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Lorentz-Augmented Spacecraft
Formation Reconfiguration

Ludwik A. Sobiesiak and Christopher J. Damaren

Abstract— The use of the geomagnetic Lorentz force as a
means of actuation is considered in this paper for the purpose
of spacecraft formation reconfiguration. A continuous/impulsive
linear quadratic regulator (LQR) is proposed for the purpose
of designing an optimal control strategy that combines
continuous Lorentz force actuation with impulsive thrusting. New
theory is presented for the determination of optimal impulsive
thrust application time. A simulation of a spacecraft formation
reconfiguration maneuver demonstrates the effectiveness of the
continuous/impulsive LQR.

Index Terms— Hybrid continuous/impulsive optimal control,
Lorentz-augmented formation flight, spacecraft formation flying.

I. INTRODUCTION

THIS paper explores performing spacecraft formation
reconfiguration with the aid of the geomagnetic Lorentz

force. The Lorentz force is the force experienced by a charged
particle as it moves through a magnetic field. In the context
of this paper, the particle is a charge-carrying spacecraft and
the magnetic field is the earth’s magnetic field. Peck [1] first
proposed the use of the geomagnetic Lorentz force as a means
of actuation for spacecraft. In low earth orbit, the relative
velocity of the spacecraft with respect to the geomagnetic field
is large enough that a modest charge on the spacecraft can
result in a meaningful acceleration. Through the modulation
of such a charge, a means of propellantless propulsion can be
achieved.

References [2]–[5] that explore Lorentz-augmented for-
mation flight focus exclusively on using relative Cartesian
coordinates to model the spacecraft relative motion. This paper
uses mean differential orbital elements as the plant model
of the relative spacecraft dynamics for controller design. A
key aspect of this approach is the use of Gauss’s variational
equations to establish a linear time-varying (LTV) model [6].
Sobiesiak and Damaren [7]–[9] have explored the use of the
Lorentz force for the purpose of spacecraft formation-keeping
in the presence of disturbances such as the J2 zonal harmonic,
caused by the earth’s oblateness. Due to the constrained nature
of the Lorentz force, it was identified that the deputy spacecraft
state relative to the chief spacecraft is not entirely controllable
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by use of the Lorentz force alone [9]. Some supplemental
thrust control effort must be used to drive an initial relative
state to a desired final state.

The objective of this research is to combine the continuously
acting Lorentz force control effort with the minimal amount
of thruster control effort needed to control the formation. This
goal led to the development of the hybrid continuous/impulsive
linear quadratic regulator (LQR) presented in [8], which built
upon the theory in [10] and [11]. The theory, however, was
limited to prescribed impulse application times. In this paper,
the hybrid LQR theory is extended so that a performance
index, J , is minimized not only with respect to continuous
and impulsive control inputs but also with respect to the time
at which the impulsive action is applied. A preliminary version
of the theory was presented in [12].

This new theory is applied to the Lorentz-augmented
spacecraft formation reconfiguration problem. The relative
spacecraft state is described using mean differential orbital
elements, whose dynamics include the secular effects of
the J2 perturbation. A preliminary version of this paper was
presented in [13]. Other approaches to spacecraft formation
establishment and reconfiguration using impulsive thruster
inputs exclusively can be found in [14]–[16]. It is noteworthy
that [15] optimized the timing of the impulsive inputs.

Use of the Lorentz force in the fashion described here
is currently at a low state of technology readiness. This
paper explores a possible application of the Lorentz force,
but determining how a spacecraft would generate and store
the charge necessary to employ the Lorentz force is beyond
the scope of this paper.

II. CONTROL OF SYSTEMS WITH CONTINUOUS

AND IMPULSIVE INPUTS

The following state-space representation of a continuous/
impulsive LTV system is considered, with N − 1 impulsive
actions being applied at t = tk , k = 1, . . . , N − 1

ẋ = A(t)x(t) + B(t)u(t), t �= tk (1)

x
(
t+k

) = Ckx
(
t−k

) + Dkvk, t = tk (2)

where x(t) ∈ R
n is the state, u(t) ∈ U , a bounded set of

admissible controls in R
m , is the piecewise continuous control,

and vk ∈ V , a bounded set of admissible impulsive controls
in R

l , is the impulsive control. The superscripts (·)− and (·)+
denote the instant immediately before and after the impulsive
dynamics are applied, respectively. In the problem being
considered, it is assumed that the number of impulses, N − 1,
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is prescribed but the times at which they are applied will be
optimized. In particular, we seek controls u and vk , along with
times tk , k = 1, . . . , N − 1, that minimize

J = 1

2
xT(t f )Kx(t f )

+ 1

2

∫ t f

t0
[xT(t)Q(t)x(t) + uT(t)R(t)u(t)]dt

+ 1

2

N−1∑

k=1

[
xT(

t−k
)
Qkx

(
t−k

) + 1

2
vT

k Rkvk

]
(3)

where K = KT ≥ 0, Q(t) = QT(t) ≥ 0, Qk = QT
k ≥ 0,

R(t) = RT(t) > 0, and Rk = RT
k > 0. It is assumed that

x(0) is prescribed.
The continuous and impulsive Hamiltonian functions are

introduced as

Hc = 1

2
xT(t)Q(t)x(t) + 1

2
uT(t)R(t)u(t)

+ λT(t)[A(t)x(t) + B(t)u(t)] (4)

Hd,k = 1

2
xT(

t−k
)
Qkx

(
t−k

) + 1

2
vT

k Rkvk

+ νT
k

[
Ckx

(
t−k

) + Dkvk
]
. (5)

The vectors λ(t) and νk are two sets of costates that adjoin the
continuous and impulsive dynamics, respectively. Using the
Hamiltonian functions, the hybrid, quadratic cost functional
becomes

J = 1

2
xT(t f )Kx(t f ) +

N−1∑

k=1

[Hd,k − νT
k x

(
t+k

)]

+
N−1∑

k=0

∫ t−k+1

t+k
[Hc − λT(t)ẋ(t)]dt (6)

where t+0 = t0 and t−N = t f .

A. Necessary Conditions for Optimality

Variational principles are now applied to obtain necessary
conditions for an extremum of the cost functional in (6).
An extremum is sought not only with respect to the controls
and states but also with respect to application time of the
impulsive dynamics. To vary impulse application time, the
noncontemporaneous variations or differentials of the state and
control must be considered [17], e.g., the differential of the
state vector must include the variation in application time

dx
(
t±k

) = δx
(
t±k

) + ẋ
(
t±k

)
dtk . (7)

Taking the first differential of the cost functional yields

d J = xT(t f )Kdx(t f )

+
N−1∑

k=1

[
∂Hd,k

∂x
(
t−k

)
T

dx
(
t−k

) + ∂Hd,k

∂vk

T
dvk + ∂Hd,k

∂ tk
dtk

− νT
k dx

(
t+k

)+ d

dtk

N−1∑

l=0

∫ t−l+1

t+l
(Hc−λTẋ)dt dtk

]

+
N−1∑

k=0

∫ t−k+1

t+k

(
∂Hc

∂x

T
δx(t)+ ∂Hc

∂u

T
δu(t)−λT(t)δẋ(t)

)
dt .

(8)

Using Leibniz’s rule of integration, the derivative of the
integral terms with respect to tk can be evaluated

N−1∑

k=1

d

dtk

[
N−1∑

l=0

∫ t−l+1

t+l
(Hc − λTẋ)dt

]

dtk

=
N−1∑

k=1

(Hc − λTẋ)|t−k dtk − (Hc − λTẋ)|t+k dtk . (9)

The terms containing ẋ(t±k )dt±k on the right-hand side of (9)
can be combined with the result of integrating by parts the
last term in (8). Doing this while using (7), we have

−
N−1∑

k=0

[
(λT(t)ẋ(t)dt)|t

−
k+1

t+k
+ λT(t)δx(t)|t

−
k+1

t+k

]

=
N−1∑

k=1

(
λT(

t+k
)
dx

(
t+k

) − λT(
t−k

)
dx

(
t−k

)) − λT(t f )dx(t f )

(10)

where it has been assumed that δx(0) = 0, t−N = t f , and
dt0 = dtN = 0. Introducing this result and the terms
containing Hc from (9) into (8) and collecting like terms yields

d J =
(

xT(t f )K − λT(t f )
)

dx(t f )

+
N−1∑

k=1

[(
Hc

(
t−k

) − Hc
(
t+k

) + ∂Hd,k

∂ tk

)
dtk

+ (
λT(

t+k
) − νT

k

)
dx

(
t+k

) + ∂Hd,k

∂vk

T
dvk

+
(

∂Hd,k

∂x
(
t−k

)
T

− λT(
t−k

)
)

dx
(
t−k

)
]

+
N−1∑

k=0

∫ t−k+1

t+k

[(
∂Hc

∂x

T
+λ̇

T
(t)

)
δx(t)+ ∂Hc

∂u

T
δu(t)

]

dt .

(11)

At an extremum of J , d J = 0. Therefore, the continuous
and impulsive costates are chosen such that

−λ̇(t) = ∂Hc

∂x
= Q(t)x(t) + AT(t)λ(t) (12)

λ
(
t−k

) = ∂Hd,k

∂x
(
t−k

) = Qkx(t−k ) + CT
k νk (13)

λ(t f ) = Kx(t f ) (14)

νk = λ
(
t+k

)
. (15)

Note, the continuous and impulsive costates are related via
the transversality condition in (15). The impulse application
times, tk , are chosen to satisfy the transversality condition

�k ≡ Hc
(
t−k

) − Hc
(
t+k

) + ∂Hd,k

∂ tk
= 0 (16)

for k = 1, . . . , N − 1. Finally

∂Hc

∂u
= 0 (17)

∂Hd,k

∂vk
= 0 (18)
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can be used to determine the optimal controls; however,
a controllability argument must be made to
justify (17) and (18), since δu(t) and dvk are not completely
arbitrary [17]. Together, (12)–(18) are the necessary conditions
for determining an extremum of J.

B. Optimal Controls

From (17) and (18), the optimal continuous and impulsive
control inputs are

u∗(t) = −R−1(t)BT(t)λ(t) (19)

v∗
k = −R−1

k DT
k νk (20)

where (·)∗ denotes the optimal quantity. Taking (1), with (19)
substituted for u(t), together with (12) forms the continuous
regulator two-point boundary value problem for which the
linear relationship

λ(t) = P(t)x(t) (21)

with P(t f ) = K is well known [18]. Taking the temporal
derivative of (21) and substituting in (1) and (12) with
(19) and (21) yields the well-known continuous matrix Riccati
equation

−Ṗ(t) = Q(t) + AT(t)P(t) + P(t)A(t)

−P(t)B(t)R−1(t)BT(t)P(t) (22)

and in the context of the continuous/impulsive control problem
is valid for each time interval t ∈ [t+k , t−k+1]. In the
sequel, we will need a boundary condition for P(t−k+1) (with
P(t−N ) = K) from which (22) can be integrated backward.

For the impulsive control, a similar development follows.
Substituting (20) into (2) and substituting (15) for νk into (13)
yields a system that is analogous to the well-known discrete-
time regulator two-point boundary value problem

x
(
t+k

) = Ckx
(
t−k

) − DkR−1
k DT

k λ
(
t+k

)
(23)

λ
(
t−k

) = Qkx
(
t−k

) + CT
k λ

(
t+k

)
(24)

for which the relationship

λ
(
t±k

) = P
(
t±k

)
x
(
t±k

)
(25)

holds. After some manipulation of (23) and (24), it can be
shown that

P
(
t−k

) = Qk + CT
k

(
1 + P

(
t+k

)
DkR−1

k DT
k

)−1P
(
t+k

)
Ck (26)

which is the well-known discrete-time matrix Riccati equation,
but in this context it governs the instantaneous change in
P across an impulse application time. The resulting
matrix P(t−k ) yields the boundary condition needed to
integrate (22) backward on [t+k−1, t−k ].

Note that the discontinuity in the Riccati solution is
consistent with the results of [19] who considered the case
of a cost function with additional penalties on the states at
discrete instants in time. This discontinuity does not appear to
be part of the solution presented in [11].

The optimal feedback control laws for the continuous and
impulsive inputs can now be written as

u∗(t) = −R−1(t)BT(t)P(t)x(t), t ∈ [
t+k , t−k+1

]
(27)

v∗
k = −R−1

k DT
k C−T

k

(
P
(
t−k

) − Qk
)
x
(
t−k

)
, t = t−k (28)

where (21) has been substituted into (19) and (24) has
been solved for λ(t+k ) and substituted into (20) for νk .
Equations (27) and (28) are the optimal control inputs
regardless of whether the optimal timing condition is satisfied
or not. For the nonoptimal time, (27) and (28) are still optimal
for the prescribed times.

C. Optimal Impulse Application Times

Let us briefly examine what (16) looks like for a continuous/
discrete input linear, time-varying system governed
by (1) and (2). For simplicity, it will be assumed for
the duration of this paper that Ck , Qk , and Rk are constant
matrices. The preimpulse and postimpulse continuous
Hamiltonians can be written as quadratic forms

Hc
(
t±k

) = 1

2

[
x
(
t±k

)

λ(t±k )

]T [
Q

(
t±k

)
AT

(
t±k

)

A
(
t±k

) −B
(
t±k

)
R−1

(
t±k

)
BT

(
t±k

)

]

·
[
xT(

t±k
)

λT(
t±k

)]T
. (29)

The transition of the states and costates from preimpulse to
postimpulse, written in matrix form, is

[
x
(
t+k

)

λ
(
t+k

)

]

= Gk

[
x
(
t−k

)

λ
(
t−k

)

]

(30)

where

Gk =
[

Ck + DkR−1
k DT

k C−T
k Qk −DkR−1

k DT
k C−T

k

−C−T
k Qk C−T

k

]

. (31)

Defining the matrices

H±
k =

[
Q

(
t±k

)
AT

(
t±k

)

A
(
t±k

) −B
(
t±k

)
R−1

(
t±k

)
BT

(
t±k

)

]

(32)

and using (30), the postimpulse Hamiltonian, written in terms
of the preimpulse states and costates, is

Hc
(
t+k

) = 1

2

[
xT(

t−k
)

λT(
t−k

)]
GT

k H+
k Gk

[
x
(
t−k

)

λ
(
t−k

)

]

. (33)

Finally, taking the partial derivative of (5) with respect to tk ,
we get

∂Hd,k

∂ tk
= λT(

t+k
)∂Dk

∂ tk
vk

= −λT(
t+k

)∂Dk

∂ tk
R−1

k DT
k λ

(
t+k

)
(34)

assuming that Ck , Qk , and Rk are constant.
Using (13), (15), and (20), and rewriting in matrix form,

we obtain

∂Hd,k

∂ tk
= −

[
x
(
t−k

)

λ
(
t−k

)

]T

Fk

[
x
(
t−k

)

λ
(
t−k

)

]

. (35)
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where we define the matrix Fk as

Fk = −
[−QkC−1

k
C−1

k

]
∂Dk

∂ tk
R−1

k DT
k

[−C−T
k Qk C−T

k

]
. (36)

Using λ(t−k ) = P(t−k )x(t−k ), the extremal condition,
(16), can be written in terms of only the preimpulse state
vector as

�k = 1

2
xT(

t−k
)
Mkx

(
t−k

) = 0 (37)

where

Mk = YT
k

(
H−

k − GT
k H+

k Gk + Fk + FT
k

)
Yk (38)

and

Yk = [
1 P

(
t−k

)]T
.

There are three ways in which �k = 0 can be satisfied:

1) x(t−k ) = 0;
2) Mk = 0;
3) x(t−k ) ∈ Null(Mk).

D. Sufficiency Condition

Determining an impulse time tk that satisfies (16) can result
in minimizing or maximizing J . In what follows, a sufficiency
condition is derived for determining a minimum J with respect
to tk . For a local minimum of J , it suffices to show d2 J ≥ 0
where

d2 J =
N−1∑

k=1

{(
∂H−

c

∂ tk
dtk + ∂H−

c

∂x

T

dx− + ∂H−
c

∂u

T

du−

+ ∂H−
c

∂λ

T

dλ− − ∂H+
c

∂ tk
dtk − ∂H+

c

∂x

T

dx+

− ∂H+
c

∂u

T

du+ −∂H+
c

∂λ

T

dλ+
)

dtk

+ ∂2Hd,k

∂ t2
k

dt2
k + 2

∂2Hd,k

∂ tk∂vT
k

dvkdtk + ∂2Hd,k

∂ tk∂λT
dλ+dtk

+ dλ+T ∂2Hd,k

∂λ∂vT
k

dvk + dλ+TCkdx−

+ dx−TQkdx− + dvT
k Rkdvk − dλ−T

dx−
}

+
N∑

k=0

∫ t−k+1

t+k

[
δxT(t)

(
∂2Hc(t)

∂x∂xT
δx(t)+ 2

∂2Hc(t)

∂x∂uT
δu(t)

)

+δuT(t)
∂2Hc(t)

∂u∂uT
δu(t)

]
dt (39)

where the superscripts (·)+ and (·)− have been used to denote
the arguments (t+k ) and (t−k ).

The notation (·)′ = d(·)/dtk is defined. Note that
(d(·)/dtk) �= (d(·)/dt). The derivative with respect to tk is
how a function changes with respect to the impulsive dynamics
application time. For the case where the impulsive dynamics

contain some feedback control, that change is not necessarily
the same as how the function changes with respect to time.
The relationships for the differentials of the states, costates,
and controls are

dx
(
t±k

) = δx
(
t±k

) + x′(t±k
)
dtk

dλ
(
t±k

) = δλ
(
t±k

) + λ′(t±k
)
dtk

du
(
t±k

) = δu
(
t±k

) + u′(t±k
)
dtk

dvk = δvk + v′
kdtk

where δλ(t±k ) = 0. In addition, the differential of the
postimpulse costate is related to its preimpulse coun-
terpart by

dλ− = CT
k dλ+ + Qkdx−. (40)

It has been shown that the optimal continuous and impulsive
inputs are identical to the optimal inputs for the classic
continuous and discrete LQR problems, respectively. The
optimal timing condition is an independent, additional
condition. Therefore, it is valid to claim that

min
u,vk ,tk

J (u, vk, tk) = min
tk

min
u,vk

J (u, vk, tk)

= min
tk

J
(
u∗, v∗

k , tk
)
.

Like its classical counterparts, a sufficient condition for a
minimum of the hybrid cost function with respect to the
inputs is the Legendre–Clebsch condition for both sets of
inputs, i.e., ∂2Hc/∂u∂uT > 0, ∂2Hd,k/∂vk∂vT

k > 0. As in
the case of the necessary conditions, there remains a second,
input-independent sufficient condition for a minimum with
respect to application time.

By prescribing the optimal control inputs, the variations of
the control inputs, and consequently the state, vanish. What
remains yields the sufficient condition for a minimum with
respect to application time

d2 J =
N−1∑

k=1

[
∂H−

c

∂ tk
+ ∂H−

c

∂x

T

x′(t−k
) + ∂H−

c

∂u

T

u′(t−k
)

+ ∂H−
c

∂λ

T

λ′(t−k
) − ∂H+

c

∂ tk
− ∂H+

c

∂x

T

x′(t+k
)

−∂H+
c

∂u

T

u′(t+k
) − ∂H+

c

∂λ

T

λ′(t+k
) + ∂2Hd,k

∂ t2
k

+ 2
∂2Hd,k

∂ tk∂vT
k

v′
k + ∂2Hd,k

∂ tk∂λT
λ′(t+k

)

+ λ′T(
t+k

)∂2Hd,k

∂λ∂vT
k

v′
k +v′

k
TRkv′

k

]

dt2
k ≥ 0. (41)

It is observed that the sum of the various partial derivative
terms of the continuous Hamiltonian is equal to the full
derivative of the continuous Hamiltonian with respect to tk

dHc

dtk
= ∂Hc

∂ tk
+ ∂Hc

∂x

T dx
dtk

+ ∂Hc

∂u

T du
dtk

+ ∂Hc

∂λ

T dλ

dtk
(42)
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such that d2 J can be written as

d2 J

=
N−1∑

k=1

[
dH−

c

dtk
− dH+

c

dtk
+ ∂2Hd,k

∂ t2
k

+ 2
∂2Hd,k

∂ tk∂vT
k

v′
k

+∂2Hd,k

∂ tk∂λT
λ′(t+k

) + λ′T(
t+k

)∂2Hd,k

∂λ∂vT
k

v′
k + v′

k
TRkv′

k

]

dt2
k .

(43)

From the definition of Hd,k in (5), we note that

∂2Hd,k

∂λ∂vT
k

= Dk,
∂2Hd,k

∂ tk∂vT
k

= λT(
t+k

)
D′

k (44)

and from the expression for the impulsive optimal control
in (15) and (20) we have

v′
k = −R−1

k D′
k
T
λ
(
t+k

) − R−1
k DT

k λ′(t+k
)
. (45)

Using these expressions, it follows that:
∂2Hd,k

∂ tk∂vT
k

v′
k + λ′T(

t+k
)∂2Hd,k

∂λ∂vT
k

v′
k + v′

k
TRkv′

k = 0. (46)

Also
d

dtk

(
∂Hd,k

∂ tk

)
= ∂2Hd,k

∂ t2
k

+ ∂2Hd,k

∂ tk∂vT
k

v′
k + ∂2Hd,k

∂ tk∂λT
λ′(t+k

)
(47)

which when combined with the result in (46) allows (43) to
be written as

d2 J =
N−1∑

k=1

d

dtk

(
Hc

(
t−k

) − Hc
(
t+k

) + ∂Hd

∂ tk

)
dt2

k . (48)

Therefore, sufficient conditions for a local minimum with
respect to the application time of the impulsive dynamics can
be written as

�2
k ≡ d

dtk

(
Hc

(
t−k

) − Hc
(
t+k

) + ∂Hd,k

∂ tk

)
≥ 0 (49)

for each application time k = 1, . . . , N − 1. Simple
numerical examples that validated the optimality conditions
in (16) and (49) were presented in [12].

III. APPLICATION TO LORENTZ-AUGMENTED

FORMATION FLIGHT

A. Formation Flight Dynamics

We consider a two-spacecraft formation where one of the
vehicles is designated as the chief and it is left uncontrolled.
The other vehicle is termed the deputy and it is subject to the
Lorentz force (described below) and the additional impulsive
thrusting. The mean differential element error dynamics, first
introduced by Schaub et al. [20], and subsequently used
successfully for other formation controller designs [6], [8],
are chosen to model the relative error dynamics of the deputy
spacecraft of the two-spacecraft formation.

Although not as important for the formation reconfiguration
problem as it is for formation keeping, the mean elements
include the secular effect of the J2 zonal harmonic in the
dynamics. It will be seen that Lorentz-augmented transfers
can take a considerable amount of time, so the secular
effects of J2 on the orbits will not be negligible. The mean

differential element error dynamics are also LTV dynamics and
lend themselves well to the design of a continuous/impulsive
LQR controller.

In Section III-C, a feedback controller will be designed
by applying the theory of Section II to the mean element
description of the reconfiguration error dynamics which is,
essentially, a regulator problem. We defend the choice of the
mean elements by noting the following passage from [20]:
dealing with mean orbit elements has the advantage that
short period oscillations are not perceived as tracking error;
rather, only the long term tracking errors are compensated for.
By feeding back errors in mean elements, advantage is taken
of celestial mechanics insight to avoid trying to correct orbit
elements at ill-suited times.

The classical (osculating) orbital elements are
e = [a e i � ω M]T, where a is the semimajor axis, e is
the eccentricity, i is the inclination, � is the right ascension
of the ascending node, ω is the argument of periapsis, and
M is the mean anomaly. The classical mean orbital element
set is ē = [ā ē ī �̄ ω̄ M̄]T, where mean orbital elements are
denoted by the (·̄) notation. The mappings from the osculating
elements to the mean elements are presented in [21].

Let the mean differential element error be

x(t) = ēd(t) − ēr

= (ēd(t) − ēc(t)) − (ēr − ēc(t))
= δēd(t) − δēr (t) (50)

where ēc are the mean elements of the chief, ēd are the mean
elements of the deputy, the subscript (·)r denotes the reference
orbital elements of the desired formation (ēr are the desired
deputy mean elements), and δēd denotes the differential
elements, those being the differences in orbital elements
between the deputy and chief spacecraft. Thus, δēr denotes
the difference between the reference mean element set and
those of the chief.

The linearized continuous and discrete mean differential
element error dynamics governing x are

ẋ(t) = A(ēr )x(t) + B(t, ēr )ū(t) (51)

x
(
t+k

) = x
(
t−k

) + B(
t−k , ēr

)
vk (52)

where the input matrix B contains Gauss’s variational
equations [22]

B(t, e)

=

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎣

2a2e sin f

h

2a2 p

rh
0

p sin f

h

(p + r) cos f + re

h
0

0 0
r cos θ

h

0 0
r sin θ

h sin i

− p cos f

he

(p + r) sin f

he
−r sin θ

h tan i
b(p cos f − 2re)

ahe
−b(p + r) sin f

ahe
0

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(53)
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Fig. 1. LVLH frame.

where h is the orbit’s specific angular momentum, r is the
orbit radius, b is the orbit’s semiminor axis, p is the semilatus
rectum, f is the true anomaly, and θ = ω + f is the true
latitude.

The continuous state matrix is

A(ēr ) =

⎡

⎢
⎢
⎢
⎢
⎣

03×3 03×3

∂ ˙̄�
∂ ā

∂ ˙̄�
∂ ē

∂ ˙̄�
∂ ī

∂ ˙̄ω
∂ ā

∂ ˙̄ω
∂ ē

∂ ˙̄ω
∂ ī

03×3

∂ ˙̄M
∂ ā

∂ ˙̄M
∂ ē

∂ ˙̄M
∂ ī

⎤

⎥
⎥
⎥
⎥
⎦

. (54)

The secular mean element drift rates, ˙̄�, ˙̄ω, and ˙̄M and
their partial derivatives can be found in [21]. The vector
ū(t) in (51) and the vector vk in (52) are the applied
continuous acceleration and impulsive thrust, respectively,
and are expressed in the spacecraft’s local-vertical local-
horizontal (LVLH) frame, where the vector ĥr is in the
direction of the chief’s orbital radius, ĥh is aligned with
the chief’s angular momentum vector, and the vector ĥθ

completes the right-hand rule, as illustrated in Fig. 1. The
origin of the LVLH frame is located at the chief spacecraft.

We are interested in utilizing the geomagnetic Lorentz force
as the primary means of propulsion for a spacecraft for the
purpose of spacecraft formation reconfiguration. This would
require a spacecraft to carry and modulate a significant elec-
trical charge. Any spacecraft with a net electrical charge and
a nonzero velocity relative to the earth’s magnetic field will
experience the Lorentz force, which, per unit mass is given by

�fL(t) = q(t)

m

(�̇r(t) − �ω⊕ × �r(t)) × �b⊕(t)
︸ ︷︷ ︸

≡�̃fL

. (55)

The quantity q/m is the charge-to-mass ratio, or specific
charge, �b⊕ is the local magnetic field vector of the earth,
�ω⊕ is the angular velocity vector of the earth, and �r and �̇r are
the spacecraft position and velocity vectors, respectively.

For a Lorentz-augmented spacecraft, the continuous
acceleration is given by

ū(t) = q(t)

m
Chi f̃L (56)

where Chi is the rotation matrix from the geocentric inertial
frame, �F i , to the LVLH frame, �Fh , of the reference orbit, and

the quantity f̃L are the components expressed in �F i of the

vector �̃fL(t) defined in (55). The sole continuous control
input u(t) is the specific charge q(t)/m. Therefore, upon
substituting (56) into (51), (51) becomes

ẋ(t) = A(ēr )x(t) + (B(t, ēr )Chi f̃L
)

︸ ︷︷ ︸
u(t)

≡ B(t, ēr ). (57)

Note that (57) can be identified with (1) and (52) can be
identified with (2) with Ck = 1 and Dk = B(t−k , ēr ).
In [8] and [9], an analysis of the controllability of the
Lorentz-augmented differential element dynamics revealed
that the controllable subspace has dimension five in a
state space of dimension six, which motivates the need for
the additional thruster actuation. The design goal for the
continuous/discrete LQR is to minimize the required thruster
effort required for the Lorentz-augmented maneuvers.

B. Optimal Formation Reconfiguration Problem

Given a set of chief mean orbital elements ēc and
an initial formation described by the deputy mean orbital
elements ēd(0), we wish to transfer the mean differential
deputy elements close to a formation δēr in finite time.
In other words, the objective is to transfer the state in (50)
from x(0) = ēd(0) − ēr to a state x(t) = ēd(t) − ēr

in some neighborhood of the origin. We will be using the
hybrid feedback regulator solution developed in Section II to
transfer the deputy’s relative mean element error to a vicinity
of the origin in finite time. This can be effectively accom-
plished by determining u using (27), vk using (28), and tk ,
k = 1, . . . , N −1, using (16), (37), and (38), which minimizes
the performance index in (3). The selection of the weighting
matrices appearing there is discussed in Section III-D.

C. Algorithm for Optimal Time Determination

The optimally timed hybrid LQR is applied to the formation
reconfiguration problem in the following manner. There is no
prescribed time limit on the duration of the reconfiguration,
nor is the duration of the reconfiguration penalized. Because
the theory does not indicate what the optimal number of thrusts
is and there is no specific duration for the maneuver, one thrust
(albeit, optimally timed) is applied per orbit. Furthermore,
the case of no thrust being applied in a specific orbit is not
considered. Given the complex dependence of the deputy
spacecraft tracking error on the design parameters, the recon-
figuration maneuver is terminated once a periodic, steady-state
error is observed.

Determining the optimal impulse application times is
not particularly straightforward. From (37) and (38), it is
evident that the condition requires both the solution of the
Riccati equation (which is integrated backward) and to
the state (which is integrated forward and depends on the
Riccati solution) at t = t−k . This is problematic, since each
impulse application will result in a different solution to the
Riccati equations and each new Riccati solution results in a
different state trajectory.
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TABLE I

INITIAL AND TARGET ORBITAL ELEMENTS FOR 10–1 km RECONFIGURATION

Fig. 2. Relative position error of deputy spacecraft during reconfiguration in the LVLH frame.

To properly evaluate (37) at an assumed value of tk , one
first needs to calculate the full solution to the continuous
Riccati equation over the control interval, including the
jump in the solution (occurring at the assumed value of tk )
determined using the discrete Riccati equation, and then
integrate the state equations with the feedback control forward
in time to t = tk to obtain the state x(t−k ). To determine an
optimal tk , a control interval must be discretized and at each
node one tests the corresponding value of tk by checking the
optimality conditions using the procedure just discussed.

For the results that will be presented, one orbit at a time
was considered a control period. Hence, the hybrid optimal
control solution in Section II is applied over successive time
windows with t = t0 identified with the beginning of the orbit
and t = t f = t0 + T identified with the end of the orbit
(T is the orbital period). The following algorithm was used to
implement the optimal impulse application time for one orbit
at a time.

1) For a given initial differential element error, x(t0),
determine an optimal impulse application time
tk = t1 ∈ [t0, t0 + T ] using the above procedure, and
calculate the corresponding solution to the Riccati
equation on [t0, t0 + T ] for that choice of impulse
application time.

2) Simulate the formation for this orbit, from t = t0
to t = t0 + T , using the optimally timed hybrid
LQR solution for that orbit by applying the feedback

solutions in (27) and (28) with the impulse application
time tk = t1 determined in step 1 to satisfy the optimality
condition in (37). This simulation in step 2 for the
real behavior of the formation needs to be distinguished
from the offline one required in step 1 to determine the
optimal value of tk = t1.

3) Calculate the new differential element error after one
orbit, x(t0 +T ) and set t0 to t f = t0 +T while returning
to step 1. Repeat until reconfiguration is complete.

It is possible that on a finite time interval of one orbit,
t0 ≤ t ≤ t0 + T , there is no time tk at which the optimality
conditions (16) and (49) are satisfied. If that is the case,
then the minimum for that time interval is at one of the
end points. This is taken into account when determining the
optimal application time for each orbit.

D. Numerical Example

The reconfiguration example we consider is a deputy
spacecraft transferring from a 10-km projected circular
orbit (PCO), with a phase angle of α0 = π/4 rad to
a 1-km PCO with α0 = 0 rad. The initial conditions of both
chief and deputy spacecraft, as well as the reference elements
are given in Table I. The mapping from Cartesian relative
position to differential elements can be found in [23]. The for-
mation is in a low earth orbit with a semimajor axis of 7092 km
(orbital period of T = 5956 s), eccentricity of 0.05 and
an inclination of 90° (these are the chief’s mean elements).
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Fig. 3. Trajectory of deputy spacecraft transferring from a 10-km PCO to a 1-km PCO as seen in the LVLH frame. (a) Radial along-track plane.
(b) Radial out-of-plane plane. (c) Along-track out-of-plane plane. (d) Trajectory in the LVLH frame.

The mapping from the Cartesian relative motion description
to differential elements can be found in [21].

For the numerical simulation, the nonlinear inertial
equations of motion of the chief and deputy spacecraft are
integrated. The gravity model used includes J2–J6 zonal
harmonics and the magnetic field model used is the
IGRF-11 model [24].

To minimize the usage of impulsive actuation, the state
penalty weights of the continuous/impulsive LQR are chosen
based on the controllability Gramian of the Lorentz-augmented
differential element error dynamics (57). The impulsive state
penalty matrix, Qk is chosen to be

Qk = C2η0η
T
0 (58)

where η0 is the eigenvector of the controllability Gramian
associated with the zero eigenvalue of the Gramian and C2 is
a scaling parameter. This effectively restricts the impulsive

control effort to only targeting the portion of the state that
cannot be corrected by the Lorentz force.

The continuous state penalty matrix Q is
calculated using the remaining eigenvectors of the Gramian

Q = C1[η1 η2 η3 η4 η5][η1 η2 η3 η4 η5]T (59)

where C1 is again a scaling parameter (the Gramian is calcu-
lated by integrating over one period). The terminal weighting
matrix is taken to be K = 0.

For the reconfiguration being considered, the scaling
parameters are set to C1 = C2 = 106. The control effort
penalty matrices are R = 106 and Rk = 108 · 13×3 for
continuous and impulsive controls, respectively. Fig. 2 presents
the components of relative position error of the reconfiguring
spacecraft and the relative trajectory of the deputy spacecraft
is shown in Fig. 3. Note that the resulting controller is
not a particularly aggressive one: approximately 25 orbits
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Fig. 4. Applied control efforts for a reconfiguration maneuver from a 10-km PCO to a 1-km PCO.

Fig. 5. Optimal reconfiguration thrust times for a 10-km PCO to a 1-km PCO.

are required to perform the desired maneuver, whereas a
conventional impulsive transfer requires only a single orbit.
A more aggressive control could be designed, but this will
result in specific charge magnitudes that are considerably
larger than what is currently considered to be feasible. What
specific charge is feasible will be discussed in more detail
later on.

The control effort required for this reconfiguration is given
in Fig. 4. For the first seven orbits, the specific charge is
of order 10−1–10−2 C/kg; the rms specific charge for that
period is 0.0148 C/kg. After seven orbits, the specific charge
decreases to a magnitude on the order 10−3–10−4 C/kg,
eventually reaching a magnitude of order 10−5 C/kg.

Cumulative thruster control effort for the reconfiguration
is 0.535 m/s which is calculated as the sum of the 2-norms
of thrust vectors. Impulsive thrust magnitudes are largest
during the first seven orbits, where they are have a magnitude
of order 10−1 m/s. They reduce in magnitude to the order
of 10−3 m/s and smaller for the remainder of the simulation.
In comparison, a conventional two impulsive-thrust reconfig-
uration strategy requires a total �V of 15.1 m/s to perform
the same maneuver, although such a maneuver takes only a

single orbit. Fig. 4 plots the continuous and impulsive control
efforts for the entire 50 orbit simulation.

The reconfiguration is completed after 25 orbits, after which
the role of the controller becomes that of formation keeping
in the presence of the J2 perturbation. This can been observed
in Fig. 2, where a time varying but steady-state position error
is achieved in the latter half of the simulation. Impulsive and
specific charge control efforts are similar to those seen for
Lorentz-augmented formation keeping [8], however, now with
optimized, rather than prescribed, impulse application times.

Fig. 5 plots each optimal thrust application time as a fraction
of orbital period. Recall, in this example chief argument of
perigee is ω = 0°, so the beginning of the orbit corresponds
to perigee while t = 0.5 nT, with n being number of completed
orbits, corresponds to apogee. From Fig. 5, we see that optimal
times for most orbits correspond with perigee: most times are
either at the very beginning or very end of the orbital period.
This is entirely consistent with the fact that the Lorentz force
is nearly perpendicular to the spacecraft velocity vector. This
ensures that for a nearly circular orbit, there will be little force
impacting the differential semimajor axis coordinate and it will
be nearly uncontrollable. Given the way in which the impulsive
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Fig. 6. Specific charge for case with navigation errors (±5 cm in relative position, ±1 mm in relative velocity).

state penalty matrix is selected in (58), it makes sense that the
impulsive thrusts should occur to have maximum impact on
the differential semimajor axis. In some cases, a thrust at the
end of an orbit is followed by a thrust applied immediately at
the start of the next orbit, suggesting that in those cases, the
two thrusts can be combined into a single thrust.

It is possible that navigation errors (which were neglected
in the previously presented results) could have a negative
impact on the performance of our control scheme, in particular,
propellant usage. In addition to the previous results, we have
performed our simulations with uniformly distributed random
noise added to the coordinates of the Cartesian relative state
prior to conversion to differential mean elements. In particular,
the relative Cartesian position had uniformly distributed errors
(±5 cm) added and the relative Cartesian velocity had
uniformly distributed errors (±1 mm/s) added. With the errors
added, the specific charge experienced considerable saturation
(at the maximum imposed charge level of 0.1 C/kg) during
the earlier orbits (see Fig. 6). The time to steady-state error
behavior remained at 25 orbits. The cumulative thruster �v for
the reconfiguration (over the first 25 orbits) was increased from
0.535 to 0.653 m/s.

During the steady-state period (the last 25 orbits) the
cumulative thruster �v increased to 0.0004 m/s from the
original (error free) value of 0.0002 m/s and the rms charge
increased to 1.63 ×10−5 from 1.25 ×10−5 C/kg. The steady-
state rms errors in the relative Cartesian errors (calculated
using the last 25 orbits) changed from from 0.574 to 0.363 m
(radial), from 1.677 to 2.139 m (along track), and from
1.782 to 1.615 m (cross track). As can be seen, the uniformly
distributed errors have only a small impact on the controller
performance.

When the magnitude of the errors are increased to
50 cm and 1 cm/s the performance worsens considerably.

In this case, the steady-state rms errors over the last 25 orbits
increase to 1.534 m (radial), 11.05 m (along track), and
6.718 m (cross track). The rms specific charge over this time
is 5.27 × 10−4 C/kg and the thruster �v is comparable with
the previous case (0.0004 m/s).

At this time, it is believed that through the adaptation of
current technology, the maximum specific charge
magnitudes that can be currently achieved are of order
10−3–10−2 C/kg [1], [25]. Unfortunately, this puts the
presented maneuver at the limit of what is believed to be
feasible with existing technology. The proposed
Lorentz-augmented spacecraft architecture in [26] is capable
of specific charge magnitudes of order 10−3, but the large size
of the proposed spacecraft (mass 600 kg and length 20 km)
makes it impractical for spacecraft formations. Considerable
work remains to be done in determining feasible hardware
for realizing Lorentz-augmented formation flight.

IV. CONCLUSION

A method for determining the optimal impulse application
times for a continuous/impulsive LQR has been described and
applied to the reconfiguration of Lorentz-augmented spacecraft
formation. Since the optimality conditions require the value of
the state at the impulse application time, a guess-and-check
approach to determining the optimal times is proposed. For
spacecraft applications, determination of the optimal times and
calculation of the associated solution to the Riccati equation
would need to occur on-ground-based computers and then
communicated to the spacecraft. For a prescribed number
of impulses over a control period, the optimal times for the
impulses can be determined, however, the optimal number of
impulses over a control interval remains an open problem.

It was shown that the use of such a controller is effective
for Lorentz-augmented spacecraft formation reconfiguration.
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Use of the Lorentz force as a means of actuation resulted
in considerable reduction in the required thruster �V for a
reconfiguration when compared with conventional impulsive
reconfiguration strategies. The required specific charge
magnitudes are at the limit of what is currently considered
feasible.
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