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Optimal Hybrid Magnetic Attitude Control: Disturbance
Accommodation and Impulse Timing

Behrad Vatankhahghadim and Christopher J. Damaren

Abstract— A recently proposed hybrid attitude control scheme,
which optimally combines magnetic torques with impulsive
thrusting using a continuous/discrete linear quadratic regulator,
is modified to accommodate disturbances. Accounting for the
presence of disturbances in the design procedure, previous results
on necessary conditions for optimality of impulse application
times are modified accordingly. In addition, the special case of a
multiorbit mission with repeating impulse patterns is considered,
showing that an elegant extension of the optimality conditions
would significantly reduce the computational cost by limiting the
design space to only the first orbit: this extended condition is
obtained by summing over all orbits within the control interval,
the original conditions being computed at each repeating impulse
time. Finally, numerical examples are presented, confirming the
superiority of the proposed disturbance-accommodating con-
troller in terms of steady-state performance (even when the
disturbance estimates are partly incorrect) and the validity of
the extended optimal timing theory in the linear region.

Index Terms— Disturbance accommodation, magnetic attitude
control, optimal hybrid control, optimal impulse times.

I. INTRODUCTION

CONTROLLING the attitude of spacecraft is of cru-
cial importance for certain space missions and can be

performed via a variety of control schemes and utilizing
actuators such as thrusters and magnetic torquers. The latter,
which involves making use of the electromagnetic interactions
between current-carrying coils and the geomagnetic field,
is a particularly attractive option for near-earth spacecraft
because of its efficiency and absence of fuel requirements.
A survey of the studies performed on magnetic attitude control
is provided in [1]. Inherent in this mechanism, however, is the
problem of instantaneous underactuation that arises from the
resultant torque vector being perpendicular to the magnetic
field. In addition, there is an intrinsic gain limitation associated
with stabilization using magnetic actuators, as demonstrated
in [2], where local stability is shown to be guaranteed only
for gains below a certain threshold indicated by a scaling
condition.

Owing to the time-varying nature of the magnetic field,
the attitude control system of interest possesses, on average,
controllability properties (over some time interval) for a range
of orbit inclinations [1], [3]. Local and global three-axis sta-
bilization results using purely magnetic control were derived
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in [4] and [5] relying on the quasi-periodic nature of the
earth’s magnetic field. Exploiting periodicity, optimal periodic
control approaches were proposed in [3], [6], and [7]. Later
on, abandoning the periodicity assumption, full-state feedback
using only magnetic actuation was proposed for an almost
globally stable solution in [8], but the aforementioned scaling
condition restricting the control gains remained. Providing
an auxiliary impulsive control mechanism to complement the
continuous torque of the magnetic controller is, therefore,
partly motivated by a desire to alleviate this gain limitation.
Such an impulsive/continuous (henceforth called “hybrid”)
control scheme may also provide improvements in terms of
control performance and energy consumption.

Addition of mechanical actuation to work in harmony with
magnetic torquers and a geometric technique for decomposing
the control vector were considered in [9] and [10], respectively.
The combination of magnetic control with impulsive thrusting
using linear time-invariant and linear time-periodic approaches
was studied in [11]. A hybrid linear quadratic regulator (LQR)
that incorporates both types of actuation was proposed in [12],
which was in turn based on the results of [13] on optimal
hybrid control for spacecraft formation flight. Neither of these
references nor those that make use of proportional–derivative
magnetic control (such as [2]) or the continuous-only periodic
LQR (such as [6]) include the disturbances when designing
the control laws. Considering that these disturbances can be
estimated (see [18, Sec. 17.2]) and inspired by the disturbance-
accommodating (DA) tracking controller suggested in [14], the
hybrid attitude controller of [12] is extended to accommodate
disturbances.

Optimal periodic disturbance rejection is implemented
in [7], but by assuming periodic system and disturbances and
compensating for the estimated disturbances using feedfor-
ward. The disturbance accommodation approach used in this
brief also bears resemblance to that in [15], in which the
plant’s state and output equations are augmented with some
disturbance models and linear quadratic Gaussian is applied
to the augmented system; however, this brief also involves
discrete dynamics that were not considered in [7] and [15].

In addition to improving the controller proposed in [12] via
disturbance rejection, this brief also studies optimal timing
of the impulses. Necessary and sufficient conditions were
recently developed and validated in [16] for optimality of a set
of impulse application times. In this brief, the necessary con-
ditions are modified to reflect the design changes required for
disturbance accommodation. In addition, these conditions are
extended to apply to multiple orbits, provided that the impulse
pattern repeats every orbit. In this special case that allows for
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an elegant extension of the results of [16], the impulse times
in the first orbit are treated as design parameters and those in
the subsequent orbits are dictated by this selection.

This brief is organized as follows. Section II presents the
relationships governing the disturbed attitude motion of a
spacecraft with magnetic torquers and thrusters. The model
is then linearized in Section III, and the linearization (that
includes the disturbances) is used to derive the optimal
disturbance-rejecting continuous and impulsive control inputs.
Section IV extends the previous optimality conditions to
accommodate disturbances and studies (with most of the
derivations provided in the Appendix) a special case in which
these conditions can be further extended for multiple orbits.
Section V presents the simulation results that assess the
validity of the extended theory and the performance of the
proposed controller. Finally, closing remarks are provided in
Section VI.

II. SPACECRAFT KINEMATICS AND DYNAMICS

The control torques consist of τmag produced by magnetic
torquers and τ imp produced by impulsive thrusters, where the
latter are represented using Dirac delta functions centered at
the N − 1 impulse times tk , k ∈ {1, . . . , N − 1}. Consistent
with [12], only gravity-gradient disturbances τ gg and residual
magnetic dipoles from on-board electronics τmd are con-
sidered, because other disturbance sources are assumed to
be negligible for near-earth small spacecraft. The rotational
dynamics are described by Euler’s rigid body equation [17]

τ = I ω̇B + ω×
B IωB

= m×bB

︸ ︷︷ ︸

τmag

+
N−1
∑

k=1

nkδ(t − tk)

︸ ︷︷ ︸

τ imp

+ 3μ

|r B |5 r×
B I r B

︸ ︷︷ ︸

τgg

+ m×
distbB

︸ ︷︷ ︸

τmd

(1)

where μ = 3.986 × 1014 m3/s2 is the earth’s gravitational
parameter and I , ωB , and r B are the moment of inertia,
and angular velocity, and position vectors expressed in the
body-fixed frame, respectively. Magnetic dipole moments and
thruster gains are shown by m and n, and bB is the magnetic
field vector as expressed in the body frame. The opera-
tor ˙(·) denotes derivative with respect to time, and the skew-
symmetric operator (·)× acts on any vector v as follows:

v× =
⎡

⎣

0 −v3 v2
v3 0 −v1

−v2 v1 0

⎤

⎦. (2)

The body-fixed vector expressions can also be rewritten in
terms of their inertial frame representations as bB = CBGbG

and r B = CBG rG , where CBG is the rotation matrix from
inertial to body-fixed frame and can be computed from the
quaternions (representing the attitude), ε = [ε1 ε2 ε3]T

and η, using CBG = (η2 − εT ε)13×3 + 2εεT − 2ηε× [17].
It is evident that both disturbances partly depend on attitude.
This observation will be used in Section III to separate the
attitude-dependent and exogenous portions of the disturbances
after linearization. Assuming a Keplerian orbit, the space-
craft’s position in the inertial frame rG is determined and

the tilted dipole model of the geomagnetic field (described
in [18, Appendix H]) is used to estimate the magnetic field
vector bG .

Finally, the rotational kinematics are given by [17]
[

ε̇

η̇

]

= 1

2

[

η13×3 + ε×
−εT

]

ω. (3)

The nonlinear differential equations in (1) and (3) fully
describe the attitude motion of the spacecraft. Integrat-
ing this system of equations numerically over time pro-
vides an accurate prediction of the spacecraft’s on-orbit
attitude.

III. OPTIMAL DISTURBANCE-ACCOMMODATING HYBRID

MAGNETIC ATTITUDE CONTROL

Presented in [13] is an optimal hybrid LQR control scheme
used for formation flight, which is then applied in [12] to the
attitude control problem of interest. The addition of impulsive
torques in these references was primarily motivated by a need
to overcome pointwise uncontrollability and gain limitations
(demonstrated in [2]) of a solely magnetic controller. Inspired
by [14], the hybrid magnetic LQR attitude control scheme
of [12] is extended to accommodate disturbances. To this end,
an additional variable is introduced that acts as a bias term
and modifies the states and costates used for adjoining the
continuous- and discrete-time dynamics to the cost function.
The optimal control laws are then determined using the
continuous- and discrete-time Riccati equations, along with
a similar set of differential and difference equations for the
newly introduced bias, in tandem.

A. Linearized Disturbed Attitude Dynamics

Hybrid LQR requires linearized equations of motion. Adopt-
ing Euler angles θ , small angles and rates are assumed such
that θ̇ ≈ ω and θ ≈ 2ε. As noted earlier, the disturbances
in (1) are partly dependent on the attitude. We have

τmd = m×
distbB = m×

dist(CBGbG) (4a)

τ gg = 3μ

|r B |5 r×
B I r B ≈ 3μ

|rG |5 (CBGrG)× I(CBG rG). (4b)

With small angles, CBG ≈ 1 − θ×, where 1 is the iden-
tity matrix. Substituting this into (4), using skew symme-
try of (·)×, and neglecting second-order terms with θ×θ×,
we have

τmd ≈ m×
distbG + m×

distb
×
Gθ (5a)

τ gg ≈ 3μ

|rG |5
[

r×
G I rG + (r×

G I r×
G − (I rG)×r×

G

)

θ
]

. (5b)

The linearization of (1) and (3) is then provided by
[

θ̇

θ̈

]

ẋ(t)

≈
[

0 1
α 0

]

Ac(t)

[

θ

θ̇

]

x(t)

+
[

0
−I−1b×

G

]

Bc(t)

[m]
u(t)

+
[

0
β

]

d(t)

, t �= tk (6a)

[

θ+
k

θ̇
+
k

]

x
(

t+k
)

≈
[

1 0
0 1

]

Adk

[

θ−
k

θ̇
−
k

]

x
(

t−k
)

+
[

0
I−1

]

Bdk

[nk]
vk

, t = tk (6b)
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where θ±
k � θ(t±k ). The correction term α is given by

α(t) = I−1[m×
distb

×
G + (3μ/|rG |5)(r×

G I r×
G − (I rG)×r×

G)] and
modifies Ac(t) to account for the attitude-dependent portion of
the disturbance torques. The vector x(t) is the state, the vectors
u(t) and vk are the continuous and impulsive control inputs,
respectively, and d(t) contains the exogenous disturbances,
with β(t) = I−1[m×

distbG + (3μ/|rG |5)(r×
G I rG)]. There are

N − 1 impulses applied at tk , k ∈ {1, 2, . . . , N − 1}, and
t−k and t+k are the instants right before and right after an
impulse, respectively. A small m is assumed.

B. Design of the Disturbance-Accommodating Hybrid LQR

Consistent with [12] and [13], the performance index is

J � 1

2

N−1
∑

k=0

∫ t−k+1

t+k
[xT (t) Qc(t)x(t) + uT (t)Rc(t)u(t)]dt

+1

2

N−1
∑

k=1

[

x−
k

T
Qdk x−

k + vT
k Rdkvk

]+ 1

2
xT

f Sx f (7)

where x−
k � x(t−k ) and x f � x(t f ), with t f denoting the end

time. In addition, t+0 � t0 and t−N � t f , and S = ST � 0 sets
the terminal state penalty. The matrices Qc(t) = QT

c (t) � 0
and Rc(t) = RT

c (t) > 0 set the continuous-time state and
control penalties and Qdk = QT

dk � 0 and Rdk = RT
dk > 0

set the discrete-time state and control penalties, respectively.
The continuous and discrete Hamiltonians are defined as

Hc(t) � 1

2
xT (t) Qc(t)x(t) + 1

2
uT (t)Rc(t)u(t)

+ λT (t)(Ac(t)x(t) + Bc(t)u(t) + d(t)) (8a)

Hd (tk) � 1

2
xT (t−k

)

Qdk x
(

t−k
)+ 1

2
vT

k Rdkvk

+ νT
k

(

Adk x
(

t−k
)+ Bdkvk

)

. (8b)

Rewriting (7) using (8), taking the first variation δ J with
respect to x(t), x(t+k ), u(t), and vk , and setting δ J = 0 yield
the same conditions at those in [13]

λ(t f ) = Sx(t f ) (9a)

λ̇(t) = − Qc(t)x(t) − AT
c (t)λ(t) (9b)

λ
(

t−k
) = Qdk x

(

t−k
)+ AT

dkνk (9c)

λ
(

t+k
) = νk (9d)

u∗(t) = −R−1
c (t)BT

c (t)λ(t) (9e)

v∗
k = −R−1

dk BT
dkνk (9f)

where (9a) and (9b) describe the evolution of and terminal
condition for the continuous costates λ, (9c) induces a dis-
continuity in λ at each impulse, (9d) relates the continuous
costates to the discrete ones ν, and (9e) and (9f) yield the
optimal continuous and impulsive control inputs, respectively.

From (6a) and (9e), the closed-loop continuous-time dynam-
ics for ẋ are obtained, which, together with (9b), give

[

ẋ
λ̇

]

=
[

Ac −Bc R−1
c BT

c
− Qc −AT

c

] [

x
λ

]

+
[

d
0

]

. (10)

Following a similar approach as that of [19, Sec. 9-3]
(disregarding disturbances, with extension of the results

on p. 804), it can be shown that λ(t) = P(t)x(t) + h(t) is
an appropriate form for the solution. Substituting the biased
linear form of λ into (9b) and rearranging, using part of (10),
yield

(

Ṗ + P Ac − P Bc R−1
c BT

c P + Qc + AT
c P
)

x

= −ḣ + (P Bc R−1
c BT

c − AT
c

)

h − Pd. (11)

Since (11) must hold for all x(t), both sides should be zero.
Similarly, since λ(t f ) = P(t f )x(t f ) + h(t f ) = Sx(t f )
from (9a), we should also have (P(t f )−S)x(t f )=−h(t f )=0,
each of which yields a terminal condition for one of the
following differential equations (assuming arbitrary states at
the end time), for the last time interval, t ∈ (tn−1, t f ):

Ṗ(t) = −[Qc(t) + P(t)Ac(t) + AT
c (t)P(t) (12a)

−P(t)Bc(t)R−1
c BT

c (t)P(t)
]

, P(t f ) = S

ḣ(t) = −[Ac(t) − Bc(t)R−1
c (t)BT

c (t)P(t)
]T h(t)

− P(t)d(t), h(t f ) = 0 (12b)

which can be integrated backward simultaneously. This
result is consistent with that of [14, eqs. (8) and (9)] and
[19, eq. (9-287)], from which the tracking portion is elim-
inated. Once an impulse is reached, however, there will be
discontinuities in x(t) owing to the discrete dynamics, hence
requiring difference equations for P and h at each impulse.

From (6b), (9f), and (9d), the closed-loop discrete dynamics
are obtained for x(t+k ), rearranging which for x(t−k ) and using
x(t+k ) = P−1(t+k )[λ(t+k ) − h(t+k )] after an impulse yield

x
(

t−k
) = A−1

dk

(

P−1(t+k
)+ Bdk R−1

dk BT
dk

)

λ
(

t+k
)

−A−1
dk P−1(t+k

)

h
(

t+k
)

(13)

in which the preimpulse states are given in terms of the
postimpulse variables, which will be known while integrating
backward. Furthermore, from (9c) and (9d)

λ
(

t−k
) = Qdk x

(

t−k
)+ AT

dkλ
(

t+k
)

(14)

in which (13) can be substituted, and once the result is
rearranged, together with (13), it gives the following closed-
loop discrete system that is analogous to the continuous one
in (10):

[

x
(

t−k
)

λ
(

t−k
)

]

=
[

0 A−1
dk Zk

0 Qdk A−1
dk Zk + AT

dk

][

x
(

t+k
)

λ
(

t+k
)

]

+
[

−A−1
dk P−1(t+k

)

− Qdk A−1
dk P−1(t+k

)

]

h
(

t+k
)

(15)

where Zk � P−1(t+k ) + Bdk R−1
dk BT

dk . Rearranging (13) (with
the definition of Zk used) for λ(t+k ) and substituting the result
in (14) produce

λ(t−k ) = (

Qdk + AT
dk Z−1

k Adk
)

x
(

t−k
)

+(AT
dk Z−1

k P−1(t+k
))

h
(

t+k
)

(16)

which is of the form λ(t−k ) = P(t−k )x(t−k ) + h(t−k ). After
using the matrix inversion lemma for Z−1

k and some further
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manipulations, the following difference equations are
obtained:

P−
k = Qdk + AT

dk P+
k Adk

− AT
dk P+

k Bdk
(

Rdk + BT
dk P+

k Bdk
)−1 BT

dk P+
k Adk

(17a)

h−
k = (

1 + AT
dk P+

k Bdk R−1
dk BT

dk A−T
dk

)−1 AT
dk h+

k (17b)

where P±
k � P(t±k ) and h±

k � h(t±k ). The set of differential
equations given by (12) is integrated backward in time, starting
from the indicated terminal conditions. At each impulse time, a
jump is induced in both solutions based on the set of difference
equations in (17), and the computed P(t−k ) and h(t−k ) are used
as new terminal conditions for (12) to be further integrated
backward from t−k to t+k−1.

For the simulations, the nonlinear dynamics given by (1)
are numerically integrated with user-specified initial condi-
tions (ICs) for the states at t = 0. To determine the optimal
magnetic dipole moments at t �= tk , the Riccati solution
P(t) and the bias term h(t) are used with (9e). Similarly,
the optimal thruster gains are computed at t = tk using the
values of the two solutions immediately before each impulse,
P(t−k ) and h(t−k ), with (9f). This procedure yields an optimal
combination of control torques, produced by the following
inputs, that accommodates the assumed disturbances:

m∗(t) = −R−1
c BT

c (t)
[

P(t)x(t) + h(t)
]

(18a)

n∗
k = −R−1

dk BT
dk A−T

dk

[(

P−
k − Qk

)

x−
k + h−

k

]

. (18b)

IV. OPTIMAL IMPULSE TIMES

The DA design approach proposed in Section III assumed
that impulses are applied at some prescribed impulse times.
This section investigates the necessary conditions for optimal-
ity of impulse times, such that the resulting cost function is
smaller than that of any other set of impulse times, provided
that the total number of impulses is known and fixed.

A. Summary of Previous Results

Variational principles similar to those presented in
Section III are used in [16], while also allowing for vari-
ation in tk , to derive the following transversality condition
(Section IV-C and the Appendix also use an essentially iden-
tical approach, but for the special case of repeating impulses):

�k � Hc
(

t−k
)− Hc

(

t+k
)+ ∂Hd (tk)

∂ tk
= 0 (19)

which is necessary for each impulse time in order for the
combination of tks to minimize J [given by (7)] over all
possible impulse patterns (with known and fixed number of
impulses). Even though the continuous Hamiltonian Hc(t) is
defined differently in this brief, the above necessary condition
remains the same, since its derivation is not affected by the
inclusion of d(t) as in (8a).

Compared with [16], what does differ in this brief
is what (19) translates to in the context of this par-
ticular DA attitude control problem. Section IV-B per-
forms this study. In addition, Section IV-C shows that

if the impulse pattern repeats in every orbit, one can
conclude optimality by simply generating a grid in the
first orbit and studying the sum of �k,i s computed
at tk + i T [i.e., impulse times within the i th interval that
correspond to the same tk ∈ [0, T )].

B. Extension to Accommodate Disturbances

In this particular problem, Adk and Bdk are constant, and
assuming, for simplicity, that Qdk and Rdk are constant too,
the discrete Hamiltonian in (8b) becomes independent of tk
and ∂Hd(tk)/∂ tk = 0. Consequently, the optimality condition
in (19) becomes �k = Hc(t

−
k ) − Hc(t

+
k ) = 0.

Consider the continuous-time Hamiltonian in (8a) immedi-
ately before or after an impulse application time, i.e., at t = t±k
⎛

⎜

⎜

⎜

⎜

⎜

⎝

1

2

[

x
(

t±k
)

λ
(

t±k
)

]

︸ ︷︷ ︸

z±
k

T
[

Qc

(

t±k
)

AT
c

(

t±k
)

Ac
(

t±k
) −Bc

(

t±k
)

R−1
c

(

t±k
)

BT
c

(

t±k
)

]

︸ ︷︷ ︸

H±
k

+
[

0
d
(

t±k
)

]

︸ ︷︷ ︸

I±
k

T

⎞

⎟

⎟

⎟

⎟

⎠

[

x
(

t±k
)

λ
(

t±k
)

]

︸ ︷︷ ︸

z±
k

= Hc
(

t±k
)

(20)

where H±
k (the same as that in [16]), I±

k , and z±
k are defined

for convenience. Solving (14) for λ(t+k ), together with its
substitution into the closed-loop discrete dynamics of x(t+k ),
yields the relationship z+

k = Gk z−
k between the preimpulse

and postimpulse states and costates, where Gk is defined as

Gk �
[

Adk + Bdk R−1
dk BT

dk A−T
dk Qdk −Bdk R−1

dk BT
dk A−T

dk

−A−T
dk Qdk A−T

dk

]

and is identical to that in [16]. Substituting this relationship
into (20) for the postimpulse Hamiltonian yields

Hc
(

t+k
) = 1

2
z−

k
T

GT
k H+

k Gk z−
k + I+

k
T

Gk z−
k . (21)

From Section III, we have λ(t−k ) = P(t−k )x(t−k )+h(t−k ), using
which the preimpulse state/costate vector is given by

z−
k =

[

x
(

t−k
)

λ
(

t−k
)

]

=
[

1
P
(

t−k
)

]

︸ ︷︷ ︸

Y−
k

x
(

t−k
)+

[

0
h
(

t−k
)

]

︸ ︷︷ ︸

K−
k

. (22)

Finally, substituting (22) into (21) and using (20) with t = t−k
for the preimpulse Hamiltonian produce

Hc
(

t+k
) = 1

2

[

f T (x−
k

)

GT
k H+

k Gk + 2I+
k

T
Gk
]

f
(

x−
k

)

(23a)

Hc
(

t−k
) = 1

2

[

f T (x−
k

)

H−
k + 2I−

k
T ]

f
(

x−
k

)

(23b)

where f (x−
k ) � Y−

k x(t−k )+K −
k . Realizing that I+

k = I−
k = Ik

(since the disturbances are not affected by the impulses)
and recalling that ∂Hd (tk)/∂ tk = 0 owing to the constant
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discrete-time penalty and state-space matrices assumption,
subtracting (23a) from (23b) yields the following, upon expan-
sion and simplification, for �k of (19):

�k = 1

2

[

x
(

t−k
)T Mk x

(

t−k
)+ (K−

k
T

Nk + Lk
)

K−
k

+(K −
k

T (
Nk + NT

k

)+ Lk
)

Y−
k x
(

t−k
)] = 0 (24)

where Nk � H−
k − GT

k H+
k Gk , Lk � 2I T

k (1 − Gk), and

Mk � Y−
k

T
NkY−

k . Comparing the result in (24) with that in
[16, eq. (37)], one realizes that in addition to a quadratic term
(which is the same for both relationships, as the Mks reduce
to an identical definition if one lets Fk = 0 in [16] considering
∂ Adk/∂ tk = 0 here), there now exists a linear term in x(t−k )
as well as a bias term that is independent of x(t−k ).

C. Extension to Multiple Orbits
Hitherto, we have the necessary conditions to check whether

a set of impulses applied at tk, k ∈ {1, . . . , N − 1}, with
N −1 known and fixed, locally minimizes the cost function J
associated with the DA hybrid attitude controller. These con-
ditions are given as �k = 0 at each tk , where the expressions
used to compute �k were presented in Section IV-B. Assume
one were to use the brute force approach of discretizing
the control interval, traversing all possible combinations of
impulse times (for known and fixed N − 1), and checking
the necessary conditions at each tk . This approach would be
extremely computationally expensive for a multiorbit case in
which each impulse time is allowed to vary independently
of the others. In contrast, if one imposes the constraint that
the impulse pattern in all orbits is identical (i.e., impulses are
applied at the same times relative to the beginning of each
orbit as those in the first orbit), the discretized grid that is
traversed can be confined to the first orbit only. The aim of
this section is to extend the optimality concepts presented so
far to this special case.

Let the impulse application times over μ orbits, for t ∈
[0, μT ], be tk = tβ+i T , where tβ ∈ [0, T ), β ∈ {1, . . . , n−1}
refer to the n − 1 impulse times in the first orbit. In addition,
i ∈ {0, . . . , μ − 1} indicates the i th orbit after the first
one. With these definitions, the cost function is modified to
incorporate the repeating pattern, and its differential is derived
as described in the Appendix. Then, setting d J = 0 for an
extremum and arguing that the coefficients of all differentials
must vanish, the following “extended” transversality condi-
tions are obtained:

�β �
μ−1
∑

i=0

[

Hc
(

t−β +i T
)−Hc

(

t+β + i T
)+ ∂Hdβ,i

∂(tβ + i T )

]

= 0

(25)

where ∂(·)/∂(tβ) = ∂(·)/∂(tβ+i T ) is utilized. Note that �β =
∑μ−1

i=0 �β,i = 0. This means that the same approach as that for
a single-orbit case can be followed for multiple orbits with a
periodic impulse pattern, but the extended optimality condition
�β corresponding to the tβ ∈ [0, T ) should be computed by
summing (over all orbits within the control interval) the terms
that would, in a more general case, represent �k , given by (19)
[or given by (24) specifically to this brief’s DA problem], for
distinct tks.

V. NUMERICAL EXAMPLES

The effectiveness of the proposed DA hybrid LQR is studied
via numerical integration of the nonlinear equations of motion
given by (1) and (3). Prior to the simulation of the dynamics,
P(t) and h(t) are determined by integrating (12) backward
from the terminal time using a fourth-order Runge–Kutta
scheme, inducing jumps in the solutions using (17) at each
impulse time, and using P(t−k ) and h(t−k ) as the new terminal
conditions for backward integration until time 0 is reached.
Then, during the forward nonlinear simulation via RK4, the
control torques are computed using (18) and added to the
estimated disturbance torques at each time.

A circular near-polar Keplerian orbit with an altitude
of 450 km and orbital parameters {e, i,�,ω, t0} =
{0, 87°, 0 rad, 0 rad, 0 s} (representing eccentricity, inclination,
right ascension of ascending node, argument of periapsis, and
time of perigee passage, respectively) is assumed. Residual
dipole moments resulting from the on-board electronics
are assumed to be mdist = [0.01 0.01 0.01]T A · m2.
The spacecraft’s moment of inertia is set to
I = diag{27, 17, 25} kg · m2.

The penalty matrices used in (7) are taken as constant. To
reduce the size of the design space and for simplicity, these
matrices are set to Qc = blockdiag{qc · 13×3, qc · I} and
Qd = blockdiag{qd · 13×3, qd · I} for the state penalties,
and Rc = rc · 13×3 and Rd = rd · 13×3 for the control
penalties. The scalar parameters are then tuned to produce
satisfactory performance by balancing the penalty on the states
compared with that on the control, as well as by balancing the
penalty on continuous dynamics/control compared with that
on the discrete dynamics/control. For the numerical examples
presented here, these parameters are set to rc = 3 × 105,
qc = 108, rd = 1013, and qd = 1010. The terminal penalty is
set to S = P(t f ) = 0.

A. Extended Optimality Conditions and Multiple Orbits
To validate the optimal impulse timing conditions for

multiple orbits and with disturbance accommodation, given
by (24) and (25), a 100-point grid is defined on [0, T ) for
selecting a single-impulse application time. A brute force
approach is used to compute the cost function, J [given
by (7)]: the grid is traversed with t1 ∈ {0, 0.01, . . . , 0.99}×T ,
while the simulation is run over five orbital periods with
repeating patterns of impulses applied at tk = t1,i = t1 + i T ,
i ∈ {0, . . . , 4}. In the meantime, the extended optimality
condition of (25), �1 = ∑4

i=0 �1,i , is computed for each
choice of t1 by summing over the �1,is [given by (24) that
accounts for the disturbances] evaluated at each impulse time,
tk = t1,i , with i ∈ {0, . . . 4}. Since the theory is derived using
a linearized model, the nonlinear simulation is run with zero
ICs (ε0 = 0, η0 = 1, and ω0 = 0 rad/s) to ensure that the
angles and rates are small enough for the linearity assumption
to remain valid.

The results of this simulation are presented in Fig. 1. The
total cost J computed over five orbits is shown in Fig. 1(a).
The �1,is computed separately at each orbit i ∈ {0, . . . , 4} are
shown in Fig. 1(b), while their sum is depicted in Fig. 1(c).
Interestingly, the global minimum of J occurs at the boundary,
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Fig. 1. Optimal 1-impulse timing with zero ICs, t1 ∈ {0, 0.01, . . . , 0.99} × T and t ∈ [0, 5T ]. (rc = 3 × 105, qc = 108, rd = 1013, and qd = 1010) (a)
Total cost computed over five orbits. (b) Individual conditions �1,i computed at the ith orbit. (c) Extended optimality condition �1 =∑4

i=0 �1,i .

t1 = 0, which means that an impulse right at the beginning
results in the smallest cost. There is no apparent correspon-
dence between Fig. 1(a) and (b), as expected, whereas the local
extrema of J in Fig. 1(a) exactly correspond to the zeros of �1
in Fig. 1(c), confirming the validity of the extended optimality
condition theory presented in Section IV-C. Also validated
is the extension to accommodate disturbances (presented in
Section IV-B), because �1,is accumulated to yield �1 are
computed using (24), which includes the disturbance effects.

Although this simulation case and, in general, that presented
in Section IV-C are a special case with periodic impulses,
significant reduction in computational effort ensues from this
constraint: the only degree of freedom for the impulse time(s)
is in the first orbit. If one were to use the original theory of [16]
to find the optimal combination of five impulse times over five
orbits with no restriction on their relative timing (except that
they should occur in different orbits), the same fine grid of
0.01T mesh size would require 1005 computations owing to
the five degrees of freedom for tk , in contrast to only 100
needed in this restricted (yet still useful) case of T -periodic
impulses.

B. Performance of DA Hybrid Magnetic LQR

In this section, the disturbance rejection performance of
the DA hybrid magnetic LQR is studied, in particular in
comparison with that of the regular (nonaccommodating)
hybrid LQR. The same penalty matrices and ICs as those in
Section V-A (ε0 = 0, η0 = 1, and ω0 = 0 rad/s) are used.

Based on Fig. 1, which suggests that the best time to apply a
thrust in a single-impulse case is at the beginning, t1 = 0 is
chosen here for both regular and DA hybrid LQRs. Because
there is no transient behavior resulting from nonzero ICs,
these results can be viewed as the controllers’ steady-state
performance. To assess the robustness of the proposed DA
LQR with respect to accuracy of the assumed disturbances,
the controller is designed using I = diag{25, 15, 25} kg · m2

and mdist = [0.009 0.009 0.009]T A · m2, reflecting about
10% error compared with the truth model.

Shown in Fig. 2 are the nonlinear simulation results using
zero ICs. Although the second components are not affected,
improvements are seen in the steady-state control of the
other components. The improvements become much more
pronounced (with significantly better control of the two com-
ponents) when the design and truth models of the disturbances
match, but these results are not included.

Table I lists the values of some parameters defined to
enable quantitative studies on the controllers’ performance.
The controllers tested are solely magnetic LQR with no
impulses, hybrid LQR with t1 = 0, and DA hybrid LQR
with t1 = 0. In addition to the total cost, the performance
parameters include the electrical energy consumption, E =
3R/(c2 A2)

∫ T
0 mT mdt , assuming three mutually perpendicu-

lar magnetic torque coils with resistance R = 100 �, c = 400
turns, and diameter d = 10 mm based on some representative
missions presented in [18]. Also included are some rms-
like norms defined as ‖τ‖5T � ((

∫ 5T
0 τT

magτmagdt)/(5T ))1/2
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Fig. 2. Quaternions and angular velocity: regular (dashed line) versus DA (solid line) hybrid magnetic LQR (rc = 3 × 105, qc = 108, rd = 1013, and
qd = 1010).

TABLE I

PERFORMANCE OF REGULAR MAGNETIC, REGULAR LQR, AND DA LQR
OVER 5T (rc = 3 × 105 AND qc = 108, AND FOR THE HYBRID

CONTROLLERS ALSO, rd = 1013 AND qd = 1010 )

for magnetic torques, ||v||5T � ((
∫ 5T

0 τT
impτ impdt)/(5T ))1/2

for impulsive torques, ||ω||5T � ((
∫ 5T

0 ωT ωdt)/(5T ))1/2 for
angular velocity, and ||φ||5T � ((

∫ 5T
0 φ2dt)/(5T ))1/2 for rota-

tion angle (from Euler’s axis/angle parameters). For ||v||5T ,
a finite-width approximation of Dirac delta is used, and to
compute φ, cos(φ) = (trace{CBG} − 1)/2 is used.

The values in Table I highlight the superiority of the DA
hybrid magnetic controller in disturbance rejection for this
choice of penalties. Although the regular hybrid LQR was
shown in [12] to improve the transient for the same set of
penalties as that of this brief, based on Table I, it seems to
offer little improvement (if any) in steady-state performance
compared with a solely magnetic controller. On the other
hand, the DA hybrid LQR reduces all parameters (including a
38% reduction in J ) thanks to the disturbance awareness
inherent in its design.

VI. CONCLUSION

Modifications have been suggested to the hybrid (con-
tinuous/impulsive) attitude control scheme proposed in [12]
in order to accommodate disturbance torques resulting from
gravity gradient and residual magnetic dipole moments, both
of which can be estimated a priori. Similar to the Riccati
solution, continuous- and discrete-time equations have been
derived to describe the evolution of the disturbance-rejecting

bias term over time and the optimal control inputs have been
modified accordingly. The simulation results with zero ICs
have been presented that suggest steady-state performance
improvement as a result of disturbance accommodation.

In addition, the implications of the necessary conditions
for optimality of impulse times presented in [16] have been
studied in the context of the DA attitude control problem of
this brief. The conditions have been shown to require extra
terms to be added to the familiar quadratic form discussed
in [16] in order to account for the disturbances. It has also
been shown, in the special case of repeating impulse patterns,
that the extended necessary condition (with degrees of freedom
only in the first orbit) would simply involve the summation
(over all orbits in the control interval) of the terms that would
originally represent the optimality conditions computed at
distinct impulse times. Multiorbit simulation results with zero
ICs validated both extensions to the optimality conditions.

APPENDIX

DIFFERENTIAL OF COST FUNCTION FOR MULTIPLE ORBITS

This section presents a variational approach to derive the
differential of the cost function associated with repeating
impulse patterns over μ orbits, t ∈ [0, μT ]. Let tβ ∈
[0, T ), β ∈ {1, . . . , n − 1} be the n − 1 impulse times in the
first orbit, such that tk = tβ + i T , where i ∈ {0, . . . , μ − 1}
indicates the i th orbit after the first one. Let t+0 = 0 and
t−n = T . The hybrid performance index J [given by (7)] can
be modified to reflect the imposed restriction on a periodic
impulse pattern and that t f = μT , and can be rewritten using
(8) as follows:

J = J f + Jc + Jd � 1

2
xT (μT )Sx(μT )

+
μ−1
∑

i=0

n−1
∑

β=0

∫ t−β+1+iT

t+β +iT
[Hc(t) − λT (t)ẋ(t)]dt

+
μ−1
∑

i=0

n−1
∑

β=1

[

Hd(tβ + i T ) − νT
k,i x
(

t+β + i T
)]

(26)

where J f , Jc, and Jd represent the terminal, continuous-
time, and discrete-time costs, respectively. We now take the
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differential of J following the same approach as that in [16]:

d J f = xT (μT )Sd x(μT ) (27a)

d Jc =
μ−1
∑

i=0

n−1
∑

β=0

δ

{
∫ t−β+1+iT

t+β +iT
[Hc − λT ẋ]dt

}

+
n−1
∑

β=0

d

dtβ

⎧

⎨

⎩

μ−1
∑

j=0

n−1
∑

ι=0

∫ t−ι+1+ j T

t+ι + j T
[Hc − λT ẋ]dt

⎫

⎬

⎭

dtβ

(27b)

d Jd =
μ−1
∑

i=0

n−1
∑

β=1

[

∂Hdβ,i

∂x−
β,i

T

d x−
β,i + ∂Hdβ,i

∂vβ,i

T

dvβ,i

+∂Hdβ,i

∂ tβ
dtβ − νT

β,id x+
β,i

]

(27c)

where the shortened subscript “β, i” denotes “β + i(n − 1),”
x−

β,i � x(t−β + i T ), and Hdβ,i � Hd (tβ + i T ). In addition,
∂(·)/∂(tβ + i T ) = ∂(·)/∂(tβ) is used, since all the impulses
tβ + i T corresponding to tβ from the first orbit are dictated
by tβ . Note that (27b) is written considering the noncontempo-
raneous differential, analogously to how the state’s differential
must be computed for any tβ [16]

d x
(

t±k
) = δx

(

t±k
)+ ẋ

(

t±k
)

d(tk). (28)

Now, taking the variation in the first part of (27b) inside the
integral and noting that Hc is not directly a function of tk

μ−1
∑

i=0

n−1
∑

β=0

δ

{
∫ t−β+1+iT

t+β +iT
[Hc(t) − λT (t)ẋ(t)]dt

}

=
μ−1
∑

i=0

n−1
∑

β=0

{
∫ t−β+1+iT

t+β +iT

[

∂Hc(t)

∂x(t)

T

δx(t) + ∂Hc(t)

∂u(t)

T

δu(t)

+ λ̇
T
(t)δx(t)

]

dt − λT (t)δx(t)

∣

∣

∣

∣

∣

t−β+1+iT

t+β +iT

⎫

⎬

⎭

(29)

where integration by parts is performed. While traversing all
orbits by increasing i from 0 to μ − 1, the last term of
∑n−1

β=0 −λT δx|t
−
β+1+iT

t+β +iT
for the i th orbit will cancel the first

term of the expression for the (i + 1)th orbit. Thus, we have

μ−1
∑

i=0

n−1
∑

β=0

−λT (t)δx(t)

∣

∣

∣

∣

∣

∣

t−β+1+iT

t+β +iT

= −λT (μT )���
d x(μT )

δx(μT )

+�������0
λT (0)δx(0) +

⎛

⎜

⎝

μ−1
∑

i=0

n−1
∑

β=1

λT (t)δx(t)

∣

∣

∣

∣

∣

∣

t+β +iT

t−β +iT

⎞

⎟

⎠ (30)

where δx(t+0 ) = δx(0) = 0 (dictated by the ICs) and
t−n + (μ − 1)T = μT = t f are evoked. In addition, (28)
is used with dt f = 0 to equate the terminal state’s variation
and differential.

Using Leibniz’s integration rule on the second part of (27b)

n−1
∑

β=0

d

dtβ

⎧

⎨

⎩

μ−1
∑

j=0

n−1
∑

ι=0

∫ t−ι+1+ j T

t+ι + j T
Hc − λT ẋ dt

⎫

⎬

⎭

dtβ

=
n−1
∑

β=0

⎧

⎪
⎪
⎨

⎪
⎪
⎩

μ−1
∑

j=0

(

Hc − λT ẋ
)

∣

∣

∣

∣

∣

∣

t−β + j T

−(Hc − λT ẋ
)

∣

∣

∣

∣

∣

∣

∣

t+β + j T

⎫

⎪
⎪
⎬

⎪
⎪
⎭

dtβ

(31)

since d(t−ι+1 + j T )/dtβ = 1 only when ι + 1 = β and
it is 0 otherwise, while d(t+ι + j T )/dtβ = 1 only when
ι = β and it is 0 otherwise. Furthermore, taking into account
that d(t0 + i T ) = d(i T ) = 0 and d(t±β + i T ) = dtβ
for any impulse time, the right-hand side of (31) can be
rewritten as

μ−1
∑

i=0

n−1
∑

β=1

−Hc

∣

∣

∣

∣

∣

∣

t+β +iT

t−β +iT

dtβ +
μ−1
∑

i=0

n−1
∑

β=1

(

λT ẋdt
)

∣

∣

∣

∣

∣

∣

t+β +iT

t−β +iT

. (32)

Substituting (30) into (29) and adding the result to (31) yields
an alternative form for d Jc given by (27b), part of which can
be further simplified using (28). Finally, passing this simplified
form of d Jc to (27a) and (27c) and collecting the like terms
yield the following for d J :

d J =
μ−1
∑

i=0

n−1
∑

β=0

∫ t−β+1+iT

t+β +iT

(

∂Hc

∂x

T

+ λ̇
T

)

δx + ∂Hc

∂u

T

δudt

+
n−1
∑

β=1

μ−1
∑

i=0

[(

∂Hdβ,i

∂x−
β,i

T

− λT (t−β + i T
)

)

d x−
β,i

+(λT (t+β + i T
)− νT

k,i

)

d x+
β,i + ∂Hdβ,i

∂vβ,i

T

dvβ,i

+
(

Hc
(

t−β + i T
)− Hc

(

t+β + i T
)+ ∂Hdβ,i

∂ tβ

)

dtβ

]

+(xT (μT )S − λT (μT ))d x(μT ). (33)

The result is, thus, similar to [16, eq. (11)], but with tk =
tβ + i T and an additional summation over all orbits.
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