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Passivity and Noncollocation in
the Control of Flexible Multibody
Systems
Collocation of actuation and sensing in flexible structures leads to the desirable in
output property of passivity which greatly simplifies the stabilization problem. Howe
many control problems of interest such as robotic manipulation are noncollocate
nature. This paper examines the possibility of combining collocated and noncolloc
outputs so as to achieve passivity. An appropriate combination is shown to depend
interplay between collocated and noncollocated mass properties. Tracking problem
also studied and a controller with adaptive feedforward elements is introduced. An
perimental study using a simple flexible apparatus with one rigid degree of freedom
two vibration modes is used to validate the analysis.@S0022-0434~00!01701-9#
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1 Introduction
Many motion control problems are characterized by low m

structures which exhibit significant structural flexibility. There a
often simultaneous requirements for control of rigid body motio
coupled with active vibration suppression. Both problems are
acerbated by model uncertainty which necessitates the addit
requirement of robustness.

It has long been known that robust stabilization of both rig
and flexible structures can be readily achieved by collocating d
sets of~rate! sensors and~force! actuators. In this case, the inpu
output ~I/O! mapping is passive; in the linear time-invariant s
ting this manifests itself in the form of a positive real trans
function. Passivity and the positive real property were origina
studied as characteristics of the driving point impedances of
sive ~for example, RLC! circuits @1#. Stabilization of passive sys
tems is readily achieved using strictly passive feedback as
dicted by the passivity theorem@2#. This stability property is
robust because the passivity of the I/O map is independent o
structural details, manner of spatial discretization, and numbe
modeled modes, but merely resides in the collocation assump
One of the first to realize this was Gevarter@3# who used simple
proportional derivative~PD! laws and eigenvalue perturbatio
arguments.

Since then, many researchers have examined the colloc
problem, but little research has investigated the exploitation
passivity for noncollocated inputs and outputs. Exceptions to
have typically focused on developing either static@4# or dynamic
@5# output maps which yield a positive real system. In these ca
the required output transformation will be model dependent,
robustness can still be achieved by proper design of dynamic f
back compensation.

The simplest compensator achieving stabilization for a pas
plant is positive rate feedback, but this must be extended
proportional-integral~PI or PD relative to position measurement!
in the presence of rigid motions which lack stiffness. Benha
et al. @6# emphasized that compensation in the form of stric
positive real~SPR! controllers could also furnish robust stabilit
for passive systems and perhaps improve performance. Since
many authors have established systematic procedures for SP
sign @7–10#.

Robotics problems, from the standpoint of joint-based cont
furnish a class of systems exhibiting natural collocation and,
though nonlinear, passivity has played an important role in
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development of controllers for setpoint regulation@11# and both
nonadaptive and adaptive tracking@12#. Space robotics has
brought the problem of controlling flexible manipulators to t
fore. In the archetypical form of the problem, one has a chain
flexible bodies with control inputs at the joints between bodi
However, the variables to be controlled are the position and
entation of the payload at the end of the manipulator. This rep
sents a noncollocated problem requiring specialized approa
with serious limitations on achievable performance.

It was in the study of that problem that the present author
amined them-output@13#. This is essentially a linear combinatio
of collocated and noncollocated variables whereinm50 yields the
collocated case andm51 gives the noncollocated one. The d
pendence of the passivity property onm was studied in the
asymptotic situation where the robot mass properties were ne
gible compared to those of the payload. Passivity was shown t
possible form,1 and later work@14# showed that this bound
prevails for planar two- or three-link flexible manipulators wi
large payloads and/or large stators present at the end of each

The present work serves to generalize the above by conside
a finite noncollocated to collocated~generalized! mass ratio. This
incorporates other important mass effects such as the lumped
inertias associated with highly geared actuators. A critical va
m!, is determined for which simple stabilization using the pass
ity theorem becomes possible form,m!. In the case of multiple
inputs and outputs, the analysis suggests the inclusion of a m
plier which defines the required spatial structure of the feedb
controller. These enhancements greatly extend the applicabilit
the original ‘‘large payload’’ theory.

For simplicity, linearized dynamics are introduced in Sec.
which affords access to modal analysis and the frequency dom
Passivity is studied in Sec. 3 as a function ofm and the interplay
between collocated and noncollocated mass distributions. In a
tion, a controller containing feedforward elements is presente
Sec. 4 which provides adaptive tracking for prescribed trajecto
of a certain output. Experimental results from an apparatus wi
single rigid rotational degree of freedom and two dominant vib
tion modes will be used in Sec. 5 to validate the analysis.

2 Motion Equations and Input-Output Model
The motions of a flexible structure are assumed to be gover

by the standard second-order motion equation

Mq̈1Kq5Bf (1)

whereM, K , and B are the mass, stiffness, and input matrice
respectively. TheN generalized coordinatesq and these matrices
are assumed be partitioned as

he

sso-
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M5F M rr M re

M re
T Mee

G , K5FO O

O Kee
G , B5F 1

OG , q5Fqr

qe
G

(2)

with M5MT.O and Kee5Kee
T .O. Hence, we identifyqr with

the Nr rigid degrees of freedom, all of which are assumed to
actuated byNr generalized forcesf. Rigid, as used here, denote
motions which are kinematically possible without storing a
strain energy. The form of the input matrixB is consistent with
the use of constrained~also called appendage! modes or more
general constrained shape functions for theNe elastic coordinates
qe . That is, the elastic motions are kinematically subject
boundary conditions which are consistent withqr(t)[0. They
correspond to motions which store strain energy in the syst
The above description is sufficiently general to describe the
earized dynamics of an arbitrary elastic multibody system w
complete actuation of the independent rigid degrees of freedo

The output of interest is assumed to be of the formrnc(t)
5@CrCe#q(t) where it is assumed thatCr is square and invertible
In the case of a flexible manipulator,rnc would be the generalized
tip position~relative to the linearization configuration! andCr and
Ce can be identified with the rigid and elastic Jacobian matric
The subscript ‘‘nc’’ indicates ‘‘noncollocated’’ since, in genera
the output of interest depends onqe and hence is not collocate
with the control inputsf ~or u!. Although there may be othe
configuration variables that are not collocated, the term nonco
cated will be reserved for this special output.

A more general output known as them-rate can be identified:

y~ t !5ṙm,Cr q̇r1mCeq̇e (3)

wherem51 captures the true~noncollocated! rates,ṙnc, and m
50 constitutes an outputṙco,Cr q̇r which is the natural dual of
u(t),Cr

2Tf(t), an input more useful for our purposes. It
straightforward to show thatḢ(q,q̇)5uTṙco5fTq̇r whereH(q,q̇)
is the Hamiltonian corresponding to Eq.~1!. Hence,f/q̇r andu/ṙco
form collocated I/O pairs. For control purposes, it is assumed
rnc and rco ~via qr! can be measured so thatrm5mrnc1(1
2m)rco can be formed.

The eigenproblem corresponding to Eq.~1! can be written as

2va
2Mqa1Kqa50, a51,2,3,... (4)

whereva are the unconstrained vibration frequencies and theqa
5col$qra ,qea% provide the corresponding modes shapes. Th
are Nr zero-frequency rigid modes collectively of the formQr

5@1 O#T. The modes enjoy standard orthonormality relatio
with respect toM andK . Expanding the solution of Eq.~1! and
the output in Eq.~3! in terms of eigenvectors,q(t)5Qrhr(t)
1(a51

Ne qaha(t), it is relatively straightforward to obtain the
modal equations

M rrḧr5f~ t !5Cr
Tu, (5)

ḧa1va
2ha5~Crqra!Tu~ t !, a51,...,Ne , (6)

y~ t !5Crḣr1(
a51

Ne

~Crqra1mCeqea!ḣa . (7)

Using Laplace transforms, the dynamics of the system can
captured by the input-output description:

y~s!5G~s!u~s!, (8)

G~s!5
1

s
CrM rr

21Cr
T1(

a51

Ne s

s21va
2 caba

T , (9)

ca5Crqra1mCeqea ,ba5Crqra . (10)

Recall that a general square system is strictly passive
*0

t fyTu dt>e*0
t fuTu dt for somee.0, ;t f>0, and;u such that
12 Õ Vol. 122, MARCH 2000
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*0
t fuTu dt,`. The system is passive ife50. For linear time-

invariant systems, this is equivalent to positive realness of
corresponding transfer functionG(s), i.e., G(s) is analytic and
G(s)1GH(s)>O for s in the open right-half plane.

The transfer matrix in Eq.~9! represents a linear combination o
the positive real functionss21 and s/(s21va

2). It is known @1#
that such a function is positive real if and only if the coefficien
in this case CrM rr

21Cr
T and caba

T , are positive-semidefinite
Clearly the first of these is always so and the entire issue res
in identifying situations wherebaca

T>O for all modes. It occurs
here for collocated feedback, i.e.,m50 so thatba5ca5Crqra .
The next section serves to enlarge the range ofm leading to pas-
sivity which has the further advantage of introducing the nonc
located output into the feedback.

3 Perturbation Analysis, Multipliers, and Passivity
Let us explicitly indicate the portion of the mass distributio

associated with the noncollocated motion,rnc:

M5FCr
T

Ce
TGMnc@Cr Ce#1dM (11)

where it is understood thatdM can be partitioned analogously t
M in Eq. ~2!. In other words, it is assumed that the kinetic ener
can be written as

T5
1
2 ṙnc

T Mncṙnc1
1
2 q̇TdMq .

The d notation is used to indicate quantities that are small to fi
order;Mnc.O is O(1) and assumed to be the dominant contrib
tion to the mass distribution. It is representative of a mass
manipulated object such as a large payload at the end of a li
weight robotic manipulator. The eigenvectorsqa are decomposed
as

qa5q̄a1dqa (12)

whereq̄a is O(1) anddqa denotes the first order perturbation du
to dM which we seek to uncover. Bothq̄a anddqa can be parti-
tioned analogously toqa . The ensuing analysis is equivalent
taking dM ~M less theMnc contribution! to beO(1) and taking
Mnc to beO(d21). In this light, q̄a corresponds to the modes o
the system withrnc50 since asd→0, the infinite contribution of
Mnc acts as a clamping boundary condition forrnc.

The first row in eigenequation~4! implies that M rrqra
1M reqea50 or, upon substitution of the relevant partitions
Eqs.~11! and ~12!,

~Cr
TMncCr1dM rr!~ q̄ra1dqra!1~Cr

TMncCe1dM re!~ q̄ea1dqea!

50. (13)

Expanding and collecting terms of like order gives to

O~1!: Cr
TMnc~Cr q̄ra1Ceq̄ea!50;

O~d!: Cr
TMnc~Crdqra1Cedqea!1dM rrq̄ra1dM req̄ea50.

These imply that to

O~1!: Cr q̄ra52Ceq̄ea ; (14)

O~d!: Cedqea52@Crdqra1Mnc
21Cr

2T~dM rrq̄ra1dM req̄ea!#.
(15)

The first of these implies that the noncollocated output
‘‘clamped’’ in each vibration mode toO(1) in keeping with the
assumption thatMnc forms the dominant contribution to the mas
distribution. This follows from the definition ofrnc which implies
that Cr q̄ra1Ceq̄ea is the relevant modal amplitude.

Using these expressions in Eq.~10!, we can write
Transactions of the ASME
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caba
T5H ~12m!~Cr q̄ra!~Cr q̄ra!T, O~1!;

~12m!Cr~ q̄ra1dqra!~ q̄ra1dqra!TCr
T

2mMnc
21Cr

2T~dM rrq̄ra1dM req̄ea!~ q̄ra1dqra!TCr
T , O~d!,

(16)
e

f

r

ust
ove,
or

usal
e
tain

ec.

d

va-
m

he
where the second of these is correct to the indicated order.
O(1) result shows thatG(s) in Eq. ~9! is passive form,1, but
clearly ignores the correction stemming fromdM .

The inclusion of thedM effects in Eq.~16! can improve the
estimate on the range ofm leading to passivity. However, the term
containingdM re presents an obstacle to further analytical progr
but can be neglected in some cases. Using Eq.~14!, the bracketed
expression in Eq.~16! containingdM re can be written as

dM rrq̄ra1dM req̄ea5@dM re2dM rr Cr
21Ce#q̄ea

The term containingdM re can be neglected ifidM rrCr
21Cei

@idM rei . This will happen when lumped rigid components ass
ciated with qr alone dominatedM rr . For example, rigid rotor
inertias amplified by the use of large gear ratios contribute todM rr
but notdM re .

The ensuing expression in~16! can be simplified by defining

M co,Cr
2TdM rrCr

21, M t,Mnc1M co, (17)

Ym,@~12m!12mMnc
21M co#, (18)

cra,Cr~ q̄ra1dqra!. (19)

Notice that the collocated mass matrixM co represents the part o
the mass distribution, less theMnc contribution, associated with
rco, assuming rigid bodies. Hencecaba

T5Ymcracra
T , M rr

5Cr
T(Mnc1M co)Cr , CrM rr

21Cr
T5M t

21, and using Eq.~9!

G~s!5s21M t
211Ym(

a51

Ne

cracra
T

s

s21va
2 . (20)

In general,G is not positive real but the first term is andYm
premultiplies a summation which also is.

The Single-Input Single-Output „SISO… Case „NrÄ1…. In
this case note that

Ym512
m

m! , m!,
Mnc

Mnc1M co
,1. (21)

ThereforeG(s) is passive if and only ifm,m! Whenm5m!, the
summation over the vibration modes vanishes~all vibration modes
become unobservable! and the outputṙm!5Crḣr becomes propor-
tional to the rigid body modal rate. It is instructive to conside
small negative rate feedbacku(t)52eṙm . Using a simple eigen-
value perturbation argument, it is readily shown that the clos
loop eigenvalues of each vibration mode are given
2eYmcra

T cra6 j va . All modes are stabilized whenm,m! (Ym

.0) and all of them are destabilized whenm.m! (Ym,0) as-
suming controllability and observability, i.e.,craÞ0.
Journal of Dynamic Systems, Measurement, and Control
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In Sec. 4, the tracking problem will be considered and one m
decide which output is to be prescribed. On the basis of the ab
rm! is selected given the simple rigid nature of the I/O map. F
m,m!, the I/O map is passive, hence minimum phase and ca
inversion is possible. Form.m!, one expects nonminimum phas
behavior and causal inversion would be impossible. In a cer
sense,ṙm! is the closest output toṙnc whose I/O map can be
inverted in a causal fashion. This will be further elucidated in S
4.

The Multivariable Case „NrÌ1…. In the multivariable case, it
is helpful to consider the~generalized! eigenproblem associate
with the mass matrices:

la~Mnc1M co!ea5Mncea , a51,...,Nr . (22)

Defining Lm,diag$la% and E,row$ea%, then with suitable nor-
malization, ET(Mnc1M co)E51 and ETMncE5Lm . Clearly la
.0 and the eigenmatrixE will also diagonalizeM co. Using these
relations,Mnc

21M co5E(Lm
2121)E21 and from Eq.~18!

Ym5EDmE21, Dm,12mLm
215diagH 12

m

la
J . (23)

If m is chosen to satisfy

m,m!,min
a

la5 inf
eÞ0

eTMnce

eTM te
,1 (24)

thenDm is positive-definite. This definition ofm! generalizes that
in Eq. ~21!.

Lemma 1. The transfer matricesĜ5GYm
T and Ḡ5Ym

21G are
positive real ifm,m!.

Proof. Given the expression in Eq.~20! bothĜ andḠ are of the
form A0s211SaAas/(s21va

2). It remains to show thatA0 and
the Aa are positive-semidefinite in each case. ForĜ, Aa

5Ymcracra
T Ym

T>O and for Ḡ, Aa5cracra
T >O. Now, note that

CrM rr
21Cr

T5(Mnc1M co)
215EET. Using this in conjunction with

Eq. ~23!, A05CrM rr
21Cr

TYm
T5EDmET for Ĝ, and for Ḡ, A0

5Ym
21CrM rr

21Cr
T5EDm

21ET. Both versions ofA0 are positive-
definite whenm,m! on account ofDm.O. h

Application of the Passivity Theorem. Using the notion of
multipliers @2#, the feedback systems shown in Fig. 1 are equi
lent from the point of view of stability. The passivity theore
states that ifG is passive andH is strictly passive thenr
PL2⇒yPL2 . Using Lemma 1 and the passivity theorem, t
original system is stable if eitherĤ5Ym

2TH or H̄5HYm is strictly
passive. A possible design strategy would selectHsp, a strictly
Fig. 1 Equivalent feedback loops
MARCH 2000, Vol. 122 Õ 13
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passive feedback, and then one would use eitherH5Ym
THsp or

H5HspYm
21. Either approach requires accurate knowledge ofMnc

andM co in forming Ym .
Alternatively, if H(s)5(Kd1Kp /s)M co or H(s)5(Kd

1Kp /s)Mnc whereKp.0, Kd.0, it is readily shown using the
previous eigendecompositions thatĤ and H̄ are strictly passive
sinceYm

2TM co andMncYm are positive-definite matrices. The firs
of these is robust ifMnc is poorly known and the second is robu
if M co is poorly known. Both statements presuppose thatm is
selected small enough. Other possibilities forH exist if the eigen-
structure ofMnc andM co is assumed known.

In summary, stabilization is possible using a PD law who
spatial structure mirrors that ofMnc or M co. This controller will
be robust ifm,m! wherem! could be determined using an upp
bound forM co or a lower bound forMnc, respectively. The sta
bility result is robust against variations in the stiffness proper
and their manner of description but requires thatidM rrCr

21Cei
@idM rei .

4 Feedforward Design and Adaptive Tracking
The development of a tracking controller is most readily a

complished in the time domain. A realization of the transfer m
trix in Eq. ~20! is given by

M tj̈r5u~ t !, (25)

ḧe1Ve
2he5C̄e

Tu, (26)

y~ t !5ṙm5 j̇r1YmC̄eḣe , (27)

where he5col$ha%, Ve5diag$Va%, and C̄e5row$cra%. Ideally,
we would like to find a control inputu so thatrnc tracks a desired
trajectoryrd which is prescribed along withṙd and r̈d .

To understand the difficulties associated with assigningrd to
the desired behavior ofrnc, let us adopt a quasistatic approxim
tion for the elastic coordinates in Eq.~26!, i.e., neglectḧe . Such
an approximation was shown to be highly effective in approxim
ing the flexible motions produced by a complex simulation of
Space Shuttle Remote Manipulator System@13#. On this basis,

he5Ve
22C̄e

Tu5Ve
22C̄e

TM tj̈r

where Eq.~25! has been used foru. Substituting this into the
integral of Eq.~27! gives

rm5jr1YmC̄eVe
22C̄e

TM tj̈r

If rd is assigned to the desired value ofrm ~rnc whenm51!, then
the above ODE can be used to determine the desired trajector
jr .

Assuming thatrd begins att50, a causal trajectory forjr ~i.e.,
one that also begins att50!, depends on the stability of the ODE
To keep things simple, consider the SISO case and recall
Ym512(m/m!). Stability ~causality of the I/O map fromrd to
jr! requires that the coefficient ofj̈r above be positive which
implies thatm,m!. In general, a causal solution will not exist
m51.m!, i.e., rm5rnc. However, for m5m!, rm5jr since
Ym50, so that therd can be identified with the desired behavi
of the rigid ~modal! coordinatejr(t). Note that asm!→1, so that
m can be taken close to 1,rm(t)8jr(t)8rnc(t) and hencerd is
close to being the prescribed trajectory forrnc.

Nonadaptive Case. Sincerd(t) is the desired trajectory fo
jr(t), the nominal feedforward is selected to beud5M tr̈d accord-
ing to Eq. ~25!. The desired behavior for the elastic coordinat
hd , is determined using Eq.~26!:
14 Õ Vol. 122, MARCH 2000
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ḧd1Ve
2hd5C̄e

Tud . (28)

This allows us to define the desired version of them-output,

rmd,rd1YmC̄ehd . (29)

Settingj̃r5jr2rd , h̃e5he2hd , ũ5u2ud , and r̃m,rm2rmd ,
it is clear that the dynamics relatingũ to ṙ̃m are identical in form
to those given by Eqs.~25!–~27! which relateu to y. Thus,
ṙ̃m(s)5G(s)ũ and is governed by the passivity results of t
previous section. Stabilization of the error dynamics is then p
sible by takingũ52Ym

THspṙ̃m so that

u~ t !5M tr̈d2Ym
THspṙ̃m . (30)

Note thatHsp can simply be a PI law andrm(t) can be formed
from mṙnc1(12m)ṙco, thus avoiding measurements ofhe .

Adaptive Case. In the case whereM t as needed in Eq.~30! is
poorly known but we have a lower bound onm!, an adaptive
tracking strategy can be established. The key resides in the
tions of virtual trajectory and filtered error as originally intro
duced in a robotics context@12#. The desired feedforward is fac
tored asud5M tr̈d5W(r̈d)a where the unknown, but assume
constant, parameters inM t are contained in the columna andW is
called the regressor matrix. Next, the virtual trajectory is defin
by

vr5ṙd2Lr̃m , L.O (31)

and the feedforward is modified to read

ud5W~ v̇r !a5M t~ r̈d2Lṙ̃m!, (32)

while hd continues to be defined by Eq.~28!. Subtracting Eq.~32!
from Eq. ~25! and Eq.~28! from Eq. ~26!, the error dynamics can
be written as

r̃m5 j̃r1YmC̄eh̃e , H M t~ j̈̃r1Lṙ̃m!5ũ,

ḧ̃e1Ve
2h̃e5C̄e

Tũ.
(33)

Consider the following Lyapunov-like function:

V5
1
2 ~ j̇̃r1Lr̃m!TYm

2TM t~ j̇̃r1Lr̃m!1
1
2 ḣ̃e

Tḣ̃e1
1
2 h̃e

TVe
2h̃e>0

(34)

whereYm
2TM t.O sinceM t

21Ym
T.O from the proof of Lemma 1.

Using the error dynamics, its time derivative isV̇5( ṙ̃m

1Lr̃m)TYm
2Tũ. Integration of this relationship establishes pass

ity betweenYm
2Tũ andsm, ṙ̃m1Lr̃m which is termed the filtered

error. If Ym
2Tũ is a strictly passive function of2sm then sm

PL2 . Using a well-known result, so areṙ̃m and r̃m . Hence,r̈d

can be replaced withv̇r and ṙ̃m with sm in Eq. ~30! in the known
parameter case:

u~ t !5M tv̇r2Ym
THspsm .

In the case wherea is poorly known, an estimateâ(t) can be
employed:

u5W~ v̇r !â1ū (35)

where ū is the feedback portion ofu. Subtracting Eq.~32! from
Eq. ~35! and definingã,ã2a gives Ym

2Tũ5Ym
2T@W( v̇r)â1ū#,

which we would like to be a strictly passive function of2sm , i.e.,

2E
0

t f

sm
TYm

2Tũ dt52E
0

t f

ãWT~ v̇r !
TYm

21sm dt2E
0

t f

sm
TYm

2Tū dt

>eE
0

t f

sm
Tsm dt. (36)

To this end, select
Transactions of the ASME
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ū52Ym
TKdsm ~Kd.O!,

ȧ̃5 ȧ̂52GWT~ v̇r !Ym
21sm ~G.O!. (37)

The first of these is strictly passive and the second represen
passive map (Gs21) from WTYm

21sm to ã. The overall system is
shown in Fig. 2 and represents the negative feedback intercon
tion of a passive system~the feedback interconnection ofĜ and
the bottom adaptive loop, both of which are passive! and a strictly
passive systemKd . Hence,smPL2 and thereforer̃m , ṙ̃mPL2 so
that r̃m(t)→0 as t→`. Further arguments can be used to sh
that ṙ̃m , j̃r , andh̃e vanish ast→`.

Implementation Issues. In the adaptive case,Mnc is assumed
unknown and therefore so isYm512m(12Mnc

21M co) which is
required to form the feedback and adaptation laws in Eq.~37!.
However, if Ym

TKd5KM co (K.0) which does not requireMnc
thenKd is positive-definite. The problem with the adaptation la
can only be circumvented in certain cases. In the SISO situa
WT5W andYm

21 commute so thatYm
21 can be absorbed into th

positive gainG. A similar possibility exists in the multiple inpu
multiple output~MIMO ! case ifMnc andM co are diagonal so tha
W andYm can be taken to be diagonal. Otherwise, it is propo
to approximateYm by (12m)1 and absorb it intoG.

Another drawback is the calculation ofhd in Eq. ~28! which
requiresud based on the true parameters. We propose to t
rmd8rd , an approximation which improves asm→m!. The final
form of the controller incorporating these modifications is

Fig. 2 Adaptive controller
Journal of Dynamic Systems, Measurement, and Control
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u~ t !5Cr
2Tf5M̂ t@ r̈d2L~ ṙm2ṙd!#2Kdsm , (38)

ȧ̂52ĜWT~ v̇r !sm , Ĝ5~12m!G, (39)

wheresm5 ṙ̃m1Lr̃m with r̃m5rm2rd .

5 Experimental Results
The control strategy developed in the previous section w

implemented on the Torsional Control System apparatus de
oped by Educational Control Products. It consists of three conc
tric disks which are separated by two thin steel wires of len
305 and 310 mm~see Fig. 3!. The wires are effectively modeled
as massless lumped torsional stiffnessesk1 and k2 . Each of the
three disks can be removed or augmented with brass mass
variable position which allows one to systematically vary the ax
moment of inertia of each disk (J1 ,J2 ,J3).

The base disk is free to rotate and is driven by a brushless
motor. Angular encoders~400034 counts per revolution! are used
to sense the rotational motion of each disk (u1 ,u2 ,u3). Torque
control of the motor is accomplished with a high gain PI curre
loop which has a bandwidth of 500 Hz. The apparatus is in
faced to a DSP which resides on the PC backplane and user
ten control algorithms can be developed on the PC and do
loaded to the DSP.

If qr5u1 , qe15u22u1 , andqe25u32u2 are selected as gen
eralized coordinates andf (t) as the motor torque, the matrice
defined in Eq.~2! are given by

M5F J11J21J3 J21J3 J3

J21J3 J21J3 J3

J3 J3 J3

G , K5F 0 0 0

0 k1 0

0 0 k2

G ,

B5F 1
0
0
G . (40)

The noncollocated degree of freedom is taken to bernc5u35u1
1@1 1#qe so that Cr51, Ce5@1 1#. The collocated degree o
freedom isrco5u1 andrm5mu31(12m)u1 .

Nominally, disks 1 and 2 were removed reducingJ1 andJ2 to
their minimum values and the maximum number of masses~4!
were placed on disk 3 in their most outboard position. The co
sponding parameter values are given in Table 1. The calcul
Fig. 3 Torsional control system apparatus „reprinted courtesy of Educational Control
Products …
MARCH 2000, Vol. 122 Õ 15
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natural frequencies for this configuration werev158.3 Hz and
v25113 Hz, both of which were validated experimentally
within 1%. For this structureMnc5J3 and M co5J11J2 so that
m!5Mnc/(Mnc1M co)50.973 for the parameter values in Tab
1.

All controllers were implemented with a sampling period
Ts50.003536 s and the derivativesu̇1 andu̇3 required to formṙm
were obtained by simple differencing of the encoder meas
ments. Initially a PD law of the formf (t)52Kdsm , sm5 ṙ̃m
1Lr̃m , r̃m5rm2rd was employed with Kd50.605
N•m•s/rad/s,L511.3 s21, andrd50. This places the eigenvalue
of the rigid mode at215.76 j 10.4 rad/s whenm5m!. The stabil-
ity boundary was found to occur experimentally atmcr50.973
which is identical to the calculated value ofm!.

For analysis of the tracking problem, the desired traject
rd(t) was a quintic polynomial takingrd from 0 to 180 deg in
T51 s with ṙd(0)5 ṙd(T)5 r̈d(0)5 r̈(T)50. For 1 s<t<2 s, a
similar maneuver takesrd from 180 deg back to 0 and fort
>2 s, the entire maneuver repeats itself with a period of 2 s.
use of the simple PD law for tracking is shown in Fig. 4 (m
50.96) and the tracking error is on the order of64 deg. If this is
augmented with the feedforward given in Eq.~30!, i.e., f (t)
5Mtr̈d2Kdsm , Mt5J11J21J3 , the tracking performance is
greatly improved as shown in Fig. 4.

SettingW( r̈d)5 r̈d , a5Mt , the adaptive form

f ~ t !5W~ v̇ r !â2Kdsm , ȧ̂5GW~ v̇ r !sm (41)

Fig. 4 Tracking errors „m!Ä0.973, mÄ0.96…

Fig. 5 Parameter estimates „m!Ä0.973, mÄ0.96…

Table 1 Torsional apparatus parameter values

k152.8 N•m/rad, k252.7 N•m/rad
J150.508 g•m2, J250.008 g•m2, J3518.725 g•m2
16 Õ Vol. 122, MARCH 2000
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hewas implemented withG512.4 g•m2
•s2, which yields an average

time constant for the adaptation of 0.63 s. The tracking per
mance forâ(0)50 is also given in Fig. 4 and is nearly as good
the fixed parameter case. This is excellent considering the sp
of the maneuver and the flimsy nature of the structure separa
the control input and the manipulated inertia. The behavior of
estimateâ(t) is shown in Fig. 5. Notice that it oscillates about th
true value on account of unmodeled effects such as drive
support joint friction. If this is modeled in the regressor by taki
W5@ v̇ r v r #, â5col$M̂ t ,D̂t% whereD̂t is interpreted as an effec

Fig. 6 Tracking errors and parameter estimates „m!Ä0.567,
mÄ0.55…

Fig. 7 Experimental and theoretical stability regions

Table 2 Measured values of mcr at stability-boundary

J1 ~g•m2! J2 ~g•m2! J3 ~g•m2! m! mcr

0.508 0.008 18.725 0.973 0.973
2.408 0.008 18.725 0.886 0.889
6.233 0.008 18.725 0.750 0.772
9.083 0.008 18.725 0.673 0.688

14.283 0.008 18.725 0.567 0.584
19.233 1.908 18.725 0.470 0.563
2.408 0.008 1.900 0.440 0.462

19.233 0.008 9.438 0.329 0.370
7.083 0.008 1.900 0.211 0.277

17.483 0.008 1.900 0.098 0.135
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tive viscous damping constant, the estimateM̂ t improves to that
given in Fig. 5. The tracking error in Fig. 4 showed little chan
but further improvement is possible by attributing separate da
ing constants tou̇1 and u̇3 .

Next, the controller in Eq.~41! was implemented for various
values ofJ1 , J2 , and J3 which were achieved by varying th
location of the masses onJ3 and/orJ1 . The critical value ofm! is
tabulated in Table 2 along with the observed values ofm, mcr ,
which led to instability. In each case, stability was achieved
values ofm,mcr . The agreement is quite good despite the f
that m! was determined using first order perturbation theo
which assumes thatMnc@M co. The worst case occurs form!

50.470 which corresponds to including disk 2. This is not s
prising sincedMre5@J2 0# which was neglected in the analysis

The tracking and adaptation performance are shown in Fig
for the case wherem!50.567 and a value ofm50.55 was used.
Notice thatu3 tracksrd to within 12 deg in the steady state, b
one must bear in mind thatrd is the prescribed behavior ofrm!.
The errorr̃m is also shown in Fig. 6 and is considerably small

The information conveyed by Table 2 in conjunction with E
~21! is summarized by the stability diagram in Fig. 7. Her
‘‘stable’’ and ‘‘unstable’’ refer to the use of a strictly passiv
feedback and the values ofmcr refer more specifically to the adap
tive PD law used here. The most important feature of the diag
aside from the closeness ofmcr andm! is the conservative natur
of the prediction from Eq.~21!, i.e., m!<mcr in all cases.

6 Concluding Remarks
A theory of control for flexible structures performing rigid bod

motions with noncollocated outputs and inputs has been
sented. By judiciously combining collocated and noncolloca
measurements, it has been shown that passivity can be achiev
the appropriate I/O map. Provided a lower bound onm! is known,
robust stabilization and tracking are possible using simple
controllers.

An adaptive form of the tracking controller performed exc
lently for an experimental system with one rigid degree of fre
dom and all theoretical predictions were validated. The multiva
able form of the control laws was established here and sugg
the use of a PD controller whose feedback gains mirror the sp
Journal of Dynamic Systems, Measurement, and Control
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structure of either the noncollocated or collocated mass ma
Multibody problems with large rigid motions bring significan
nonlinearities into play. Future work will address experimen
implementation of the proposed controllers on flexible manipu
tors carrying large payloads.
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