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Comments on “Strictly Positive 
Real Transfer Functions Revisited” 

H. J. Marquez and C. J. Damaren 

Abstmct4n the above paper,’ the distinction between weak and strong 
strictly positive real (SPR) functions was addressed, and the feedback 
interconnection of a weak SPR system and a passive one was shown to be 
stable. The purpose of this note is to show that the proof of this lemma 
is actually incorrect. 

I. INTRODUCTION 
The concepts of passivity and strict positive realness have been 

an important area of research for the last three decades. These 
investigations have brought a better understanding of these ideas 
and their applications, but also an ever increasing mismatch in the 
terminology adopted by different authors. The most widely accepted 
definitions of passivity and strict passivity are the following [l]. 
Define a real inner product ( x ,  Y ) T  by 

(x, Y)T = iT xT(t)Y(t) d t  (1)  

and let L;“, be the space of all functions x: R+ + R” which satisfy 
Ilxrll i  = (x, X ) T  < 03, VT E R+ (R+ is the set of positive real 
numbers). 

Passivity: H: L& + L,”, is said to be passive if there exists 
P E R such that 
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Fig. 1. The feedback system Se.  

Strict Passivity: H :  Lz, + L& is said to be strictly passive if 

(2, H Z ) T  2 6 I ( ~ ~ 1 1 2  + P ,  VX E L L ,  VT E R+. (3) 

For linear systems these definitions are closely related to the concept 
of strictly positive real (SPR). See the above paper’ for the definitions 
of weak and strong SPR. From these definitions, it is straightforward 
that a linear time-invariant system whose transfer function is (weak 
or strong) SPR is passive but, in general, not strictly passive. For 
example, the system H ( s )  = k / ( s + a ) ,  k > 0, and a > 0 is SPR (and 
so passive); however, it is not strictly passive since R e [ H ( j w ) ]  + 0 
as w + 03, and therefore no 6 can be found to satisfy (3). The main 
problem with this result is that it renders the passivity theorem nearly 
inapplicable for linear systems, since only biproper or improper linear 
systems can be strictly passive. 

Motivated by this observation, the authors’ considered the class of 
systems which satisfy the inequality (6b)’ 

there exists 6 > 0, and P E R such that 

iw yTu  d t  + P 

1”; uTu d t  
> O  (4) 

where y = Hu,  and (4) is valid for all inputs U such that 
11ti11~/11u11~ < m. This class of systems was shown to be equivalent 
to those which are weak SPR and played a central role in Lemma 1. 
There, it was claimed that the feedback interconnection of a passive 
system and one that satisfies inequality (4) (see Fig. 1’) is stable. 
The intention of this note is to show that the proof of Lemma 1’ 
is not valid. We notice here that the condition Ilti l lz/llullz < 00 is 
not used in the proof of Lemma 1, and therefore in the remainder 
of this note it is disregarded. 

Using our notation, (4) can be rewritten as 

A number of comments must be made concerning this definition. In 
the first place, it is incomplete since for expression (4) to be well 
defined, it is necessary for the function U to belong to the space L z .  
This is an important point. In fact, this issue renders incorrect the 
proof of Lemma 1.’ Notice that in the proof of Lemma 1,’ it is 
necessary to consider precisely the case where U is not in Lz .  Yet 
more appropriate is to use extended spaces and rewrite (4) as 

We now analyze the proof of Lemma 1 (Appendix 11’). Since 
U I  = -y  and y1 = U (refer to Fig. 1’) 

. (7) 

Here H I  is passive, and therefore the second term on the left- 
hand side of (7) is greater than or equal to zero, while H satisfies 

(76, H U ) T  + P + (U’, H i u i ) ~  + P i  - - P + Pi 
( U ,  u ) T  ( U ,  u ) T  ( U ,  u ) T  
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inequality (6). To show stability, the authors reason by contradiction 
as follows: assume that U $! L z ,  and take limits on both sides of (7) 
as T + 03. In this case, the right-hand side tends toward zero and 
therefore, the left-hand side also tends toward zero. Hence the authors 
conclude that there is a contradiction since, by (6), the left-hand side 
is actually greater than zero. Therefore it must be true that U E L z .  

This reasoning is fallacious, however, unless condition (6) is 
strengthened by requiring that the following be satisfied 

On Interval Polynomials with NO Zeros in the Unit Disc 

V. Blondel 

Abstract-We give a necessary condition for an interval polynomial to 
have no zeros in the closed unit disc. The condition is expressed in terms 
of the two first 

In other words, there are only two possibilities of interest in (7) 

If this is the case then indeed there is a contradiction in (7). 
Condition (9), however, implies that the system is strictly passive, 
and therefore Lemma 1 becomes a restatement of the passivity 
theorem (see, for example, [l]), i.e., it says nothing about weak 
SPR functions. 
2) 

In this case, there is no contradiction in (7) since the left-hand 
side also tends toward zero for some function U, without violating 
condition (6) (in the same way l /nP + 0 as n + 03, for all 
p E Rf 2 1). 
As a final remark we make the following observations, which 

emphasize the distinction between weak and strong SPR. It is 
relatively easy to show that the feedback combination of a (possibly 
nonlinear) passive plant and a strong SPR compensator is stable. The 
result can be proved by defining the loop transformation shown in 
Fig. 1 and noting that it does not alter the stability properties of the 
original system. It is then straightforward to show that, for small 
enough E > 0, the system H i  = (1 - sHl)-'Hl is passive, while 
H' = H + sl is strictly passive, and therefore stability follows from 
the passivity theorem. 

The case of a weak SPR system is, however, very different as 
shown in the following example. 

Example I: Consider the linear time-invariant system H (  s) = 
( s + c ) / [ ( s + a ) ( s + b ) ] ,  and let H ' ( s )  = H ( s ) / [ l - ~ H ( s ) ] .  We have 

H ' ( j 4 )  + H ' (  - j w )  

(abc - cc2)  + w z ( a  + b - c - E) 
( o b  - cc - ~ 2 ) ~  + ( a  + b - E ) Z  

> 0 (11) - - 

if and only if 
abc-Ce2 > 0 ,  a + b - c - c > 0 .  (12) 

The stability analysis of polynomials subject to structured uncer- 
tainty has received considerable attention this last decade (see [2] for 
an historical overview; references related to this contribution include 

In this note we give a necessary condition for an interval poly- 
U], P I ,  P I ,  [81, and PI). 

nomial 

P = {a0 + a1z +. . . + a,zn: Q* 5 at I 'i.,} 
to be D-stable, i.e., such that all members of P have no roots in 
the closed unit disc. Our condition is expressed in terms of the two 
first intervals only. 

In a corollary we show that if 5 < E0/2 and < E 1 / 9  then 
P cannot be D-stable. 

The results presented here are easy consequences of a little-known 
theorem on analytic functions. 
Landau's Theorem: Assume that the function f is analytic in the 

open unit disc IzI < 1 and that f(z) # 0, 1 for all IzI < 1. Then 

were A is a constant which can be taken equal to 4.4. 
For a proof of this theorem (which is sometime referred to as 

Landau-CarathCodory theorem) see, for example, Hille [4, p. 2211. 
The best possible bound for A was given in 1981 by Jenkins [6]; it 
is equal to 42/r4(;) = 4 .37 . . .  . 

We now prove our theorem. 
Theorem: L e t P =  {ao+a1z+ . . .+anzn :  a, < a z  I T z }  be 

an interval D-stable polynomial and assume that ?TO > a > 0. Then 

IT1 I I 2% log+ + 4.4) ( a-% 

where log'rr = max(0, log+). 
Proof: Define a; E [a, EO] by U ; :  = min (2%, EO) and choose 

an arbitrary set of coefficients a: E [a,, Z*] (i = 2,. . . , n) .  Consider 
the polynomial p ( z )  defined by 

If a + > we can find an > that satisfies (12)' If' It is easy to see that p ( z )  never takes the value zero or one in the however, a + b = c (i.e., when H ( s )  is weak SPR), no such E > 0 
exists. open unit disc. Indeed 

11. CONCLUSIONS 
The proof of Lemma 1' is incorrect. Since this note does not 

disprove that the feedback interconnection of a passive plant and a 
weak SPR controller is stable, we conclude that it remains an open 
question. 
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