an,non for the nonlinear 
effects. Moreover, not only is a, found recursively (out- 
ward) but an,non as well. 

Upon substitution of (14) into the motion equation (3), we 
have 

&nun = f n T  + f n I  + f n , n o n  (17) 
where 

f n , n o n  2 -&nan,non.  

In fact, we can write (17) as 

= $ n T l , n f , " + ,  - f , " - '  + f f l . n e t  (18) 

where 

-ffl.net ' f n , e x t  + f n l +  f n , n o n .  

We now proceed to eliminate the interbody forces. 

A .  Recursion for f,"-'  

written as 
We conjecture that the interbody forces f ,"- '  can be 

-f ,"-'  = *,,a, + $ n  (19) 
which is a generalization of Featherstone's hypothesis. Note 
that q,, is, in effect, a mass matrix and J/, is a generalized 
force quantity. The recursive algorithm is based on this result 
and the fact that q,, and $fl can be determined recursively 
from BN to Bo. 

For physical reasons, Euler angles make for the most conve- ' The authors are indebted to Dr. D. F. Golla for this insight. 

http://ffl.net
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The proof of (19) is by induction: 
Step I: For a,, (18) becomes 

&NaN = - f / - '  + f N , n e t  

f / + l  = 0 

(20) 
where it has been observed that 

since a, is the (free) terminal body. It is immediately 
obvious that if we set 

*, = &, 

$N = - f N , n e t  (21) 
(19) is satisfied for n = N .  

B. Recursion for U,, 

By the inductive nature of the proof for (19), it has been 
shown that the matrices *,, and $ n  can be evaluated recur- 
sively inward, i.e., from a, to Bo. Having done so, one 
can then perform outward recursion, from so to s,, to 
solve for Un,. This is evident from (25). 

Rewriting (25) for a,, instead of and solving 
explicitly for U,, yields 

= * i i p ( g n f n . c  - g n ' * n g n . n -  lan- 1 - $ , p ) .  (28) 

Examining this result, we see that at a,, all the quantities on 
the right-hand side are known since an- can be computed 
recursively from its inboard neighbor according to (24). 

Step 11: We assume that 
C.  Relationship to Armstrong's Work 

- f : + l  = *n+lan+l + $ n + l .  (22) 
Step III: Given (22), we shall show that (19) follows. 

Before proceeding onward, it is worth pointing out that 

*,, - 9ngn*n-ip~z*n = S,,@,, 2 (29) Now 
where 

T 9-1 
V n + l  = g n + l , n V n +  g l , + l v n + l . y  (23 ) 

and ' n  = * n Q Q -  * n P Q  nPP*nPQ 

and 
an+, = T n + l , n a n  + g n + I b n + l , y .  (24) 

Substituting (24) and (8) in (22) and premultiplying by @;+ I 

gives 

, a n +  1 f n +  1 .c = *n+ I , p p  C n +  1 .y Showing (29) requires invoking the identity 

+ gn'+1*n+Ign+l,nan + $ n + l , P  (25) PnL?py- + 22nS: = 1 .  

where, in general, By virtue of (29), we can rewrite the first part of (27) as 
T 6 -  

q n p p  q*pn7 $ n P  A qVn.  * n =  4 + S n L .  ? r + l @ n + I ~ n + I J n + l , n  (30) 
Solving for 
using the result with (22) in (1 8) eventually leads to 

from ( 2 3 ,  inserting back into (241, and which is a more streamlined expression. 
The significance of an, however, lies in the fact that 

f n . 0  = *f12:an + d n  (31) 

(26) This result is equivalent to the generalized version of Arm- 
strong's method for rigid multibody chains with arbitrary 
joint constraints [ 121. 

- $ n + l , p )  + $ n + 1 ]  - f n , n e t } .  

Hence, we can identify 

IV. A DISCRETE-TIME OPTIMAL CONTROL PROBLEM 
* n  = &n + ~ n n T l , n ( * n + l  

Diverting our attention from multibody dynamics momen- 
tarily, let us consider the following optimal control problem: 
Minimize 

- * n  + I%+ 1 * 2  , P P Y , ' ,  1*n+ I )  $n+ 1 , n  

J /n  = g n :  1 ,n[ * n +  1 g n +  I*i+'l , p p (  Sri + 1 f n +  1 .c 

k = O  ' 
Step ZV: By induction, then, (19) is proven. H 
The matrix *,, has an attractive physical interpretation. It 

is the mass matrix (about @,,) of the part of the chain from 
Bn to 3, associated with the constrained degrees of free- 
dom. Featherstone [7] would refer to qn as the articulated- 
body inertia. It should also be pointed out that *,,, which is 
positive-definite, and $, are configuration dependent. 

subject to the linear state equation 

x , + ~  = A,x,  + B,u,, x P 1  = 0 .  (33) 

Here, M, is a sequence of positive-definite weighting matri- 
ces, and h, and t, are vector weighting sequences. Since U, 

does not influence x, ,  k I N, we shall assume that t, = 0. 
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This problem is slightly different than the standard “linear- 
quadratic” version that one typically encounters. The cost 
functional in the present case is linear in the control variable. 

Minimizing f subject to the state equation is a straightfor- 
ward optimization problem. Introducing the Lagrange multi- 
plier or adjoint variable A,, we define the augmented perfor- 
mance index as follows: 

N 1  

&’ 1 -xzMkxk + XLhk - U;- I f &  I 
k=O 2 

+ h:(xk - Ak-Ixk-1 - Bk-Iuk-1). (34) 

The necessary conditions for optimality 

ay’ a y  a y  
- - 0  -- - 

a h k + l  a u k  

produce the two-point boundary value problem (TPBVP) 

x k f l  = A,x, + B,u,, x - ~  = 0 (35) 

t, = -Bzhk+I .  (37) 

A, = A:hk+l - Mkxk - hk, AN+, = 0 (36) 

We have taken A,+, = 0, without loss in generality, since 
t, = 0. Hence, from (36), h, = -M,x, - h,, which 
supplies the basis for the inhomogeneous Riccati transforma- 
tion, sometimes called the sweep method 

= -skxk - rk (38) 

with SN = M, and rN = h,. Substituting (38) into the 
equation for t k (37) and replacing x k +  with the right side of 
(35) produces the feedback law 

u k  = - K k X k  + R,’(tk - Birk+l )  (39) 

where 
R, 4 B;s,+,B, 

K ,  !? R,’B;s,+,A,. 

The matrix Rk will be invertible if Bk is monic and S k + l  iS 

positive-definite. Substituting the sweep solution (38) for A, 
and h k + l  and using (35) for x k + l  and (39) for uk gives 

[’k - A:(Sk+l - S k + l B k R k l B I S k + l ) A k  - M k ] x k  

= - r k  + (A, - BkKk)Trk+l -k K i t ,  + hk.  

Since this must hold for general x k ,  the coefficient of x k  
must vanish as well as the right-hand side. Hence 

’k = ATk(Sk+l - S k + l B k R k l B ~ S k + l ) A k  + M k  (40) 

which is the discrete-time matrix Riccati equation and 

r k  = (A,  - BkKk)Trk+l + K z t ,  + h, .  (41) 
We now return to the question of the invertibility of R ,. The 
definitions of K ,  and R, reveal that (A, - BkKk)TSk+lB, 
= 0, which allows us to write the Riccati equation as 

’k = - B k K k ) T S k + l ( A k  - BkKk) + Mk. (42) 

Since S, = MN is symmetric and positive-definite, S, is 

symmetric and positive-definite (using backward induction). 
Hence, R k  defined previously is positive-definite and is 
always invertible. 

The optimal control policy can now be summarized as 
follows: One solves the Riccati equation (40) (or (42)) and 
the vector equation (41) backward from k = N to k = 0 
using the boundary conditions S, = M, and rN = h,. The 
optimal control can then be calculated using (39) while 
propagating the state forward using the state equation (35). 

V. RELATION BETWEEN OPTIMAL CONTROL 
AND RECURSIVE DYNAMICS 

The TPBVP generated by the previous optimal control 
problem (35)-(37) is identical in form to that of the multi- 
body dynamics problem (18), (24), and 

,an f,*& = - Wf n n  n - 1  (43) 

which follows from premultiplying (8) by 9; while recog- 
nizing (9) and (10). Therefore, we make the following identi- 
fications: 

‘k * a, A, * f,”-’ 
* v n + l . y  h k  * -ffl.net 

* g n + l , n  M k  * An 

Bk * 9n+l  t k  * , a n + I f n + l , c .  

Hence, the accelerations a, are analogous to the states, the 
interbody forces f,“-’ are analogous to the adjoint states, 
the joint accelerations U,, play the role of the control inputs, 
and the projection matrices y,,+ take the place of the input 
matrix B,. It can be shown that the interbody transformation 
matrices g,+ I , n  possess the properties of the state transition 
matrix thus completing the analogy. Comparing the transfor- 
mation (38) with the generalization of Featherstone’s solution 
(19) allows us to identify 

sk  * ‘ n  

r k  * + n  

R k *  ‘ f l + l , P P ’  

We also emphasize the recursion in time ( k )  has been 
replaced by spatial recursion ( n )  at a given instant in time. 

Using the above identifications, the performance index f 
can be written as 

Hence, in the multibody dynamics problem one can minimize 
2 subject to the kinematical constraint equation (15) to arrive 
at the defining equations. Compare this with Gibbs’ formula- 
tion [14] of the dynamics of a system of N particles with 
masses m,, coordinates x,, y,, z,, are subjected to forces 
X,, Y,, Z,: Minimize 

N 1  
?m,(xt, + y ,  + .if) - xnx, - ynj ,  - 2,zn 

n = l  

subject to the kinematical constraints. The minimization of a 

http://ffl.net
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quadratic function of acceleration to obtain the equations of 
motion for a rigid multibody chain has been considered by 
Vukobratovid and Potkonjak [ 161. These authors refer to the 
method as Gauss’ principle of least compulsion and attribute 
its use in manipulator dynamics to the Russian literature [ 171. 

In his work, Rodriguez [13] points out the similarity 
between the equations describing a chain of hinged bodies 
and the TPBVP that arises in discrete-time, optimal estima- 
tion, and smoothing problems. In his formulation, the bodies 
in the chain are numbered inwardly (i.e., the tip body is 93, 
and the root body is SN). Here, the numbering of the bodies 
is outward (the root body is a, and the tip body is BN). 
With this convention, the equations are rendered dual to 
those of Rodriguez. As such, the corresponding discrete-time 
problem is not one of estimation and smoothing but one of 
control. It is interesting to note the dual relationships inherent 
in Rodriguez’s work. The role of the state is played by the 
interbody forces and the adjoint states are the link accelera- 
tions, which are an interchange of the results given above. 
The control torque at each joint plays the role of a measure- 
ment of the states whereas we have the joint accelerations 
acting as “control inputs.” 

VI. SUMMARY OF THE RECURSIVE ALGORITHM 

We now summarize the procedures for determining the 
motion of the chain of bodies. The control forces f , , , ( t )  and 
external force distribution fn,,,,( t )  are prescribed on the time 
interval of interest. Beginning with t = 0, we proceed as 
follows: 

Step I: At time t ,  the relative velocities u,,(t) and the 
rotation matrices Cn,,,- I ( t )  are known. 

Step 2: Outward recursion for the velocities U,, and deter- 
mination of fn,net: 

Do n = 0 to N ;  
Generate z,n- using C n , n -  I .  

u!,int = g n u n y .  

s n , n -  1 = - U , l i n t g n , n -  1. 

un = g n , n - l U n - l  + Un,int. 

an,?on = s n , n - l  a n - l , n o n  + z n . n - 1  un+I  + 

f n ,  = ( u , X ) T J L L u n ,  fn,non = - d n a n . n o n .  

.t’n.net = fn,ext + f n l  + fn,non. 

g n u n y .  

Next n. 
Step 3 :  Inward recursion for qn and $,,: 

Set ’kN = dN and GN = - f,,,,,. 
DO t~ = N -  1 too ;  

* n + I , p p  = g,‘,, * n + l g n + l ?  
J / n + l . P  = g:+l$n+l. 
K n  = *i+!l,Pp 9:+1 *n+Ign+l,nt 

r n + l , n  = g n + l , n  - g n + I K n .  

* n  = rT+l,n*n+l’n+l,n + A n .  

$n = r T + , , n + n + l  + K z @ n + l f n + l , c  - fn ,net .  
Next n. 

If Yo  # 0 (Bo is at least partially unconstrained), 
then 

Otherwise, continue on to Step 4. 
* , p p  = g , T * o g o ,  $ o p  = Y,T$o; 

Step 4 :  Outward recursion for itny: 
If Po = 0 (48, is constrained), then 

uoy = a, = 0; 

a, = 9,uoy. 

Uny = - K n -  I a n -  1 + * k h p ( @ n . f n , c  - +np)* 
C n , n - l  = - m , l i n t C n , n - l .  

Otherwise, boy = % ; p ( 4 J , , ,  - $ o p ) ,  

DO TI = 1 to N, 

an = ~ n , n - l a n - l  + gnuny. 
Next n. 

Step 5 :  Estimate vny( t  + A t ) ,  C n , n - l ( t  + A t )  using 
some quadrature scheme. Go back to Step 1 and 
replace t with t + A t .  

This completes the summary of the recursive simulation 
procedure. Note that in a rate-linear simulation, one ignores 
the contributions of f , , ,  and fn,non to fn,net in Step 2. We 
have written the recursion for *,, and $,,, in Step 3, in terms 
of the quantities K,, and r,,+ 1, since this leads to the most 
compact and efficient expressions. The fourth step produces 
the joint accelerations u n y ,  which can be integrated in con- 
junction with the kinematical relationships for the rotation 
matrices to produce the joint orientations/positions and ve- 
locities. 

VII. CONCLUDING REMARKS 
We have presented herein a recursive simulation dynamics 

procedure, based on a Newton- Euler formulation, which is 
applicable to chains of rigid bodies with arbitrary transla- 
tional and/or rotational interbody constraints. Furthermore, 
it has been demonstrated that this procedure is derivable from 
the recursive scheme used in discrete-time optimal control. 
The underlying analogy that makes this possible yields great 
insight into the structure of the multibody dynamics problem. 

Although the present analysis was restricted to chains of 
rigid bodies, the extension to topological rigid-body trees is 
reasonably straightforward. Also, the subject of structural 
flexibility in multibody systems is very current. It can be 
shown that the structure of the resulting motion equations can 
be left unaltered by elasticity [12]. Indeed, there exists a 
one-to-one correspondence between the rigid and the flexible 
case. With this duality in hand, we have been able to extend 
the present algorithm to the problem of elastic multibody 
chains [18]. 

Recursive methods are attractive because of their computa- 
tional efficiency, yet a comparison of Featherstone’s recur- 
sive method to Walker and Orin’s most efficient “global” 
method (for rigid-link chains with hinge joints) indicates that 
recursion does not become computationally favorable until 
the length of the chain reaches 12 links [7]. While this result 
may be somewhat disappointing to the practically minded, it 
should be pointed out that designs for Space Station manipu- 
lators include systems that may have as many as 21 links. But 
more important, recursive methods become increasingly more 
attractive as the number of joint and elastic degrees of 
freedom increase. A recent study [19] investigated the perfor- 
mance of two recursive methods and one global method 
having identical capabilities. It shows that the breakeven 
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point for the recursive schemes occurs at about four bodies 
when each model with three elastic degrees of freedom. 
Recursive simulation procedures, therefore, seem exception- 
ally well suited for elastic-body systems. 
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