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1 Introduction development of controllers for setpoint regulatidrl] and both
nonadaptive and adaptive trackifd2]. Space robotics has

%?ought the problem of controlling flexible manipulators to the

structures which exhibit significant structural flexibility. There are . .
: ; i .~ Tore. In the archetypical form of the problem, one has a chain of
often simultaneous requirements for control of rigid body motio exible bodies Wi?t/wpcontrol inputs atpthe joints between bodies.

coupled with active vibration suppression. Both problems are “Hawever, the variables to be controlled are the position and ori-

acerbated by model uncertainty which necessitates the additiona]. .. : ;
requirement of robustness. entation of the payload at the end of the manipulator. This repre-

It has long been known that robust stabilization of both rigi ents a noncollocated problem requiring specialized approaches

: : : . ith serious limitations on achievable performance.
and el suctures can b realy acieved by collocalg S8 s n e stuy of tht problem ha the present author x-
output (1O) mapping is passive: in the iinear time-in\/ariantpse amined theu-output[13]. This is essentially a linear combination
P ppIng 1S p ’ of collocated and noncollocated variables whegeinO yields the

ting this manifests itself in the form of a positive real transfeE .

. L - L ollocated case ang=1 gives the noncollocated one. The de-
function. Passivity and the positive real property were originall endence of the pi)iassivi%y property qn was studied in the
SFUd'ed as charactenstps Of. the drlvmg_ point |mpedan§:es of p ass'ymptotic situation where the robot mass properties were negli-
sive (for example, RLQ circuits[1]. Stabilization of passive sys-

tems is readily achieved using strictly passive feedback as p%ble compared to those of the payload. Passivity was shown to be

dicted by the passivity theoreif2]. This stability property is possible foru<1 and later work{14] showed that this bound

o . revails for planar two- or three-link flexible manipulators with
robust because the passivity of the I/O map is independent of .
structural details, manner of spatial discretization, and number 8 ge payloads and/or large stators present at the end of each link.

i - . . The present work serves to generalize the above by considering
modeled modes, but merely resides in the collocation as_sumpn% inite noncollocated to collocatédeneralizeglmass ratio. This
One of the first to realize this was Gevarf@f who used simple

proportional derivative(PD) laws and eigenvalue perturbation|ncorporates other important mass effects such as the lumped rotor

arguments. miartlas associated with highly geared actuators. A critical value,

Since then, many researchers have examined the collocafed is determined for which simple stabilization using the passiv-
problem, but little research has investigated the exploitation Y theorem becomes possible far< . In the case of multiple
passivity for noncollocated inputs and outputs. Exceptions to tHPUtS and outputs, the analysis suggests the inclusion of a multi-
have typically focused on developing either stitt or dynamic Pler which defines the required spatial structure of the.feeqpack
[5] output maps which yield a positive real system. In these cas&gntroller. T!?ese enhancerpents greatly extend the applicability of
the required output transformation will be model dependent, biite °riginal “large payload” theory. _ )
robustness can still be achieved by proper design of dynamic feecﬁ?or simplicity, linearized dynamics are introduced in Sec. 2
back compensation. which affords access to modal analysis and the frequency domain.

The simplest compensator achieving stabilization for a passif@SSivity is studied in Sec. 3 as a functionzoéind the interplay
plant is positive rate feedback, but this must be extended kgtween collocated and noncollocated mass distributions. In addi-

proportional-integra(P! or PD relative to position measurementstion: & controller containing feedforward elements is presented in
in the presence of rigid motions which lack stiffness. BenhabBeC: 4 Which provides adaptive tracking for prescribed trajectories
et al. [6] emphasized that compensation in the form of strictl) & certain output. Experimental results from an apparatus with a
positive real(SPR controllers could also furnish robust stabilitySingle rigid rotational degree of freedom and two dominant vibra-
for passive systems and perhaps improve performance. Since (g modes will be used in Sec. 5 to validate the analysis.
many authors have established systematic procedures for SPR de-
sign[7-10. 2 Motion Equations and Input-Output Model

prOt'Cs problems, from the_sya_mdpomt of jomt-bas_ed control, The motions of a flexible structure are assumed to be governed
furnish a class of systems exhibiting natural collocation and, aB the standard second-order motion equation
though nonlinear, passivity has played an important role in thé/

Mg + Kq = Bf )
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o O 1 ar JduTudt<w. The system is passive ¥=0. For linear time-
» K=l k. BSlo) 9F|q, invariant systems, this is equivalent to positive realness of the
€ @) corresponding transfer functioB(s), i.e., G(s) is analytic and
) T T ) ) ) G(s)+G"(s)=0 for sin the open right-half plane.
with M=M >0 andKe=Kee>0O. Hence, we identifyg, with The transfer matrix in Eq(9) represents a linear combination of
the N, rigid degrees o_f freedom, aII_o_f which are assumed to ke positive real functions ! and s/(sz+a)i). It is known [1]
actuated byN, generalized forces Rigid, as used here, denotespa; gch a function is positive real if and only if the coefficients,
motions which are kinematically possible without storing any. this case C.M-cT and c.b’. are positive-semidefinite
i i i i i Vi ~r aMa '
Ec,r:ram ene;gy. Trtme _forrcr;ilof the”mé)ut matr?( IS cogs,lstent with Clearly the first of these is always so and the entire issue resides
© Use o constramnemiso ca’et appen agenq es of more in identifying situations wheré,c! =0 for all modes. It occurs
general constrained shape functions for heelastic coordinates ere for collocated feedback ?eifo s0 thatb, — ¢, = C,q
v AT a YaT MrHrat

Je. That is, the elastic motions are kinematically subject t - :
he next section serves to enlarge the rangg ¢ading to pas-

boundary conditions which are consistent wigh(t)=0. They ) . . :
correspond to motions which store strain energy in the syste@v'ty which has the further advantage of introducing the noncol-

The above description is sufficiently general to describe the lifRcated output into the feedback.
earized dynamics of an arbitrary elastic multibody system with
complete actuation of the independent rigid degrees of freedom.

The output of interest is assumed to be of the fost) 3 perturbation Analysis, Multipliers, and Passivity
=[C,C.]q(t) where it is assumed th&, is square and invertible. R ) ST
In the case of a flexible manipulatgs,. would be the generalized L€t us explicitly indicate the portion of the mass distribution
tip position(relative to the linearization configuratipandC, and ~@ssociated with the noncollocated motigg,:

C. can be identified with the rigid and elastic Jacobian matrices. T
The subscript “nc” indicates “noncollocated” since, in general, M=| %
the output of interest depends gp and hence is not collocated Ce

with the control inputsf (or u). Although there may be other \ypere it is understood thaiM can be partitioned analogously to
configuration variables that are not collocated, the term noncollgy i, Eq. (2). In other words, it is assumed that the kinetic energy
cated will be reserved for this special output. can be written as '

A more general output known as therate can be identified:

y(t):puécrqr+ﬂceqe (3)
where u=1 captures the truénoncollocatell rates,p,., and u

M.JC, Cel+ oM (11)

T= %i)-rl;cM ndPnct %qT5MQ-

The § notation is used to indicate quantities that are small to first

—0 constitutes an outpyi2C, ¢, which is the natural dual of 2rd€n:Mnc>0 is O(1) and assumed to be the dominant contribu-
04 C-TH(t inout ful f it . tion to the mass distribution. It is representative of a massive

u(t)=C, 'f(t), an input more useful for our purposes. It isyninlated object such as a large payload at the end of a light-

straightforward to show th&ﬂ(Q:Q) =U"pe,=f1q, whereH(q,q) weight robotic manipulator. The eigenvectgrsare decomposed
is the Hamiltonian corresponding to E4). Hencef/q, andu/p,, g5

form collocated I/O pairs. For control purposes, it is assumed that
Pnc @nd pg, (via g;) can be measured so thal,=upn+(1 0,=9,+ 59, 12)
— 1) Peo Can be formed.

The eigenproblem corresponding to Ed) can be written as whereq, is O(1) andéq, denotes the first order perturbation due

to SM which we seek to uncover. Botfy, and 8q, can be parti-
,wiManr Kgq,=0, a=123,. (4) tioned analogously t@,. The ensuing analysis is equivalent to

) ) ) ) taking SM (M less theM, contribution to be O(1) and taking
wherew, are the unconstrained vibration frequencies andqthe M. to be O(8~2). In this light, T, corresponds to the modes of
=col{d,,,0e.} Provide the corresponding modes shapes. Theyg,

o X e system withp,.= 0 since asd— 0, the infinite contribution of
are N, zero-frequency rigid modes collectively of the for@ . acts as a clamping boundary condition fsg.

:.[1 0]". The modes enjoy st.andard orthqnormality relations rjrhe first row in eigenequation4) implies that Mg,
with respect toM andK. Expanding the solution of Eq1) and 4 _g..=0 or, upon substitution of the relevant partitions in
the output in Eq.(3) in terms of eigenvectors(t)=Q, »,(t) Egs.(11) and(12),

+Egilqana(t), it is relatively straightforward to obtain the

modal equations (C/MCr+ M) (Urat 30ra) + (CfMpCet M o) (Tet 80lec)
M,.iy=f(t)=Cu, (5) =0. (13)
. Expanding and collecting terms of like order gives to
Dot ©27,=(Crara) (D, a=1,..Ne, (6) g g ferms ot ie order d
Ne 0(1): C:—M nd CrOr ot Celea) =0;
y(t)=C o+ ;1 (Cr0r ot 1Celea) 74 - (M) 0(8): CTM{(C 80, o+ Cedleg) + M Ty o+ M e =O.
Using Laplace transforms, the dynamics of the system can bBeS€ imply that to
captured by the input-output description: O(1): C.Gro=—Cdlon; (14)
=G 8 e _ —
Y(S)=G(s)u(s). ®) 0(8):  Ceblloa=—[C 800+ MolC; T(OM o+ M o) .
Ne (15)
_ 1 M>-icT 2 S b' . . . .
G(8)= g CMn Cr+ 2, oz Caba (9 The first of these implies that the noncollocated output is
“ “ “clamped” in each vibration mode t@(1) in keeping with the
Co=Ci0r ot #Celen Pa=CiUry - (10) assumption thaM . forms the dominant contribution to the mass

) ) ~distribution. This follows from the definition g, which implies
tRecall thatt a general square system is strictly passive tfatC,q,,+ C.s, is the relevant modal amplitude.
JoyTudt=€ffuTudt for somee>0, Vt;=0, andVu such that  Using these expressions in H30), we can write
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(1= #)(C ) (C )", O(D);
c.bl=1{ (1= ) Cr(Trat 8Gr) (Grat 8Gra) TCl (16)
— uMICTT(OM (Gr o+ M (Do) (ot 80,)TCT, O(),

where the second of these is correct to the indicated order. Thdn Sec. 4, the tracking problem will be considered and one must
O(1) result shows tha®B(s) in Eqg. (9) is passive foru<1, but decide which output is to be prescribed. On the basis of the above,
clearly ignores the correction stemming fraofivi. p,~ is selected given the simple rigid nature of the I/O map. For
The inclusion of thesM effects in Eq.(16) can improve the u<u*, the I/O map is passive, hence minimum phase and causal
estimate on the range pfleading to passivity. However, the terminversion is possible. Fqu> 1*, one expects nonminimum phase
containingdM . presents an obstacle to further analytical progregsehavior and causal inversion would be impossible. In a certain
but can be neglected in some cases. Using(E4), the bracketed sense,p,« is the closest output t@,. whose I/O map can be
expression in Eg(16) containingéM . can be written as inverted in a causal fashion. This will be further elucidated in Sec.

— — - — 4.
5M I'I’ql'a+ 5M reqea:[‘SM re” 5M rr CI’ lCe]qea
The Multivariable Case (N,>1). In the multivariable case, it

is helpful to consider thégeneralizeyl eigenproblem associated
QWith the mass matrices:

The term containingéM,, can be neglected if6M,C, *C,|
> 6M . This will happen when lumped rigid components ass
ciated with g, alone dominateSM,,. For example, rigid rotor
inertias amplified by the use of large gear ratios contribut@Mg, No(MpetMe, =M, &,, a=1,..N,. (22)
but NOtoM .. - _— _ Defining A, 2 diag\,} and E2row(e,}, then with suitable nor-
The ensuing expression {i16) can be simplified by defining malization,#ET(MnCJr M_)E—1 and ETMncE=AM. Clearly ),
M2C, "M, C Y, MEM o+ M, (17) >0 and the eigenmatrik will also diagonalizeM ,. Using these
relations,M ‘M ,=E(A, '~ 1)E~* and from Eq.(18)

Y, 2[(1-w)1- MM, (18)
Cra Cr(Trat 801, (19) Y,=EAE Y A21-puAt= dia@{ 1- Kﬁ] . (29
Notice that the collocated mass mathk,, represents the part of f wis ch . ‘
the mass distribution, less the . contribution, associated with T # IS chosen to satisfy
Pco, a@ssuming rigid bodies. Hence,bl=Y,c..cl,, M, .  eM,e
=Cl(MnctMcgCr, €M 'Cl=M", and using Eq(9) pprEminh = inf o o <1 (24)
NE
s i - - . _— . .
Calpg—1 T thenA , is positive-definite. This definition gi* generalizes that
G(s)=s"M; +Yﬂazl GChegZy o7 (20) e o),

Lemma 1 The transfer matrice§&=GY), andG=Y,'G are
positive real ifu<u*. o

Proof Given the expression in E€R0) both G andG are of the
The Single-Input Single-Output (SISO) Case (N;=1). In  form Ass +3 ,A,s/(s>+ »2). It remains to show thaf, and

In general,G is not positive real but the first term is and,
premultiplies a summation which also is.

this case note that the A, are positive-semidefinite in each case. F&r A,
P M =Y,c,.¢,Y,=0 and forG, A,=¢,,c/,=0. Now, note that
Y, =1-—, wpto—o <1 (1) ¢,M_ CT=(M,.+M,) '=EE". Using this in conjunction with

© wt M et M o MLCr=(Mp et M) "= . Using this in conjunction wi

Eq. (23, Ag=C,M'C/Y|=EAE" for G, and for G, A,
=Y,'C,M.'C/=EA_'E". Both versions ofA, are positive-
definite whenu<u* on account ofA,>O. O

ThereforeG(s) is passive if and only ix<u* Whenu=u*, the
summation over the vibration modes vanistabvibration modes
become unobservabland the outpup,,-=C, 1, becomes propor-
tional to the rigid body modal rate. It is instructive to consider a Application of the Passivity Theorem. Using the notion of
small negative rate feedbackt) = —ep,, . Using a simple eigen- multipliers[2], the feedback systems shown in Fig. 1 are equiva-
value perturbation argument, it is readily shown that the closefégnt from the point of view of stability. The passivity theorem
loop eigenvalues of each vibration mode are given bstates that ifG is passive andH is strictly passive therr
—eY#chacmtjwa. All modes are stabilized whep<u* (Y, el,=yel,. Using Lemma 1 and the passivity theorem, the
>0) and all of them are destabilized whern>u* (Y ,<0) as- original system is stable if eithdef=Y;TH orH=HY , is strictly

suming controllability and observability, i.ez,,# 0. passive. A possible design strategy would setggf, a strictly
G G
+ T + + _
r — G y Y,r — G‘I‘Z y r — T;lg 'I‘“ly
H Y, ™H HY,
H 5|

Fig. 1 Equivalent feedback loops
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passive feedback, and then one would use eitiherrY;HSp or -,-7d+9§,,d:6'gud_ (28)
H= HSpY;l. Either approach requires accurate knowledghif
andMg, in forming Y, .

Alternatively, if H(s)=(Kq+K,/s)M¢, or H(s)=(Kq 2,41Y C. 29
+Ky/S)M,c whereK >0, K4>0, it is readily shown using the B Pua=Pa Lyuted- (29)
previous eigendecompositions thdtand H are strictly passive Setting& =& —pq, %= 17— 179, U=U—Ug, andﬁﬂépufp#d,
sinceY, "M, andM .Y, are positive-definite matrices. The firstit is clear that the dynamics relatigto p,, are identical in form
of these is robust iM . is poorly known and the second is robusto those given by Eqs(25-(27) which relateu to y. Thus,
if Mg, is poorly known. Both statements presuppose that p,(S)=G(s)U and is governed by the passivity results of the
selected small enough. Other possibilities fbexist if the eigen- previous section. Stabilization of the error dynamics is then pos-

This allows us to define the desired version of fheutput,

structure ofM . andM, is assumed known. sible by takingti= —YLHS@M so that
In summary, stabilization is possible using a PD law whose ]
spatial structure mirrors that &fl .. or M,. This controller will u(t)=Mtbd—Y;HSp7;ﬂ. (30)

be robust ifu<u* whereu™ could be determined using an uppe

bound forM, or a lower bound foM,, respectively. The sta-

bility result is robust against variations in the stiffness properti

and their manner of description but requires thém,C, *C,| Adaptive Case. Inthe case wher®, as needed in Eq30) is

> 6M . poorly known but we have a lower bound @, an adaptive

tracking strategy can be established. The key resides in the no-

tions of virtual trajectory and filtered error as originally intro-

. . . duced in a robotics contexi2]. The desired feedforward is fac-

4 Feedforward Design and Adaptive Tracking tored asuy=M,py=W(pg)a where the unknown, but assumed
The development of a tracking controller is most readily asonstant, parameters M, are contained in the colunmandW is

complished in the time domain. A realization of the transfer maalled the regressor matrix. Next, the virtual trajectory is defined

'Note thatHg, can simply be a Pl law ang, (t) can be formed
érsom MPnct (1= 1) peo, thus avoiding measurements gf.

trix in Eq. (20) is given by by
M & = u(), (25) Vi =poAB,, A>O (1
and the feedforward is modified to read
e+ Q2n.=Clu, 26 . o A
e ele™ Ve (26) Ug=W(V,)a=M(py— AD,), (32)
y(t):'p#:'ngrYMGehe, (27) while 74 continues to be defined by E@8). Subtracting Eq(32)

- from Eq.(25) and Eq.(28) from Eq.(26), the error dynamics can
where g,=col 7.}, Q.=diagQ,}, and C.=row{c,,}. Ideally, be written as
we would like to find a control input so thatp,,. tracks a desired )
trajectory py which is prescribed along witpy and py . -~ — Mt(z:r-s-A“'i)M):ﬁ,

To understand the difficulties associated with assigmpdo Pu=&+Y,Cee, % 4 0%, = CTi
the desired behavior gi,., let us adopt a quasistatic approxima- e 2R M= “ell.
tion for the elastic coordinates in E(6), i.e., neglecti,. Such Consider the following Lyapunov-like function:
an approximation was shown to be highly effective in approximat- . ]
ing the flexible motions produced by a complex simulation of the V=1 (& + Ap,)TY, "M\(& + Ap,) + 3 77+ 3 1Q27.=0

(33)

Space Shuttle Remote Manipulator Systerl]. On this basis, (34)
o= 0. 2Clu=0_CIM & whereY, "M >0 sinceM; 'Y >0 from the proof of Lemma 1.

Using the error dynamics, its time derivative = (p,
where Eq.(25 has been used fou. Substituting this into the +A7)#)TY;TE. Integration of this relationship establishes passiv-

integral of Eq.(27) gives ity betweenY;TU and sﬂé“f)lﬁr AP, which is termed the filtered
S error. If Y;TU is a strictly passive function of-s, thens,
P.= &Y, Cele “CM & eL,. Using a well-known result, so aj@, andp, . Hence,pq

can be replaced witki, and*p# with s, in Eq. (30) in the known

If pq is assigned to the desired valuemf (p, whenu=1), then Qgrrameter case:

the above ODE can be used to determine the desired trajectory

&

Assuming thajpy begins at =0, a causal trajectory fc, (i.e., ) o
one that also begins &t 0), depends on the stability of the ODE. !N the case whera is poorly known, an estimat&(t) can be
To keep things simple, consider the SISO case and recall tggpPloyed:

Y, =1—(n/p"). Stability (causality of the I/O map fronpy to u=W(V,)a+u (35)
&) requires that the coefficient of, above be positive which . . )

implies thatu < x*. In general, a causal solution will not exist if Whereu is the fe_ec_ibalclA<~port|or_1 ad. SHPfraCt”_“? Eq(32) from
p=1>u", i.e., p,=pn. However, foru=p*, p,=£ since Eg. (35 and defl_nlnga:a—a gives Y, _u=YM [_\N(vr)a+_lT_|,
Y, =0, so that thepy can be identified with the desired behavioWhich we would like to be a strictly passive function 6§, , i.e.,
of the rigid (moda) coordinate, (t). Note that asu*—1, so that t t ts

w can be taken close to P, (t)=&(t)=p,(t) and hencepy is —f s,Y, tdt= —f ’éWT(\'/r)TYglsﬂdt—f s,Y, "udt
close to being the prescribed trajectory fs.. 0 0 0

u(t) =MV, — Y Hgs, .

Nonadaptive Case. Since py(t) is the desired trajectory for _ Y
£(t), the nominal feedforward is selected touge= M py accord- ~€], 8,8, dt. (36)
ing to Eq.(25). The desired behavior for the elastic coordinates,
74, IS determined using Eq26): To this end, select
14 / Vol. 122, MARCH 2000 Transactions of the ASME
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u(t)=C; =M pg— A(p,—pa)]—Kes,, (38)
a=-TW'(V)s,, I=(1- )T, (39)
wheres,=p,+ Ap, with p,=p,—py.

5 Experimental Results

% The control strategy developed in the previous section was
implemented on the Torsional Control System apparatus devel-
WTTQI oped by Educational Control Products. It consists of three concen-
tric disks which are separated by two thin steel wires of length

Fig. 2 Adaptive controller 305 and 310 mnisee Fig. 3 The wires are effectively modeled

as massless lumped torsional stiffneskesandk,. Each of the
three disks can be removed or augmented with brass masses of
variable position which allows one to systematically vary the axial
u= —YLdeM (Kg>0), moment of inertia of each diskl(,J;,,J3).
o The base disk is free to rotate and is driven by a brushless DC
a=a=- FWT(\'/r)Y; ls# (I'>0). (37)  motor. Angular encoderg000x 4 counts per revolutionare used
goasense the rotational motion of each digk (6,,63). Torque
control of the motor is accomplished with a high gain PI current

loop which has a bandwidth of 500 Hz. The apparatus is inter-

shown in Fig. 2 and represents the negative feedback interconngg 15 4 DSP which resides on the PC backplane and user writ-
tion of a passive systerfthe feedback interconnection & and ten control algorithms can be developed on the PC and down-
the bottom adaptive loop, both of which are paspaed a strictly |gaded to the DSP.

The first of these is strictly passive and the second represent
passive mapI(s™ 1) from WTYljlsﬂ toa. The overall system is

pass~ive systerky. Hence,s, L, and thereforg, , p,eL, so If q,=6;, ge;=0,— 6;, andqge,= 65— 0, are selected as gen-
thatp,(t) -0 ast—. Further arguments can be used to showralized coordinates ani{t) as the motor torque, the matrices
thatp, , &, and7, vanish ag—c. defined in Eq.(2) are given by

Implementation Issues. In the adaptive casd/ . is assumed Jit+3,td3 Jot+Js I3 0 0 O

unknown and therefore so |¥M=l—,u(1—MrjclMco) which is

= + + =
required to form the feedback and adaptation laws in (B@). M Yotds Jotds 5l K= 0 ki 0

)

However, if YK 4=KMg, (K>0) which does not requiré/ . J3 Jz 3 0 0 k
thenK is positive-definite. The problem with the adaptation law 1

can only be circumvented in certain cases. In the SISO situation, _lo

WT=W andY,* commute so tha¥ ,* can be absorbed into the B= ol (40)

positive gainl". A similar possibility exists in the multiple input
multiple output(MIMO) case ifM ,; andM , are diagonal so that The noncollocated degree of freedom is taken tphe= 6= 6,

W andY , can be taken to be diagonal. Otherwise, it is proposed[1 1]q. so thatC,=1, C,=[1 1]. The collocated degree of

to approximateY,, by (1—u)1 and absorb it intd". freedom ispe,= 60, andp,=u b3+ (1—u)0;.

Another drawback is the calculation afy in Eq. (28) which Nominally, disks 1 and 2 were removed reducihgandJ, to
requiresuy based on the true parameters. We propose to takeeir minimum values and the maximum number of magdes
Pud=Pq, an approximation which improves as— u*. The final were placed on disk 3 in their most outboard position. The corre-
form of the controller incorporating these modifications is sponding parameter values are given in Table 1. The calculated

Encoder #3
il () Third
5 encoder/disk
ds) for Model 205a
only
Jy
— Encoder #2
6,) Brushless
Servo Motor

— 4 Movable
o —_—
Encoder #1 . _ﬂ

®)

Rigid belt drive

Fig. 3 Torsional control system apparatus (reprinted courtesy of Educational Control
Products )
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Table 1 Torsional apparatus parameter values Table 2 Measured values of pu,, at stability-boundary

k;=2.8 N-m/rad, k,=2.7 N-m/rad J; (g-md J, (g-m?) Js (g-m?) w Mer
J,=0.508 gm?, J,=0.008 gn?, J;=18.725 gm?
0.508 0.008 18.725 0.973 0.973
2.408 0.008 18.725 0.886 0.889
6.233 0.008 18.725 0.750 0.772
9.083 0.008 18.725 0.673 0.688
14.283 0.008 18.725 0.567 0.584
. 19.233 1.908 18.725 0.470 0.563
05— pg PD (M:=0) 2.408 0.008 1.900 0.440 0.462
(deg) PD (3, = M) 19.233 0.008 9.438 0.329 0.370
R 7.083 0.008 1.900 0.211 0.277
adaptive (D, = 0) 17.483 0.008 1.900 0.098 0.135

adaptive (ﬁt #0)

ML
30
@my) | true value
— adaptive case
10
—! =TT
02 ¢ 6 8 10 12 0 2 4 6 8 10 12
time (sec) time (sec)
Fig. 6 Tracking errors and parameter estimates (n*=0.567,
s pn=0.55)
15 ————————————— true value
(gm?) ¢ —— without viscous term
10 , -------- with viscous term unstable § stable o Her
oy
5
1.0
0 T T T T T 1
0 2 4 me Bse) 8 10 12 0.9
Fig. 5 Parameter estimates (u*=0.973, u=0.96) 08 * O
7 T
0.7
0.6
natural frequencies for this configuration wesg=8.3 Hz and N
w,=113 Hz, both of which were validated experimentally to 0.5 5
within 1%. For this structureM,.=J; and M ,=J;+J, so that 0.4
w* =M/ (M +M.)=0.973 for the parameter values in Table ’ o
. 0.3
All controllers were implemented with a sampling period of 0
Ts=0.003536 s and the derivativég and 65 required to formp,, 0.2
were obtained by simple differencing of the encoder measure- B
ments. Initially a PD law of the fornf(t)=—-Kgs,, s,=p, 0.1
+ADPu, Pu=p.—pq Was employed with Ky=0.605 0.0
— <1 — H H . T T T T T T T T T
N-m«s/_ra'd/s,A—ll.Ss ,andpd—o. This places tpe elgenva!ues 0.0 01 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1.0
of the rigid mode at-15.7+j10.4 rad/s whem= p*. The stabil-
ity boundary was found to occur experimentally @at=0.973 Mnc/(Mnc + MCO)

which is identical to the calculated value pf.

For analysis of the tracking problem, the desired trajectory Fig. 7 Experimental and theoretical stability regions
pqa(t) was a quintic polynomial takingy from 0 to 180 deg in
T=1s with pg(0)=pg(T)=pg(0)=p(T)=0. For 1 s<t<2s, a
similar maneuver takepy from 180 deg back to 0 and far

. o 2 . .
=2 s, the entire maneuver repeats itself with a period of 2 s. THES implemented witfi’'=12.4 gm -s%, which yields an average
use of the simple PD law for tracking is shown in Fig. 4 ( time constant for the adaptation of 0.63 s. The tracking perfor-

=0.96) and the tracking error is on the order-o# deg. If this is Mance fora(0)=0 is also given in Fig. 4 and is nearly as good as
augmented with the feedforward given in EGO), i.e., f(t) the fixed parameter case. This is excellent considering the speed
=M pg—Kgs,, M=J;+J,+Js, the tracking per,forménce is Of the maneuver and the flimsy nature of the structure separating
greatly impro’il’ed as shown in F’ig. 4. the control input and the manipulated inertia. The behavior of the
SettingW(py) =54, a=M,, the adaptive form estimatea(t) is shown in Fig. 5. Notice that it oscillates about the
GW(Pa) =Pa ! P true value on account of unmodeled effects such as drive and
o . _ support joint friction. If this is modeled in the regressor by taking
f()=W(v)a—Kgs,, a=TW(v,)s, (41) wW=[0, v,], a&=col{M,,D,} whereD, is interpreted as an effec-
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tive viscous damping constant, the estimiteimproves to that structure of either the noncollocated or collocated mass matrix.

given in Fig. 5. The tracking error in Fig. 4 showed little changdlultibody problems with large rigid motions bring significant

but further improvement is possible by attributing separate dampenlinearities into play. Future work will address experimental

ing constants td)l and '93. implementation of the proposed controllers on flexible manipula-
Next, the controller in Eq(41) was implemented for various tors carrying large payloads.

values ofJ;, J,, andJ; which were achieved by varying the

location of the masses ahy and/orJ,. The critical value ofu* is Acknowledgment

tabulated in Table 2 along with the observed valueguofu,, ) . .
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