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the Design of Strictly Positive Real Transfer Functions 

H. J. Marquez and C. J. Damaren 

Abstract-The synthesis of strictly positive real transfer functions is 
considered. For a given Hurwitz polynomial of degree n comprising 
the denominator polynomial, necessary and sufficient conditions on the 
numerator which render a rational function strictly positive real are 
given. In the case where the function is strictly proper, a parameterization 
of the polynomial numerator by n real numbers satisfying a simple 
constraint is provided. The approach taken employs factorization of a 
polynomial into its even and odd parts. The relationship of the results 
to those provided by the Kalman-Yakubovich Lemma is given and the 
present method shown to have certain advantages. 

I. INTRODUCTION 
An important concept encountered in systems and circuit theory 

is that of passivity. Roughly speaking a system (linear or not) is 
strictly passive if it “consumes” energy and it is passive if it does 
not “deliver” energy. This concept was first used in circuit theory 
motivated by the fact that networks containing RLC elements are 
passive and it has become a fundamental tool in the stability analysis 
of feedback systems, [I]. Restricting our attention to causal, linear 
time-invariant systems, these concepts are closely related to the 
notions of positive real and strictlypositive real [2], [3]. If the transfer 
function H ( s )  of a system is positive real (PR), then the system is 
passive. Moreover, a feedback interconnection containing a passive 
subsqstem (linear or not), and a strictly proper, strictly positive real 
( S P R )  one, is always closed-loop stable [4]. 

Dejinirion: Let P”denote the set of real polynomials of nth 
degree in the indetermined variable s. Consider a rational function 
H ( s )  = p(s)/q(s), where p ( s )  E P” and q(s)  E Pm. Then, H ( s )  
is said to be in the class G? if and only if, (i) q ( s )  is a Hurwitz 
polynomial (i.e., all of its roots lie in the open left half of the complex 
plane) and (ii) R e [ H ( j w ) ]  > 0, Vw E [ O , x ) .  H ( s )  is said to be 
(weak) strictly positive real (SPR) if it is in the class Q and the 
degrees of the numerator and denominator polynomials differ by - 1,  
0, or 1. Assume now that H ( s )  is SPR and strictly proper. Then, 
H ( s )  is said to be strong SPR, or simply SPR, [3], if in addition 
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Remarks: It is important to recognize the difference between an 
SPR function and one that is merely in the class Q. Clearly, if H ( s )  is 
SPR then H ( s )  E &. The converse is however not true. For example 
the function (s + 1)-* + s3 is in Q but is not SPR. In fact, it is 
not even PR. In the sequel, we shall denote by S the set of SPR 
rational functions. 

Motivated by practical applications in control theory and adaptive 
control schemes, we are interested in the construction of transfer 
functions which are strictly positive real. More explicitly, we study 
the following problems: 

Given a Hurwitz polynomial q E P”, find necessary and 
sufficient conditions for a polynomial p to belong to the set 

Given a Hurwitz polynomial q find the subset Psp C P given by 
p = {P E pn I H ( s )  = p ( s ) / q ( s )  E e) 

Psp = {p E P 1 lim H ( s )  = 0) 

Hence, if p E Psp, then p/q is strictly proper and SPR. 
Moreover, it will be shown that the set Psp can be parameterized 
using n real numbers that satisfy a simple constraint. 
Given a Hurwitz polynomial q find the subset SPsp c Psp 
given by 

s - m  

Problems (i) and (ii) are important in the design of adaptive systems 
[ 5 ]  and in applications where the plant under control is known to be 
passive, but there exists large uncertainty in the actual model, such as 
in the control of flexible structures [6]. Problem (ii) is a realizability 
condition. Namely, only strictly proper rational functions can be 
implemented using an actual physical device. SPR transfer functions 
may be characterized using the Kalman-Yakubovich Lemma [2], [3], 
but the parameterization presented here has certain advantages over 
that solution in the case of scalar transfer functions. 

11. NECESSARY AND SUFFICIENT CONDITIONS FOR SPR 
In this section we solve problems (i)-(iii) as stated above. Our 

approach to this problem is inspired by the algebraic theory of 
control initiated by Desoer et al., [7]. There are however substantial 
differences between the two methologies. While the factorization 
approach of Desoer et al. is based on the fact that the set of proper 
and stable rational functions forms a ring, the set of SPR functions is 
not closed under multiplication and therefore does not form a ring. 

Theorem 1: Let q E P“ be Hurwitz. Then p E Pm belongs to 
the set P = {p E Pm I H = p/q E Q } ,  if and only if there exists 
functions u ( s ) ,  u ( s ) . r ( s ) ,  and k ( s )  such that 

(2) 

where U(.) and ~ ( s )  are, respectively, even and odd polynomials 
which satisfy the Bezout identity, 

P ( S )  = Q ( S ) T ( S )  + 14.) - 4s)lWs) 

(3) 
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Proof: Consider a rational function H ( s )  = p ( s ) / q ( s )  where q 
is Hunvitz. We partition p (  s) and q(  s) into their even and odd parts' 

H ( s )  = 

where p , ,  qr are the even parts of p and q, and p,, qo are the odd parts 
of p and q ,  respectively. It follows that [qe(s)p0(s) - p,(s)q,(s)] is 
the odd part of the numerator of (4) and 

( 5 )  

is the even part. Since [qZ ( J W )  - q : ( p ) ]  is always positive, it follows 
that H ( s )  E Q if and only if q( . )  is Hunvitz and k ( p )  > 0 where 
k ( s )  is an even polynomial. 

Given k( s), all possible solutions of (5) can be obtained by adding 
the homogeneous solution and a particular solution. It is immediate 
that p e h  = qor and poh = q,r  satisfy the homogeneous equation 
P e h ( S ) q e ( S )  -poh(s)qo(s) = 0 for any odd polynomial r ( s ) .  To find 
a particular solution we use the fact that qe and qo are coprime (see 
Lemma 1 in the Appendix), i.e., there exists an even function U and an 
odd function U which satisfy (3). Multiplying (3) by k ( s )  we obtain, 
q , ( s ) . ( s ) k ( s ) + q o ( s ) u ( s ) k ( s )  = k(s) which when compared to (5) 
yields 

p e p ( . )  = U ( S ) k ( . S ) .  p o p ( s )  = - V ( S ) k ( S ) .  (6) 

k(s) = pe(s)qe(s) - po(s)qo(s) 

It follows that, 

P e ( S )  = P e h ( S )  + p e , ( s )  = qo(s)r(s) + u ( s ) k ( s )  (7)  
Po(.) = P o h ( S )  + P o p ( S )  = ' J e ( s ) r ( s )  - v ( s ) k ( s )  (8) 

and necessity is obtained by forming p = p ,  + p , .  To prove 
sufficiency, note that (2) implies (5) upon using the factorization 
(7) and (8). 0 

Remarks: While Theorem 1 gives necessary and sufficient con- 
ditions for a polynomial p to belong to the set P, for a given 
Hurwitz q, it does not provide a method for finding the polynomial 
T (  s). In general, the solution of T (  s) depends on the desired relative 
order of the polynomial p with respect to the given q. For physical 
realizability, we concentrate on the subset Psp of P which makes 
H strictly proper. It will be demonstrated that r ( s )  is uniquely 
determined by the strictly proper constraint. 

Theorem 2: Given a Hurwitz polynomial q, of degree n 2 2, the 
set Psp c P of all polynomials satisfying, 

P,, = { p  E P"-l I H ( s )  = p(s)/q(s) E s , ) & H ( S )  = O} 

can be parameterized using n real numbers kl , k z ,  . . . , k ,  which are 
chosen such that 

i ( z )  = klzn-l  + k2zn-2  + . ' .  + kn > 0 , vx 2 0 (9) 

but are otherwise arbitrary. 
Proof: According to Theorem 1, if p E P,, C P then p satisfies 

(2) with r even and k odd. The degree of k must be chosen such 
that ( 5 )  is satisfied. Suppose first that n is even. In this case we have, 
d(qe)  = n, a(qo) = n - 1, a ( p , )  = n - 2, and a ( p o )  = n - 1. (The 
symbol a ( p )  denotes the degree of p ) .  It follows from (5) that 

a ( k )  = a ( p , )  + a(qe)  = a ( p , )  + a(qo) = 2n - 2. (10) 
' This partition is classical in the networks literature. See, for example, [SI 

or [9]. 

Similarly, if n is odd, a(q,) = n - 1, a(q,) = n, a ( p e )  = n - 1, 
a(q,) = n - 2 ,  and a( k )  = 2 n  - 2. We conclude that, if q has degree 
n, then k must have degree 2n - 2.  We also argue that a(u )  = n - 2 ,  
and a ( v )  = n - 1, as can be seen by a simple application of the 
Euclidean algorithm. Thus, a[(. - v)k]  = 3n - 3. 

It follows from (2) that a ( p )  = n - 1 if and only if a( i-) = 2n - 3 
and T ( . )  is chosen such that the coefficients of the first 2n  - 2 powers 
contained in qT are cancelled with the corresponding coefficients 
contained in ( U  - v)k. Since r is an odd polynomial, we define 
it as follows, 

(11) 
Similarly, an even polynomial k that satisfies k ( p )  > 0 can be 
represented by 

= T1S2n-3  + T2?-' +.  . . + TnPls. 

k ( s )  = [ ( -1)"-'k1s2"-2 + ( - 1 ) n + 2 ~ 2 s 2 n - 4  + . . . - ~ c ~ - ~ ~ ~  + kn].  
(12) 

The constraints imposed on the k , ,  i = 1 . . . n, by k ( p )  > 0 will 
be addressed later. 

Let q = S" + a1d-l  + .. .  + a,, and assume without loss of 
generality that n is even. Then 

qe = sn+a2sn-2+.' .+a, , qo = a1s n-1 +a3Sn-3+.  . .+an-ls. 
(13) 

(14) 

To find U ( . )  and ~(s), we use the Euclidean algorithm. We have, 

qe = qoA0 + E1 - 0 I a ( F 1 )  < a ( q o )  

40 = E 1 3 1  + E2 3 0 I a ( E 2 )  < a(E1) 

E 1  = 12A2 + E3 , 0 I a ( E 3  1 < a ( E 2  1 

En-3 = En-2An-2  + En-1 , En-1 E R/{O} 
(last nonzero remainder). (15) 

Here each Al(s ) ,  being the quotient of an even (odd) polynomial 
of degree m I n, and an odd (even) polynomial of degree m - 1, 
has the form 

(16) 
U and v can be obtained by solving (15) for <,,-I and substituting 
backward in the remainders of the previous equations, i.e., 

A,(s) = 6,s, 5,  # 0 ,  i = I , . . . . n  - I 

En-1 = En-3 - E n - 2 A n - 2  

1 = [En-3  - E n - ~ A n - 2 ] / [ n - 1  

= [ E n - 3 ( 1 +  An-3An-2) - E n - 4 A n - ~ ] / E n - 1  (17) 
and so on. The final result has the following form 

1 = [6162 . . . 6n-*Sn-2 + . ' .  ] q e ( s )  

- [ 5 0 6 1 6 2 . . . 5 n - 2 S n - 1  +. . . ]no(  s) / & - I .  

{ 
1 

Therefore, 

u ( s )  =[5152 . . . 6 n - 2 S n - z + . . . ] / E n - - l ,  

w(s) = - [606162 . . . 6"_2Sn--l  + . . . ] /Enp1  (18) 
and substituting (1 1)-( 13) and (18) into (2) gives 

p ( S )  = qT + ( U  - ZJ)k 

= [s" + alsn--l +.  . . +a,] 

x [r1S2n-3 + T ~ S ~ * - '  + . . . + rn-ls] 

x [ - k l ~ Z n - 2  + k z ~ 2 n - 4  +.  . . ] / E ~ - ~  
+ [bo6162 . . . 6 n - 2 ~ n - 1  + 5162..-Sn-2sn-' + .. .] 

3 n - 3  = s [n - k 1 5 0 6 1 6 2 . . . 6 , - 2 / E n - 1 ]  

+ s3n-4 [ a 1  r l  - k16162 . . .6 , -2 /< , -1]  + . . . . 
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To cancel the highest order power of p, we chose 

r1 = k 1 6 o 6 1 6 2 . . . 6 , - 2 / E n - 1 .  (19) 

However, with this election, the coefficient of s3,-‘ is given by 

a l r l  - IC15162 ...6,--2/<,--1 = k16162 ..*6,--2(a160 - l)/&,-i. 

From (14) we have qe = yoAo + €1 and dividing qe by qo we have 
that & ( s )  = s / a l .  Therefore, 60 = l/al so that the coefficient 

IS also zero. The rest of the first 2n - 2 coefficients are 
cancelled similarly. Therefore p (  s) is parameterizyd in terms of the 
n parameters k,. From (9) and (12). k ( p )  = k ( z )  > 0 where 

It remains to show that the if k ( s )  is selected subject to (9) and 
(12), that p (  s )  constructed according to (2) will be a strictly proper 
SPR function. To see this, realize that (2) necessitates (5). It is then 
clear from the properties of the k , ,  i = 1 . . . n, that R e { H ( j w ) }  > 
0. Given the parameters IC,, i = 1 . . . n, the coefficients of p ( s )  can 
be determined directly from (2). Let us take 

p ,  = c2s 

Substituting for p , ,  p,, q e ,  and yo into (5) and matching powers of 
s leads to the algebraic expression 

of S2n--4 . 

s = w 2  2 0. 

n - 2  n - 1  + ’ . ’ + C n  , p ,  = c1 s + C 3 S n - 3  + . . . + cn-1 s. 

0 0 -an a , -1  

0 0 0  0 . . .  : j IC:;.] I;;.J I : - -  -a,,-2 

a n  
(20) 

0 
The degree of p ( s )  will be n - 1 and R e [ H ( ] w ) ]  > 0 by 
construction. 

Comments: The parameterization described in Theorems 1 and 2 
generates all weak and strong SPR transfer functions that have a 
given denominator. From (9), it is sufficient that k,  > 0, i = 1 * . n. 
By considering LJ = 0, it is necessary that IC, > 0. In general, k(z) 
must have no real, positive roots. This is a classical problem which 
has a solution in the form of Sturm’s Theorem [9], [lo]. For a given 
polynomial, the theorem provides a test yielding the number of roots 
in an open interval. By requiring no real roots in the interval [0, CO], 

one can generate the required conditions on the k , .  This problem has 
been solved in [lo] for n = 2, 3, 4 but for n 2 5 the Sturm test is 
very difficult to use symbolically. However, the copraint  in (9) is 
amenable to numerical implementation by enforcing k ( z , )  2 E > 0 at 
iV discrete points > 0 in addition to k ,  2 E. These relationships 
define simple convex, in fact linear, constraints on the IC,. Notice 
that, although the polynomial ~ ( s )  played a key role in the proof 
of Theorem 2, it is not required in practice since the procedure 
described in Theorem 2 uniquely determines the coefficients of p ( s )  
as a function of the coefficients of IC(s) and q(s)  using (20). 

In stability theory, one is usually interested in strong SPR transfer 
functions. The following theorem isolates the subset of strong SPR 
transfer functions from the set Psp. 

meorem 3: Given a Hunvitz polynomial qof degree n 2 2, the 
polynomial p E Pn-l belongs to the set SPsp c Psp c P satisfying 

SPsp = { P  E Pn-’ I H ( s )  = p ( s ) / q ( s )  E s , 
lim U ~ R ~ [ H ( J ~ ) ]  = p > O> 
U-03 

if and only if kl # 0 in the parameterization of Theorem 2. 

Proof: From (4), we have Re[H(.?w)] = - P ~ Y O ] / [ Y % - Y ~ ] ,  
and from (3, p e y e  -poyo = k .  As JI + CG, k ( j w )  4 k 1 ~ ~ ~ - ~ ,  and 
[ y : ( j w )  - y:(ju))] + d 2 ” .  Hence, 

and the result follows. 0 
It is of interest to compare the present characterization of strong 

SPR functions to that in the following theorem. See reference [ I  11, 
for example, for the proof. 

Theorem 4: (Kalman-Yakubovich). Let 

+ cn = c‘(s1 - A)-’b p ( s )  H ( s )  = - = 
y(s) 

clsn--l + C 2 S n - 2  + . . * 
s ,  + a1sn-1 + ... + a n  

(21) 
and assume (A,  b) is controllable and ( cT ,A)  is observable. Then 
H( s )  is strong SPR if and only if there exist positive definite matrices 
P and Q such that 

P A + A T P = - Q ,  P b = c .  (22) 

For scalar H we can without loss in generality take 

A =  
- U 1  -a2 . . .  -a,-1 -a, 

0 0 1 0 . ’ .  
0 1 .“ 0 0  

0 0 ”. 1 0 

. .  : b =  

(23) 

From (22), all strong SPR functions can be parameterized by the 
n(n + 1 ) / 2  free entries in the matrix Q subject to positivity of the 
principal minors. However, it is clear from the previous results of the 
paper, that this parameterization can be replaced by the n parameters 
k ,  subject to the constraints noted. This will be made clear in the 
context of an example. 

To gamer further insight into the apparent over parameterization 
provided by Theorem 4, let y(t)  be the output of the system (21) 
with input u ( t ) .  Defining &(t)  = ix(t)Px,  it is readily shown using 
(21) and (22) that 

& ( t )  = y ( t ) u ( t )  - ~ x ~ Q x .  

Willems [12] has termed & the storage function and the quadratic 
form involving Q the dissipation rate. Using the above, we can write 

(24) 

assuming x(0) = 0 .  Clearly Q uniquely determines P and hence 
c using (22). In [12], the problem of determining P (and thus Q) 
which satisfies (22) for given (A, b. c) was studied and shown to not 
necessarily have a unique solution. In general, the admissible P form 
a subset of a linear manifold of dimension (n - m)(n - m + 1)/2 
(m = rank b). Furthermore, these values of P satisfy 0 5 P -  5 
P 5 P+ where the matrices Pf and P- are uniquely determined 
by the system and satisfy (P+ - P - ) b  = 0. Hence, if n = m 
and rank b = n, then P = P +  = P -  is uniquely determined and 
therefore so is Q. 

In the SISO case treated here, m = 1 and there will be at most 
n(n - 1)/2 extra parameters in P and Q. These extra degrees of 
freedom do not affect the left-hand side of (24) (they dont’t alter the 
input-output relationship) but they do change the balance between the 
stored energy and dissipation rate in the internal states of the system. 
In contrast to this, the Parameterization presented in (20) uniquely 
determines the n parameters E ,  given c and vice versa since we have 
directly exploited the input-output representation of H (s). 

A 

L ’ y u  dt = € ( T )  + kxT(T)Qx(T) 
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111. EXAMPLES 

Example 1: Consider the following polynomial q E P3,  

q ( s )  = s3 + a s 2  + bs + c (25) 

and assume that q ( s )  is Hurwitz. We want to find the set Psp that 
corresponds to this polynomial. Separating qinto its even and odd 
parts and using the Euclidean algorithm we find, 

1 as2 -a’s 
c abc - c2 ’ abc - cz ‘ 

U(.) = - + ~ v ( s )  = - 

Since a(q) = 3, we must choose d ( ~ )  = 3, and d(k) = 4. Thus, 

T ( S )  = ~~s~ + T Z S  , k(s) = k l s 4  - k2s2 + k3 

and (9) with r = w 2  implies that 

k1 2 0 ,  k3 > 0 ,  k2 > - 2 m .  (26) 

From (2), any p ( s )  E P,, is given by 

P(S) = P ( S ) T ( S )  + [U(.) - v ( s ) ] k ( s ) .  

Expanding the products we obtain 

Choosing 

we can eliminate the coefficients of s6, s5, s4,  and s 3 .  Substituting 
(28) into (27) we obtain 

bck1 + ckz + ak3 
= [ abc - c2 

(29) 
or 

[::I = --!-- [“: 0 0 a b - c  
,“2 ] [::I. (30) 

It is readily verified that the inverse of the coefficient matrix coincides 
with that given by (20) when n = 3. 

Let us compare this solution with that furnished by Theorem 4. 
Form the matrices A and b according to (23) and write Q = 
matrix{q,,}. The solution of the Lyapunov equation (22) for P yields 

abc - c2 

433 
2c 

Pi3 = -_ 

Making the identifications 

it is clear that this is equivalent to (29). 
The remaining question is whether the positive definiteness of Q 

implies the required conditions on k l ,  kz, k3. Clearly 911 > 0 and 
433 > 0 imply that kl > 0 and k3 > 0. Interchanging the second 
and third rows of Q and examination of the second principal minor 
leads to the condition 411433 - qf3 > 0. In terms of the k,, this 
becomes 4k1k3 - [ k 2  - (q22/2)I2 > 0 or lk2 - (q22/2)1 < 2 m .  
Since q22 > 0, this is equivalent to that in (26) for k2. We conclude 
that the approach taken here yields a result which is equivalent to 
the Kalman-Yakubovich Lemma. The former approach has n = 3 
free parameters with simple constraints whereas the latter involves 
six parameters in Q, not all of which are required. 

Example 2: Our second example is designed to emphasize the 
distinction between weak and strong SPR as well as illustrate 
the nonuniqueness of Q given H ( s ) .  Consider the second degree 
polynomial q(s )  = (s + U)(. + b ) ,  a > 0, b > 0. Proceeding as in 
Example 1 we find that any member of the set Pap is given by 

(34) 
and p ( s )  E SPsp if and only if kl # 0. In other words, p ( s ) / q ( s )  is 
weak SPR but not strong SPR if and only if kl = 0. In this simple 
example the condition for weak SPR is well known, [3]. Namely, 
H ( s )  = k ( s + c ) / [ ( s + a ) ( s + b ) ]  is weak SPR if and only if c = a+b. 
This result is in agreement with Theorem 3 and (34) with kl = 0. 

Alternatively, using Theorem 4, we find that 

where qll > 0, 411922 > qf2. Idenfifying q,,/2 with k , ,  i = 1, 
2, provides equivalence between the two approaches when q12 = 
0. Since c1 and c2 do not depend on q12, nontrivial values of q12 

satisfying the inequality constraint generate the same SPR function 
as 412 = 0 for given ql l  and 4 2 2 ;  however, the balance between 
energy storage and dissipation in (24) will change. Note that H ( s )  
completely determines 911 and qzz  via a ,  b ,  C I .  and C Z ,  but not 912.  

IV. CONCLUSION 

A parameterization of all possible polynomials p that make p/q 
weak or strong SPR for a given q was obtained. Important charac- 
teristics of the solution are the small number of parameters and the 
simplicity of the constraints placed on them. The distinction between 
weak and strong SPR has been further clarified for transfer functions 
of arbitrary degree. Although our ultimate interest is in robust control 
of flexible structures, the results are important in several areas, 
including adaptive control and circuit theory. Future work will focus 
on the design of optimal SPR compensation for passive plants. The 
n free parameters in the parameterization developed here provide an 
ideal basis for optimization of SPR transfer functions. 

Therefore, the solution for p ( s )  is given by 
APPENDIX 

The following property, known as the Hermite-Biehler property, 
will be used in the proof of Lemma 1. See [13] for a proof. We 
assume for simplicity that n is even. A similar result applies to the 
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Property I: Let a E Pn and separate a into its even and odd 
parts, ae and a,, 

a(.) = ae  + a ,  = a,(s2)  + s i i , (s2 )  (35) 

where the notation a, ( sz) and i io( s 2 )  IS used to enhance the fact that 
a, and ii, contain only even powers. Then, a is Hurwitz if and only 
if there exists A,, E 3 ,  and c E R satisfying 

a,(-& = (A, - d ” ( X 2  - 2 ) .  . . ( L / Z  - 4 
i i ,(-JZ) = c(F1 - W 2 ) ( € 2  - 2 ) .  . . (En,z-l - W Z )  

(36) 
(37) 

where c > 0 and 0 < A i  < €1 < X z  < ( 2  < . ’ .  < Xn/z.  

Lemma I: Consider a Hunvitz polynomial q and let qe and yo 
denote its even and odd parts. Then there exists an even function U 

and an odd function 2’ satisfying 

qe(s )u (s )  + q o ( s ) v ( s )  = 1. (38) 

Proofi Equation (38)  is a Bezout identity and its satisfaction is 
equivalent to the statement that ye (s) and yo (s) are coprime. To show 
this, we reason by contradiction. Suppose ye and qo are not coprime. 
In this case we must have, 

= a(s)f(s)  (39) 
q o ( s )  = b ( s ) f  ( s )  (40) 

for some nontrivial polynomial f( s). In this case, one of the following 
must be true, 

f even + n even and b odd (41) 

f odd +- (1 odd and b even. (42) 

We assume without loss of generality that (41) holds and q is even. 
In this case, qe and qo can be rewritten as follows, 

q e ( S 2 ) = a ( S ~ ) f ( S 2 ) = ( a l  + a 2 s 2 + a 4 s 4 + . . . )  

x (f, + f z s 2  + f 4 s 4  + . . .) 

x (fo + f2sZ + f4s4 + .  . .) = S.&(SZ). 

qo(s2) = s b ( s 2 ) f ( s 2 )  = s(bl + b3sz +bjs4 +...) 

Thus, if (61, CZ, -.., Cm} are the roots of f ( - W 2 ) ,  we have 

q,(-.L?) = a ( - L 2 ) ( G  - w l ) ( C z  - 2 ) .  . * ( C m  - 2)  
q J - 2 )  = b ( - W 2 ) ( C 1  - d 2 ) ( C 2  - 2). . f (Cm - 2).  

It follows that q is not Hurwitz, since the m roots of q,(-w2) 
and qo(-u2) contained in f ( - d 2 )  do not satisfy Property 1. This 
contradicts the assumptions. To complete the proof of Lemma 1 there 
remains to show that U and U are respectively even and odd. This is 
a straightforward consequence of the Euclidean algorithm (see, for 
example, [ 14]), by which U and U can be determined, and the even 

0 property of mu + nu = 1 .  
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the Advantages of the LMS Spectrum Analyzer Over 
Nonadaptive Implementations of the Sliding-DFT 

FranGoise Beaufays and Bemard Widrow 

Abstract-Based on the least mean squares (LMS) algorithm, the 
LMS spectrum analyzer can be used to recursively calculate the discrete 
Fourier transform (DFT) of a sliding window of data. In this paper, we 
compare the LMS spe.ctnun analyzer with the straightforward nonadap- 
tive implementation of the recursive DFT. In particular, we demonstrate 
the robustness of the LMS spectrum analyzer to the propagation of 
roundoff errors, a property that is not shared by other recursive DFT 
algorithms. 

I. INTRODUCTION 
In some signal processing applications, a discrete time signal must 

be continuously analyzed in the frequency domain. At each instant, 
the N most recent samples of the input sequence are transformed 
by an N-point DFT. As a new data sample becomes available, the 
input window is shifted by one position forward in time, and a new 
DFT is evaluated. This is sometimes refered to as the sliding-DFi” 
[l]. To save computations, the new DFT can be calculated recursively 
from the previous one. However, the propagation and accumulation of 
noise due for example to roundoff errors in floating point arithmetic 
makes it necessary to often reset the DFT. This increases the overall 
number of computations and adds to the complexity of the circuitry. 

The LMS spectrum analyzer [2 ]  can also perform the recursive 
computation of a sliding-DR but because it relies on an adaptive 
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