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Modal Properties and
Control System Design
for Two-Link Flexible

Manipulators

Christopher J. Damaren
Department of Mechanical Engineering
University of Canterbury
Christchurch, New Zealand

Abstract

The vibration modes of a generic two-link fiexible manipulator are
studied as a function of the link, rotor, and tip (statorlpayload)
mass distribution. Necessary and sufficient conditions are devel-

oped for all vibration modes to exhibit a node at the manipulator
endpoint. A rigorous treatment of the relevant kinematics and dy-
namics shows that this property can be closely achieved for large
tip/link mass ratio and sufficiently small rotor inertia. The major
impacts of this result on feedforward/feedback controller design are
uncovered. First, the nonlinear joint torque to end-effector motion
dynamics become essentially equivalent to those of the rigid case.
Second, an output involving the endpoint rates and elastic motions
is shown to possess the passivity property for suitably defined inputs.
This permits the design of simple controllers that furnish endpoint
stabilization with simultaneous vibration suppression. A numeri-
cal example is used to illustrate the results and demonstrate the
achievable performance using the controller design concepts.

1. Introduction

The impact of structural flexibility on the analysis and control
of lightweight robots presents a serious challenge to robotic
engineers. However, this marriage of structural dynamics,
nonlinear multibody dynamics, and a difficult control prob-
lem exhibiting sensor/actuator noncollocation has provided
an irresistible allure for many researchers. The literature of
the field continues to grow, and recent overviews of the prob-
lem are provided by Book (1993a, 1993b) and Canudas de
Wit, Siciliano, and Bastin (1996).

The basic problem of controlling the endpoint motion us-
ing joint-based actuation can be divided into feedforward and
feedback design, both of which are greatly complicated by
the noncollocated nature of the relevant output. It is well

known that the inverse dynamics problem typically leads to
noncausal solutions (Bayo et al. 1989), and the relevant input-
output map used in feedback design is nonminimum phase
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(De Luca, Lucibello, and Ulivi 1989). However, the torque
to joint rate dynamics retain the favorable passivity property
of the rigid situation. This key property is characteristic of
systems with collocated dual actuation and sensing and un-
derlies many of the known results for control of rigid robots
(Canudas de Wit, Siciliano, and Bastin 1996). In this light, it
has been suggested by De Luca and Siciliano (1993) that the
endpoint problem be addressed indirectly using joint-based
techniques that seek tracking of prescribed joint-space tra-
jectories. An interesting compromise approach by Paden
et al. (1993) used a causal approximation for the endpoint
inverse dynamics solution in conjunction with a passive joint-
based feedback.

Given the desirability of the minimum phase property or
the stronger passivity property, several researchers have par-
ticipated in the hunt for modified inputs and/or outputs that
yield these properties. The reflected tip position was intro-
duced by Wang and Vidyasagar (1990, 1992) for a single
flexible link, and its rate was shown to yield a passivity prop-
erty by Pota and Vidyasagar (1991). De Luca, Lucibello,
and Ulivi (1989) showed that by using a suitable point along
a single link as the output, minimum phase behavior could
be obtained. Yim (1993) showed that this idea could work
for a spatial three-link arm in which the last link is flexible.
Barbieri (1993) analyzed the properties of transfer functions
for various outputs in the single-link case. The possibility
of transmitting the input torque to another location along a
beam has been considered by Park and Asada (1994).
Among the reasons for designing a flexible robot arm are

the desire for increased speed of operation, reduced robot
mass as in space operations, and increased payload capabil-
ity. The asymptotic situation of a large payload/robot mass
ratio has been addressed by Damaren (1995), in which it
was shown that the modified output idea could be used to
obtain passivity for a general multilink flexible robot. This
emanates from the clamped nature of the vibration modes
at the manipulator end-effector. It was shown in Damaren

(1996b) that feedforward design was possible that preserved
the passivity property in the error dynamics, which opened
the door to an adaptive approach (Damaren 1996a). These
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analyses naturally lead to consideration of other systems that
may enjoy similar properties.

In the present paper, we address planar two-link flexible
manipulators and illustrate how the mass distribution in the
links, joint stators, joint rotors, and payload affect the input-
output map. The control problem for such a system was first
addressed by Book, Maizza-Neto, and Whitney (1975) using
classical approaches. Our key result shows that when the
tip mass of each link is much greater than that of the link
mass, certain modal properties greatly simplify feedforward
and feedback design. Although the system is nonlinear, our
philosophy is to examine the vibration modes for a generic
configuration and infer potential control schemes for the ac-
tual system. This modal approach is later justified using a
nonlinear model, and our numerical results indicate that good
performance can be achieved using the proposed controllers.

Although the two-link scenario may seem unduly restric-
tive, it is a significant step forward from previous works
that have emphasized either one-link or systems with one
flexible link. Furthermore, many experimental systems that
have been designed to study the efficacy of various control
schemes fall into the two-link category. Our results may aid in
interpreting the results produced by these facilities, many of
which are constructed with flimsy links so as to be mass dom-
inated by the motors and payload. In fact, the results of this
paper were inspired by the initial examination by Damaren,
Stanway, and Sharf (1995) of the modal properties of such
a facility developed at the University of Victoria. Finally,
insightful analytical progress and literal results are possible
in the two-link case.

2. Motion Equations and Modal Analysis
The motion equation for flexible-link robots (omitting struc-
tural damping) can be written as

where M, K, and T are the mass matrix, stiffness matrix,
and joint torques, respectively. The nonlinear inertial forces
fno,.,, are quadratic in q. The generalized coordinates are
partitioned as q = collo, qe}, where 0(t) are the N joint
angles and qe(t) are the Ne elastic coordinates. The latter
are generated using clamped-free modeling for the elastic
deflections of each link. Hence, the above matrices can be

partitioned consistent with q:

with M = MT > 0 and Kee = K e > O.
The kinematics describing the Cartesian end-effector dis-

placements p(t) can be summarized by the forward kinemat-
ics map p = ~(9, qe), with p = Je(0, qe)b + Je(0, qe)qe;

Je and Je are Jacobian matrices. For the planar two-link ma-
nipulators considered here, p = [x y]T, where and y are
in-plane translations. A more general output known as the
p-tip rate has been defined by Damaren (1995):

where p = 1 captures the true tip rates and p = 0 constitutes
an output involving only joint motions. For the duration
of this paper, it is assumed that Jo is square and invertible.
Given this assumption, a more useful control input for our

purposes is u(t) = 0
Consider small excursions of the coordinates Jq in the

vicinity of a constant configuration q = col~6, 0}. The lin-
earized forms of eqs. (1) and (3) are

where the input and output matrices are B(q) = [Je O]T
and C(q) = [Je ~.GJeI~ respectively. The eigenproblem cor-
responding to (4) can be written as

where wa are the unconstrained (joints unlocked) vibration
frequencies and qa = col{80:, qea}, cx = 1 - Ne, are the
eigenvectors (mode shapes). Note that 80: are the mode
slopes at each joint axis. The term unconstrained is justified
because each &dquo;clamped&dquo; link is embedded within a freely ro-
tating frame. For a single-link system, the results of (5) would
be the pinned-free modes whose motion (qa cos cvat) is com-
posed of the clamped-free link deflections (qea coswo:t) su-
perimposed on the joint motion (0a cos wat). In general,
unconstrained modes are configuration dependent, whereas
the constrained basis used for each link is not. This, coupled
with the simple structure of the input matrix in (1) and (4),
forms most of the motivation for this modeling approach.
Assuming N joints, there are also N zero-frequency rigid

modes collectively of the form Qr = [1 O]T. The modes
enjoy standard orthonormality relations with respect to M
and K:

Expanding the solution of eq. (4) in terms of eigenvectors
6q(t) = Qrl1r(t) + ~a 9arla(t)~ it is relatively straightfor-
ward to obtain the modal equations
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Using Laplace transforms, the dynamics of the linearized
system can be captured by the input-output description

Many important properties of this system are governed by
the relationship between ba and Ca.

Recall that a general square system is passive if

JoT yT u dt > 0, VT > 0, and Vu such that f T uT u dt < oo.

For linear time-invariant systems, this is equivalent to pos-
itive realness of the corresponding transfer function G(s);
that is, G(s) is analytic, and G(s) + GH(s) > 0 for s in the

open right-half plane. The major significance of the passiv-
ity property is the closed-loop stabilization predicted by the
passivity theorem (Desoer and Vidyasagar 1975); that is, a
strictly passive controller such as a PI law (a PD law applied
to position) will stabilize a passive plant.

Following Newcomb (1966) and Anderson and Vongpan-
itlerd (1973), a transfer matrix of the form G(s) in (11) is
positive real if and only if cab; > 0, since the coefficient
of s-1 is nonnegative definite. The easiest way for this to
happen is can = ba, which is ensured when C = BT; that is,
collocation of actuation and rate sensing. Among the first to
recognize the relative ease with which such a system could be
stabilized was Gevarter (1970), who showed by using pertur-
bation arguments that small proportional and derivative gains
were stabilizing in the collocated case. A specific instance
of this occurs when it = 0, which implies that y = Jo8 and
ba = c. = J000.
An important question then arises: Is collocation the only

mechanism by which c«ba > O? In the SISO case, this is

somewhat easier to achieve, since eaba > 0 only requires
that ea and b« have the same sign. In general, for It ~ 0,
the vectors b« and co will not resemble each other, which re-
flects noncollocation of the joint actuation and end-effector
rate sensing. In Damaren (1995), it was shown that if a

nonredundant flexible manipulator carries a payload much
more massive than the arm, then Je00 + Jeqea * 0; that
is, the mode shapes are approximately clamped at the end-
effector. In this case, the input-output map from torques
to end-effector rates becomes essentially rigid, since the
vibration modes become unobservable from the tip. This

follows from c« = 0 in (11). Furthermore, for general M,
cab; ~ (1 - tc)(Jee«)(Jee«)T ~ which is nonnegative def-
inite if /~ < 1, thus rendering the transfer matrix in (11)
positive real. Other ramifications of this property will be
discussed in Section 5.

In the interest of finding other situations in which this key
property holds, we note the following result.

LEMMA 1. The mode shapes, qa, of (5) satisfy Je9a
+Jeqea = 0, a = 1 - &dquo; Ne, if and only if MBeJe 1Je = Mee.
Proof. Using the eigenequation (5) and the partitioning of
the mass and stiffness matrices in (2), the eigencolumns sat-
isfy Mee9a + Meeqea = 0. Thus,

Clearly, we have sufficiency. Suppose Jø8a + Je<teo: = 0.
Since Ne qe« are linearly independent, the null space of the
N x Ne matrix (MeeJe 1 Je - Mee ) must have dimension Ne ;
hence, MeeJe 1Je - Mee = O. D

In the next section, the existence of this property for planar
two-link manipulators will be addressed. Note that this nec-
essary and sufficient condition is independent of the stiffness
properties.

3. Main Results: Two-Link Flexible Manipula-
tors

Consider the arm in Figure 1. Let min and in denote the
mass and length of the uniform elastic link and define Pn =

me~,/.~n, n = 1, 2. At the end of each link is a tip mass with
mass mtn and inertia Jtn. At each joint is a rotor with mass
mrn and inertia Jrn.

Denote the reference frames in Figure 1 by Xn and -Ftn,
n = 1, 2, and let Vn = [Vn., vny úJnz]T denote the gener-
alized velocity of Y,,; that is, Vnx and vny are the absolute
velocity components of Yn expressed in Xn, and wnz is the
absolute angular velocity. The velocity Of-Ftn, vtn is defined
similarly. The transverse elastic deformation of each link is
designated u~,e(~n, t) and expressed as

where the ’l/Jn(3 are cantilevered shape functions. We define
the following matrix quantities:

Also,

where

and

are the momentum coefficients.
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Fig. 1. Two-link manipulator.

With these definitions, it is straightforward to show that For the links, we have

where sn = sin On, en = cos 0n. The last expression fur-
nishes the Jacobian matrices Je = Co2Je, Je = Co2Je with

where C12 = COS(OL + 02) and S12 = sin(Ol + 92). The above
expressions have been linearized in the elastic variables in
anticipation of the eigenproblem discussed in the previous
section. The exact versions of eqs. ( 16)-( 19) would account
for the elastic displacement and rotation of the end of each
link in forming the various coordinate transformations.
The kinetic energy of the tip masses is given by

and for the rotors,

Using these in conjunction with the velocity expressions in
( 16)-( 18) allows us to extract the corresponding contributions
to the mass matrices Mee and Mee in (2).

Writing Mee = Meep~ + Mee k~ + Mee t>> with a similar

decomposition for Mee, we have the following results:
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Some general comments regarding these expressions are
in order. First, when Jtl = Jt2 = 0, the tip quantities given
by (25) and (26) produce the momentum balance required
in Lemma 1. When Jtn # 0, these expressions are equal if
wn = £n4ln. Second, the link quantities in (28) and (29)
are also equal if 2Pn = mln wn and 3Hn = mlnfn wn.
These conditions will not be satisfied in general. For ex-

ample, for the first cantilevered-free mode shape of a uni-
form beam, ~~,1 = 0.726en9~,l, 2.56P., *= 7T~~, and
3.52~t = mlnfnt/JnI. However, there is one important sit-
uation addressed below in Lemma 2 in which they do hold.
In general, the rotor terms in (31) and (32) do not constitute
the required balance. As expected, the contributions of mr2

mirror those of mtl, and it will be assumed that they have
been incorporated into the latter.

LEMMA 2. Assume that Jri = Jr2 = 0, and that each link
is modeled by a single linear shape function ybni = Cn~~,,
where Cn is a normalization constant. Then,

for all mtn > 0, min > 0, Jtn > 0, and 62 E (0,7r).
Proof. Since iPn = ybni(£n) = Cn.en, we have 4ln =
Cn = en 1 ~n, Pn = (m~/2)~~,andH~ = (m~~/3)~.
Hence, on the basis of (25)-(29), (Mee~~ + M~;k»J8-IJe =
Oe + Oe from which the result follows using
Lemma 1. 0

Note that this situation corresponds precisely to a flexible-
joint robot with lumped torsional stiffnesses at the link roots
and rotors of vanishingly small moment of inertia. Next,
we examine the situation for a more realistic discretization

strategy.

DEFINITION 1.

where II( ’)11 denotes the Euclidean norm.

THEOREM 1. Let mtI/mt2 = Ce, ?Ttti/?7~2 = Ct and f2 =
m12 /mt2 , and assume that Jtn = Jrn = 0, n = 1, 2. Then ,
Ja is 0(&euro;2), a = 1... Ne, for Õ2 e (0,7r).
Proof. Begin by nondimensionalizing modal quantities as
follows: 4tn = QiPn, liin = 4lnfl%/£n, Pn =
( men -lPn, fin = ( m~n.~n)-lHn. Using the expres-
sions in (25)-(29),

Noting that pa = J9M;J(M99J;I 1Je -Mee)9ea and writing
Mee = rntzlMee~~~ we have
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Here, &(.) denotes the largest singular value. Given the nor-
malization for qa in (6), 11 q,,,, 112 < IIqall2 ~ !B-I(M), where
~(~) is the smallest eigenvalue; hence, p,,, ~ 0 as E2 ~ 0,
and the endpoint of the manipulator becomes a node for each
vibration mode. Considering that C~p~ = Je9«-~Jeqe« ~
0 as well, (19) yields -s2(.~191« + ‘~Iqle,«) ~ 0, and the
endpoint of the first link also becomes a node for s2 ~ 0. We
conclude that the asymptotic behavior of each vibration mode
corresponds to pinned-pinned motion for each link, and hence
q,, is independent of mt2 ; that is, e2. Furthermore, 9« ~ 0,
and Møeqea = - MøøO a 1= O.

Consider the denominator of J« in (33). As E2 - 0,

Hence, in the limit,

where g(~) is the least singular value. Combining this with

(34) and noting the definition (33) gives

where C is independent of E2. This follows from the fact that
ql e,a and q2e,« tend toward the &dquo;elastic part&dquo; of the pinned-
pinned vibration mode and that the ratio of norms involving
qea is independent of normalization. 0

Although the above result neglects the self-inertia of tip
bodies and inboard rotors, the effect of the latter is somewhat

mitigated. The discrepancies between (31) and (32) are of
the form Jrn.~~ 1 ~n , and therefore the first-order impact on
Pa is terms containing wnqne,a. Given the pinned-pinned
behavior of the modes discovered above, the first-order effect
of Jrn is zero as E2 -~ 0. It is worth mentioning that none
of the results given above relies on the elastic properties of
the link, only on the interplay between kinematics and mass
properties.
The reader may naturally wonder what happens beyond

two links in the planar case. Consider the addition of a third
link with corresponding properties m13, ~3, mt3, Jt3, mr3,
and augmentation of p with the rotation of Yt3 with respect

to Xo ; that is, p = [x y O]T . The Jacobians corresponding
to (19) are

Calculations analogous to (25) and (26) show that the re-
quired balance is now achieved for mt, and mt2 if ~3 =
£3<1-3. · This is trivially accomplished if the third link is
rigid. The balance occurs for Jtl and Jt2 if ~~, _ .~n~~,,
n = 1,2,3. Lemma 2 generalizes to the three-link case,
since with ~~.1 = zn and Jrn = 0, n = 1, 2, 3, jo = Je and
Moo = Mee.

For mt3 and Jt3, the balance always occurs, since

the contributions to M~ and M~~ are j§Mtjp 3je and
-T - 

’

Je M~p,3Je, respectively, where Mhp,3 is generated accord-
ing to (20). This is expected given the large payload results of
Damaren (1995). Furthermore, Jt3 pervades all nine entries
of the matrices M~;p) and M~;P)JÕI Je. With these observa-
tions, we permit the following extension of Theorem 1 for
a planar three-link flexible manipulator with the third link
rigid: if Jri = Jr2 = 0, then Ja - 0, a = 1&dquo; - Ne, as
min /mtn - 0 and Jtn/Jt3 -~ 0, n = 1, 2. Here, Ja is the
three-dimensional version of (33), and we assume as before
that det Je ~ 0. Unlike the two-link case, the tip inertias
of links 1 and 2 need now only be small compared to the
payload inertia Jt3.

4. Control System Design
The nonlinear consequences of the property MeeJe 1Je e =

Mee are easily deduced. Letting 9 = Je 1(p - Jeqe), the
kinetic energy T = 14T 2 M4 decouples into T = Tp + Te,
where

Since the potential energy is Ve = 2 qe Kee9e ~ and the vir-
tual work is 8We = TT b9 = uT (8p - Je8qe), Lagrange’s
equations yield
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which are coupled by virtue of the configuration dependence
of Mpp, Mee, Je, and Je.

Although the mass matrices Mpp and Mee depend on 0
and qe, a suitable approximation is to neglect the elastic co-
ordinate dependence and take 0 = .~r 1 (p), where F, (.) is
the rigid forward kinematics map. If one further neglects the
O<l!qe 112) term in (36), it becomes equivalent to the rigid-
body task-space motion equations relating u to p. On this
basis, the rigid inverse dynamics strategy corresponding to a
prescribed trajectory Pd should produce good endpoint track-
ing that is consistent with the linear relations in (10)-(12)
when p = 1. The separation of endpoint and elastic dynam-
ics is reminiscent of the singular perturbation approach of
Siciliano and Book (1988). In their work, the elastic equa-
tions played the role of &dquo;fast dynamics&dquo; and were similar
to (37). However, the analogue of (36) was the joint-space
dynamics of the equivalent rigid arm. The assumption of
large stiffness led to approximate decoupling, whereas here
the decoupling is made possible by relative mass properties
independent of the stiffness.

Definining the Hamiltonian H = Tp + Te + ~ and us-
ing standard properties of Euler-Lagrange systems (van der
Schaft 1996), we have the energy balancer = uT(p-Je9e).
The approximate form of (36) defined above implies that
Tp = u~p, and hence Te + 1e = -u Je4e. Since

p~ = p - (1- ¡.t)Je4e, we have Tp + (1- ¡.t)(Te + Ve) = p§u
or, upon integration,

which yields passivity of the mapping from u to p~ when
tt < 1. For IL = 1, we have passivity but lose observability
of the elastic coordinates.

Given the passivity result for it < 1, many controllers
can be constructed that yield setpoint regulation for the end-
effector coordinates. In particular, a PD law of the form
T = 0 [Kdi), + Kp(p~ - Pd)] with Kp = Kp > 0 and

Kd = KT > 0 can be expected to yield p(t) -~ pd and
qe(t) --> 0 as t ~ oo. However, to guarantee this result in
the absence of controllability/observability assumptions for
qe, a small damping term of the form Deeqe is required on the
left-hand side of (37). The Lyapunov function V = Tp + (1 I
- A)(T- + Ve) -f- i(p~ - pd)T Kp(p~ - Pd) , in conjunction
with the damped form of (38), yields V = &horbar;p~K~p~ -
e _4,. Hence, as t -> oo, qe(t) --> 0, p~(t) - 0, and
p(t) = p~ + (1 - /-I)Je4e , 0. LaSalle’s theorem with

(36) and (37) gives the desired result. The robustness of this
stabilization result hinges only on the property in Lemma 1
that has been shown to hold asymptotically for large tip/link
mass ratio. Tracking of a time-varying trajectory Pd(t) can
be accomplished by suitably modifying a feedforward based
on (36) and (37) to preserve passivity in the error dynamics
(Damaren 1996b).

Fig. 2. Ja versus 77~/77~.

5. Numerical Example
Consider the flexible manipulator of Figure 1 with the follow-
ing link properties: in = t = 0.5 m, Mfn = me = 0.1 kg,
and (EI)n = 1 N-m , n = 1, 2. We set Jtn = Jt, Jrn = Jr,
mtn = mt and initially take Jt = Jr = 0 with 62 = -7r/2.
For spatial discretization, the exact cantilevered-free mode
shapes of a uniform beam will be used with two per link.
The global mass and stiffness matrices can then be formed
and used to solve the eigenproblem in (5). With qa in hand,
Ja in (33) can be formed using the Jacobian matrices in (19).

In Figure 2, the values of Ja for the four unconstrained
vibration modes are shown as a function of the mass ratio

mt/mt. The asymptotic behavior is in agreement with The-
orem 1, and for 77~/77~ > 10, we have Ja < 0.01. In Figure
3, the configuration dependence of Ja on 62 is shown for the
fixed ratio mt!mt = 10. For all configurations, Ja < 0.03.
The effect of tip inertia is portrayed in Figure 4 using the

same parameter datum. Note that critical values of Jt force
Ja = 0, and asymptotically, J3 and J4 remain small. Figure
5 shows the variation with rotor inertia that asymptotically
destroys the momentum balance required to keep Ja small;
however, as predicted, the first-order effect is zero. The vi-
bration modes are shown in Figure 6, where the number of
cantilevered shape functions has been increased to 10 per link
to improve the accuracy. The most obvious feature is con-
finement of vibrations to a single link. Convergence to the
expected pinned-pinned behavior in each link is in evidence,
and the numerical frequencies agree quite well with the exact
results for a uniform pinned-pinned beam: WI,2 = 14.05 Hz
and cv3,4 = 56.20 Hz. Note that in Figure 6, we have illus-
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Fig. 3. J a versus 02.

Fig. 4. Ja versus Jt/mtl2.

Fig. 5. Ja versus j,/Mtt2.

trated small joint and link motions relative to the L-shaped
setpoint.
When 10 modes per link were used to generate Figures

2-5 for a = 1 -&dquo; 10, all reported trends were preserved.
The results for a = 1, 2 were identical, reflecting their con-
verged nature using two modes per link. The rolloff for
a = 4 ... 10 in Figure 2 was similar, and these curves all
fell beneath that of a = 3; roughly speaking, Ja falls off
with a. For Figure 3, five of the modes (cx = 1, 4, 5, 8, 9) ex-
hibit a minimum for Ja in the vicinity of 62 = 90’. The sharp
pairwise minimum exhibited by Figure 4 was maintained for
all 10 modes with adjacent modes pairing. The location of
the minimum (value of Jtf(mtf2» monotonically decreased
with a. The analogue of Figure 5 showed that six modes
asymptotically obey Ja « J,./(mt.~2), whereas those corre-
sponding to a = 3, 5, 7, and 9 asymptoted to constant values
of Ja < 0.004. Hence, the presence of large rotor inertias
does not destroy the key property in all modes.

Although experimental results are not presented here, we
draw the reader’s attention to the interesting work of Oakley
and Cannon (1989b). They used multiple-exposure photog-
raphy to capture the first four mode shapes of a two-link flex-
ible arm with joint/tip-dominated mass distribution. There
is general agreement between our results and their pho-
tographs. In particular, their photographs are qualitatively
similar to Figure 6. Furthermore, modes 1, 3, and 4 in
their figures exhibit little discernible motion at the manip-
ulator endpoint. Mode 2 showed the greatest motion, and
a value of Ja = 0.17 was crudely determined from their
photographs. This is in general agreement with Figure 2.
The numerical properties of the arm provided by Oakley and
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Fig. 6. Unconstrained mode shapes (mt/me = 10, Jt = Jr = 0, 62 = 7r /2).

Cannon (1989a) are in = 0.52 m, (EI)n = 0.77 N ~ m2,
n = 1, 2, me, = 0.38 kg, m12 = 0.37 kg, Jrl = 0.0039
kg.m 2, mtI = 0.56kg, Jtl = 0.0013 kg.m2, mr2 = 1.34
kg, J,.2 = 0.0029kg m~, mt2 = 0.37 kg, and Jt2 = 0.00077
kg.m 2. There were also mechanical offsets at the inboard
end of link 2 and the outboard ends of links 1 and 2. When
a complete model incorporating these latter effects was used
with 10 cantilevered modes per link, we were able to accu-
rately predict their frequencies (WI = 3.4 Hz, w2 = 4.0 Hz,
c.~3 = 8.9 Hz, and w4 = 12.2 Hz). The corresponding values
for the J a were J = 0.010, J2 = 0.100, J3 = 0.011, and
J4 = 0.016, which agrees with the above observations.
We now consider control of an identical link configuration

with the properties given in Table 1. The goal is to move the
end-effector from a fully extended configuration (01 = 02 =
0) to an L-shaped configuration with 91 = 92 = 0d = ~/2 in
T = 5 s. For this purpose, we use the end-effector trajectory
obtained via the rigid kinematics corresponding to

The response of the arm to the corresponding rigid inverse dy-
namics torques -r,,,, is portrayed in Figure 7. The simulation
results presented here have been generated using a recursive
implementation of the fully nonlinear motion equations. See
the I ( E) model discussed in detail by Damaren and Sharf
(1995).
As might be expected, the joint-space tracking is fairly

poor and exhibits significant vibration. However, very little
vibration is seen at the end-effector, and good tracking is
obtained. A small steady-state rate discrepancy is present
that leads to the growth of the ~- and y-tracking errors.

In the interests of improved tracking, stability, and robust-
ness, the feedforward can be augmented with the feedback

Table 1. Flexible Manipulator Properties

proposed in Section 5. The applied torque is given by

The p-tip rate can be written as

and hence p~ _ pp + (1 - p).~’(9, 0). Note that the rigid
Jacobian is evaluated using only joint measurements so that
p~ and p~ can be formed without measurements of the elas-
tic coordinates. Although a simple PD law is used here, the
derivative gain can be replaced with a dynamic, strictly pos-
itive real controller or even a gain-scheduled version, which
preserves stability (Damaren 1996c).
The value of p is set at 0.96, which is small enough to affect

the observability of the vibration modes but near enough to
unity so that the desired value of p~ can be approximated
by Pd in the feedback part of the controller. The feedback
gains are taken to be Kp = (4 rad/s)~M~(0d. 0) and Kd =
(8 rad/s)Møø(8d,0). The resulting tracking errors and joint
rate behavior are given in Figure 8. Steady-state tracking
is much improved, with a minor increase in transient errors,
but significant vibration suppression is observed at the joint
level. Improved tracking can be obtained if pd is replaced by
P,,d, which requires solving the flexible inverse kinematics
problem to obtain the corresponding qed and 9d.
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Fig. 7. Response to rigid inverse dynamics.
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Fig. 8. Responses for rigid feedforward/p-tip PD feedback.

6. Conclusions

A necessary and sufficient condition for the vibration modes
of a serial flexible manipulator to exhibit a node at the end-
effector has been presented. An explicit treatment of the
two-link case has shown that this condition is nearly achieved
for large tip/link mass ratio, and the effect of the other para-
meters was determined. The ensuing simplified behavior of
the torque to endpoint dynamics was demonstrated using non-
linear arguments and illustrated with a numerical example.
In particular, a rigid inverse dynamics strategy was shown to
invert this mapping quite well. Hence, the well-known non-
minimum phase behavior of the mapping is largely mitigated
in this asymptotic case.
The results also permitted the synthesis of an output con-

taining contributions from the end-effector coordinates and
the elastic motion of the robot. This output possesses the pas-
sivity property that permits simultaneous endpoint tracking
and vibration suppression to be handled in a simple robust
manner. Although endpoint measurements are required, the
proposed output dispenses with the need to measure the elas-
tic coordinates and their rates.
The raison d’etre of structurally flexible robots lies in in-

creased payload/robot mass capability and increased speed

of operation. This leads to minimization of link mass cou-
pled with inherent limitations on possible mass reduction of
the electromagnetic actuators. The importance of our results
lies in the closeness with which they mirror this situation.
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