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Controllability and Observability of Gyroelastic Vehicles

C. J. Damaren*
Royal Roads Military College, Victoria, British Columbia, VOS 1BO Canada

and
G. M. T. D'Eleuteriot
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Stored angular momentum devices such as reaction wheels and control moment gyros have been used
extensively for space vehicle attitude control. They represent a potential source of actuation for vibration and
shape control of large space structures where they can potentially be distributed in large numbers. The vibration
characteristics of these gyroelastic vehicles are affected by the presence of stored angular momentum and, hence,
so are the conditions for controllability and observability. In this paper, these conditions are derived for systems
modeled as gyroelastic continua, i.e., vehicles with continuous distributions of mass, stiffness, and gyricity
(stored angular momentum). The conditions are expressed in terms of the gyroelastic modes and cover the case
of pointwise actuators and those modeled in a continuum fashion. A numerical example is used to show that the
degree of controllability in the continuum case can be interpreted as that corresponding to the limit of a sequence
of pointwise control problems. The observability conditions are developed for a general class of measurements.
The concept of a gyroelastic node is introduced and related to the problem of locating sensors.

I. Introduction

T HE prospect of very large spacecraft in orbit has received
a great deal of consideration. Such structures will be very

flexible and require active control to achieve desired pointing
accuracy and acceptable vibration levels. Judicious location of
actuators and sensors is required to achieve these objectives. A
potential source of actuation is stored angular momentum,
hereafter termed gyricity, in the form of reaction wheels and
control moment gyros (CMGs). These are linear devices capa-
ble of high-bandwidth, large-output torques. Other research-
ers have considered the use of gyric devices for vibration
control. Aubrun and Margulies1 present a detailed study of a
device referred to as the "gyrodamper," which consists of a
CMG collocated with an angular rate sensing gyroscope. One
of their findings was that the use of many small units was
preferable to the use of one large one from the point of view
of achievable damping factors.

An important feature of stored angular momentum devices
is the introduction of gyric torques into the motion equation
as well as active control terms. This alters the modal character-
istics of the structure. For very large spacecraft, the changes
can be significant, as many devices are required for adequate
control. The notion of a gyroelastic continuum has been intro-
duced recently2"5 as a model for structures with many lumped
sources of gyricity. Constrained gyroelastic structures are han-
dled in Ref. 2, and the dynamics of gyroelastic vehicles are
treated in Refs. 3-5. Modal analyses and some key numerical
examples are presented in the latter references. Although a
continuous distribution of stored angular momentum is an
important contribution of the model, pointwise descriptions
are not exempt. An optimal control theory has been advanced
that utilizes a continuum description of the gyricity distribu-
tion.6 In Ref. 6, it was pointed out that the mere presence of
gyricity, i.e., an open-loop configuration, could be beneficial
in suppressing unwanted vibrations.

Received Oct. 25, 1989; revision received July 16, 1990; accepted
for publication July 27, 1990. Copyright © 1991 by the American
Institute of Aeronautics and Astronautics, Inc. All rights reserved.

* Assistant Professor, Department of Engineering. Member AIAA.
tAssistant Professor and NSERC University Research Fellow, In-

stitute for Aerospace Studies.

In this paper, we present the modal form of the equations of
motion for a gyroelastic structure subjected to a control force
distribution that can be either pointwise or distributed. Con-
trollability and observability conditions are then derived in
terms of the system modal parameters. These conditions can
be used to determine the minimum number of sensors and
pointwise actuators required to control the structure effec-
tively. However, the relative information present in the con-
trollability norms provides information that can be used to
optimize the gyricity distribution, which can be interpreted as
an actuator location function. They can also be used to show
how the number of actuators contributes to overall control-
lability of the structure. We shall explore this aspect in a
numerical example where controllability stemming from a
continuous gyricity distribution as well as an equivalent point-
wise distribution is considered. In elastic structures (flexible
structures with no gyricity), it is well known8 that one can
render all of the elastic modes observable with one sensor,
provided it is not located at a node (zero crossing) of any of
the mode shapes. We shall generalize the notion of a node to
the gyroelastic case and provide guidelines for locating sen-
sors.

We should point out that controllability and observability
conditions for large, spinning spacecraft, which have the same
(mathematical) form as gyroelastic structures, were deter-
mined by Juang and Balas.7 However, they considered only
modes with nonzero frequencies since the stiffness matrix was
assumed to be positive definite. A complete analysis of dis-
crete parameter gyroelastic systems has been performed by
Hughes and Skelton,8 who derived controllability and observ-
ability conditions in terms of the system modes. The approach
taken here yields identical results for pointwise actuators, but
the derivation is somewhat different because continuum mod-
eling of the control forces is encompassed by the techniques.

II. Dynamics of Gyroelastic Structures
A gyroelastic vehicle V is taken to consist of a number of

flexible appendages, collectively denoted by £", attached to a
rigid body R (see Fig. 1). An origin O is affixed to the rigid
body, which can be made arbitrarily small. More general
topologies are also possible.4 The vehicle contains a distribu-
tion of gyricity hs(r) which, for now, we restrict to be constant
with respect to a local reference frame at r. This function
represents the stored angular momentum/unit volume.2
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Fig. 1 Gyroelastic vehicle.

The total displacement field can be written as

0, (1)

where w0 is the translation of 0, 6 is the small rotation of R
relative to inertial space, and ue(r,f) the small elastic deforma-
tion of E relative to R. The cross operator, ( • ) x , is used to
define the vector cross product; i.e., if r = [xy z]T, then

0 -z y
z 0 -x
-y x 0

The rigid portion of the displacement in Eq. (1) is simply

(2)

where qr = col{w0,01 and Ur are the rigid degrees of freedom:

U, = [l - r x] (3)

It has been shown2'5 that the equation of motion for V is

9Hw + 9w + JCue = fc(r,0 (4)

where fc is the external control force/volume distribution.
Disturbances will be neglected in this analysis. The stiffness
operator JC is symmetric,

f fwfJCw2dK =
J K J*

but is only positive semidefinite with respect to w since the
rigid motions in Eq. (2) lie in the null space of 5C. The mass
operator 9H is a(r)0, where a(r) is the mass density and 6
represents the identity operator. This operator is symmetric
and positive definite with respect to w. Finally, the gyricity
operator2 is

84 - 1/4 v x h* (5)

This operator is rendered skew symmetric if we assume that h5
vanishes on 3V, the boundary of V. We do not necessarily
require h5(r) to be continuous; the Dirac delta function can be
used to model pointwise gyros:

(6)
/= !

Both forms of gyricity will be considered here.
Let us now consider the use of CMGs for active control.

Associated with the nominal gyricity distribution h5(r) is a

distribution of gimbal angles,

which is assumed small, i.e.,

II £11 < 1 (8)

The column of angles ]8(r,0 represents the angular displace-
ment of the gyricity element h5(r)dF with respect to the local
reference frame at r. It can be shown6 that the resulting force
on the vehicle is

where the first term is present on the left-hand side of Eq. (4)
and

3CAi / 2 v x h / > v A £ (9)

The (distributed) control force in Eq. (4) is therefore

fc(r,0 = 3Cw (10)

where v(r,t) is the (distributed) control variable. Substituting
Eq. (10) into Eq. (4) gives the desired second-order form of the
motion equation:

The preceding expression for the control force is valid in the
pointwise case if we make the following definitions:

JCu = S 3C/w/(0, 3C = row{ JC, j, v(t) = col{v,} (12)

and, more specifically, for pointwise CMGs,

where 0/ = col {&/, ftyi, &zl•} are the gimbal angles associated
with the /th gyro. In this case, v(t) is finite-dimensional.
Although we will be concerned primarily with the CMG cases
embodied in Eqs. (9) and (13), many of our results extend to
more general controls of the form of Eqs. (10) and (12).

We shall now introduce a generalized notation for handling
both descriptions of the control force distribution. First, we
shall indicate by £U the space of all possible controls v. For
continuum controls, inner products involving the control vari-
able will be written as

=
J

and, in the pointwise case, as

Let us define a set of admissible controls as

(14)

(15)

(16)

where T is the terminal time of interest. The adjoint of the
input operator 3C is defined by

(17)

For continuum CMGs, the adjoint operator produces a func-
tion of r,

3C'w= - 1/2hs
xvxw (18)
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888 C. J. DAMAREN AND G. M. T. D'ELEUTERIO J. GUIDANCE

and, for pointwise devices,

3C*w = col{ - hf
x (V xw)r (19)

is simply a column matrix. In deriving these relations, we have
made use of the following form of integration by parts^:

[ AT *tdv=\
JK Ji.

if ^ or ^ vanishes on the boundary of V.

III. Modal Analysis
The goal of this section is to write down the modal equa-

tions governing the gyroelastic dynamics as given by Eq. (11).
We begin with a brief eigenanalysis of the first-order form of
the operator equation and present the orthonormality condi-
tions that exist among the eigenfunctions. A modal expansion
that expresses the solution for the motion as a linear combina-
tion of the eigenfunctions is used, and the equations governing
the modal coordinates are derived. They are then placed in a
standard first-order matrix form from which the controllabil-
ity and observability conditions can be extracted. Some care is
taken in describing the input operator/matrix since distributed
and pointwise controls will be encompassed by the treatment.

The motion equation (4) in first-order form is

8x (20)

where

I O

At this juncture, let us introduce the following inner product:

f ,{«,$ 4 <l>T\frdV (21)
J K

The operator 8 is symmetric which, in the notation of this
inner product, means

for xi and X2 satisfying the boundary conditions. In addition,
owing to our choice of the state description x, 8 is positive
definite, i.e.,

(x»£x)>0 (x*0) (23)

The operator S is skew symmetric:

(xi» §X2> = - (Sxif X2>
The eigenproblem, which has been discussed in detail else-
where,3'4 is

+ §X« = 0 (24)

The properties of 8 and S dictate that \a and \a appear in
complex-conjugate pairs and that \a is purely imaginary.
Therefore, we can write

- oo ... oo) (25)

where w _ a = - «0, wa > 0 for a > 0, and ̂ -0 = ^«. (Notice
that 0 is excluded from the range of a.) The real eigenfunc-
tions 4>a and \l/a have the form

(26)

where ua = um -I- uea, u _ « = va, ur, _ a = vra, and u€i _ „ = \ect.
The rigid-body portion of the mode shape, um A woa - r x 0a,
can be written compactly as

Ura = Urta (27)

where ta = col{w0a, Oa].
Since the system is unconstrained, there are also zero-fre-

quency eigenfunctions:

= 0, (28)

The matrix function Xr, whose columns span the null space of
S, can be partitioned as

-r*a (29)

The first "column" represents the translational modes, which
are unaffected by gyricity, while the second consists of the
pseudorigid modes, which may be described as uniform rota-
tions about an axis (axes) a with the elastic appendages of the
vehicle in a constant deformed state ufl(r).5 We shall refer to
Xr as the rigid rate modes. Using Eqs. (29) and (3), the top
portion of the rate modes can be expressed as a linear combi-
nation of the rigid degrees of freedom:

U:] (30)

The orthonormality relationships among the eigenfunctions
can be summarized as follows:

«, 8Xr> = O

<Xr, 8X r)AM r>0 (31a)

(31b)

By virtue of Eq. (28), *a are also orthogonal to Xr with respect
to S.

The general solution for the motion of our system can be
expressed in terms of the rate modes Xr and the eigenfunctions

X(r,0 = Xr (32)

Substituting into Eq. (20) and operating with (Xr, • >, { â, •),
and (^ _ a, •) while observing the orthogonality conditions, we
arrive at the modal equations of motion,

Mri=/r (33)

where

frA U/

= 1 ... oo

Uofla = 7—fa

/0A

The equations for the elastic modal coordinates can be written
conveniently as
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SEPT.-OCT. 1991 CONTROLLABILITY AND OBSERVABILITY OF GYROELASTIC VEHICLES 889

where

"'Jj, ./Ucol{/a,/_a}

They form a system of bicoupled equations.
Given the expression Eq. (17) for the adjoint operator 3C*,

we can further write the modal forces as

where Br and Be are linear operators:

Br( -) A (3C*U,, (- )}<u, Be( - ) A col[ (3C*ua,( - ))<u} (36)

Let us also define

Hr A (3C*U,)r, He A col{(JC*ua)r) (37)

Note that when the space of controls is finite-dimensional, the
operator Br is simply the matrix Hr and Be is the matrix He.
The adjoints of the operators Br and Be, defined such that

(38)

(39)

are, in general, given by

B'e = Hj

Equations (33) and (34) do not completely describe the
rigid-body position and attitude. To this end, note that the
rigid portion of the top of the expansion in Eq. (32) is

00

Ur = tfr1?r + £ W«Hmiy _ a (40)
a= - oo,

Upon examining Eqs. (2), (27), and (30), we can extract
oo

qr=T ri» r + £ coAl-a (41)
a= - oo

or, in matrix form,

qr = Trifc. - TAife (42)

whereT«,4row{ta}.
Equations (33), (34), and (42), which describe the dynamics

of the gyroelastic structure, can now be consolidated:

x = ftx + Bv, x(0) = 0 (43)

where

x4col{qr, j , ai

0
M, lBr

0
0
0

Tr - TeQ,
0 0
o - oe

(44)

Although we have considered an infinite number of elastic
modes to this point, it will now be assumed that the dimension
of ife is 2N, where N is the number of gyroelastic mode pairs
and N is arbitrarily large. The number of rate modes (the
dimension of iyr) is denoted by nn and the dimension of qr is,
in general, nr = 6. Hence, the state vector x€9C, where the
state space 9C is simply Rl, I = nr + nr + 2N, and (£ is a con-
stant / x / matrix. The linear operator B maps CU into 9C.

IV. Controllability Conditions
The reachable subspace of the state space is defined as

4 {Xd€9C|37XO<r<oo) and s.t. \(T) = \d } (45)

where s.t. denotes "such that." The system of Eq. (44) is
controllable if the reachable subspace is the entire state space.
Using the result provided in the Appendix, this is true if, and
only if, for all finite, positive T, the matrix

(46)

is positive definite, where

Controllability of (d, B) is equivalent to controllability of (ft,
B)9 where

O
Br (47)

Henceforth, then, we will consider the pair (ft, B) and replace
BE* in Eq. (46) with S 4 BB*.

The quantity S is a positive-semidefinite matrix and can be
partitioned as

O O O
o srr sre
O Si See

Sre 4 row { Sm } , See = matrix { Safi } (48)

where, from Eqs. (36-39),

Srr =

(49)

If the rank of S is, say, £, then it can be factored as

S = BBr (50)

where the column dimension of B is k. The "square root"
factorization in Eq. (50) can be realized by

B = col{0, Br, Be ) , B, = col|BJ, b7: J (51)

where Br and ba are such that

BrB^ = Srr, Brba = Sm, b^ = Sa/3 (52)

After replacing BB* in Eq. (46) by S = BB* = BBr, we see that
positive-definiteness of X for all T is equivalent to control-
lability of the pair ((J,B). The matrix X becomes the control-
lability Grammian matrix of the pair (CE,B).

In the subsequent analysis, there is no need to identify Br
and Be explicitly, since from the point of view of the deriva-
tions, they are purely artificial. However, in the case of point-
wise actuators, the factorization is achieved by identifying
Br = Hr and Be = He, and the rank k of S is the number of
independent controls. In the distributed case, the factorization
can be interpreted as identifying a pointwise space of controls
(the domain of B, R*) that behaves identically to the dis-
tributed controls from the point of view of controllability.

Upon examining the partitions for (J [Eq. (44)] and 8 [Eq.
(51)], we notice that the last two sets of equations correspond-
ing to the elastic and rigid rate modes are uncoupled. Hence,
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890 C. J. DAMAREN AND G. M. T. D'ELEUTERIO J. GUIDANCE

we can examine their controllability separately. Let us begin
with the elastic modes or, to be specific, the matrix pair (Qe , fte).

Theorem 1. The pair (Qe, Ee) is controllable if, and only
if,

b«ba = S a a5*Oorb^ ab_ a = S_ a ,_ a5*0, a = 1, . . . , N

where Saa is defined in Eq. (49).
Proof. The controllability matrix is given by

If we define

then the controllability matrix can be factored to read
"l Xil ••• X?-1:
i X2i • • • x?-1:

where 1 is the 2k x 2k unit matrix. The 2kN x 2kN matrix on
the right yields the Vandermonde determinant, which is
nonzero for distinct Xa (coa). Therefore, the rank of Te is given

rank Te = £ rank f a
a = l

and hence for controllability we require

rank f a = 2, a = 1, . . . , N

However, the rank of f a is equal to the rank of

r-a -fil
and requiring Ta to have full rank (i.e., 2) is the same as
requiring that Far£ be positive definite. This 2 x 2 matrix is
simply

0

from which the result follows immediately. D
Using the definition of Saa and S_ a ,_ a in Eq. (49), the

controllability conditions can be written as

(3C*ua, 3C*ua)<u 5* 0 or <3C*u _ a, 3C*u _ a)^ * 0

a = 1 • N (53)

We emphasize that these conditions apply only to the case of
distinct frequencies. Examining the controllability matrix cor-
responding to the rigid rate fnodes, we arrive at Theorem 2.

Theorem 2. The pair (O* ftr) is controllable if, and only if,

det ftrftr
7 = det Srr = det { <JC*U>., * 0 (54)

the proof of which is obvious when one realizes that the
preceding is equivalent to rank 6r = nr.

The preceding conditions say nothing about the ability to
control the spacecraft's attitude and position since qr cannot
be expressed as a linear combination of ije and iyr. To this end,

let us follow a path that is reminiscent of Hughes and Skel-
ton.8

Theorem 3. The conditions for controllability of the gy-
roelastic system of Eq. (43) are Eqs. (53), (54), and

det[Te(S« - TrSrrTr
r] * 0 (55)

which can be interpreted as the condition for the attitude and
position variables, qr.

Proof. Controllability of (G, ft) is equivalent to control-
lability of (E, F), where E = a2 and F = [ft aft]. Furthermore,
controllability of (E, F) is equivalent to controllability of
(TMET, T-^F), where

(56)
1 O Te

O 1 O
0 0 1

T - > =
1 O
O 1
0 0

-T,
O
1

This new pair is

o o o
o o o
O O Q2

e

9

- Tefte T,fir

fir 0

Bg — JlgBg

The third set of equations corresponds to the elastic modes
discussed previously.

The first and second partitions lead to the following con-
trollability condition:

rank ? = nr,
r - T= L ft,

Clearly, the preceding requirement necessitates condition (54).
It can also be expressed in terms of the determinant:

detPP r=det 5*0

Using an elementary expansion for the determinant, this con-
dition can be rewritten as

^ /C C-^" 6 ~ 1 G \T' _J_ T C. TT'" 1 -̂  fi. £ \Jjge — &re rr *^re) *• e ' ••• r ̂ rr ••• r J ̂det Sr

where controllability of the rate modes (54) has been enforced
in assuming Sr;l exists. Thus, we arrive at the final condition
(55). D

V. Observability Conditions
In the interest of generality, measurements of gyroelastic

behavior will be expressed as

=
J v J v

i = 1, . . ., M

2/(r)w(r, t)

(57)

where the kernels %, Z/ are assumed to be a function of r and
may contain differential operators. For example, if >>/ =
nrw(r, /)» !•£., a pointwise deflection measurement in the
direction n, then

i = 6(r,. - r)n (58)

If one senses the structure's rotational rate about an axis a at
r = r/, then

f = 1/2a r6(r-r/)Vx , 'Z/ = O (59)

Averaging-type sensors can be accommodated by replacing the
delta function with a Heavisidelike function defined to be 1 on
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SEPT.-OCT. 1991 CONTROLLABILITY AND OBSERVABILITY OF GYROELASTIC VEHICLES 891

the averaged region and 0 elsewhere. From the expansions (2) From the first and second partitions, we get the condition
and (32), we have

a = - oo

w = ur + ue = Urqr

Substituting the preceding expressions into Eq. (57), we arrive
at

yt(t )

where

(Y/, +

Z/r = Z/U rdF, Z t e= Z,Ue
J K J K

Zfc,« = Z/u^dK
J K

,> = 1J/U,dK, y/a = %uad
J K J K

(60)

Assembling the measurements into a vector y A col{^} and
truncating the infinite series at N elastic mode pairs yields

where

= Zrqr

Zr = col/ { Z/r j , Cr = col/ { Y/, + Zte }

Ce = col/ { rowa { - (61)

If we suppress the control variable (v s 0), the gyroelastic
system can be described by

= Cx, CA[Z rC rC e] (62)

where x and Ct are defined in Eq. (44).
Observability of a system with this form was discussed by

Hughes and Skelton.8 Here, we derive similar results using a
different approach. Observability of (C, Q) is equivalent to
controllability of (Q,T, C7), where

O O
O O
O toe

The first set of equations implies that we must have rank
Z? = nr or

det[Zr
rZr] = \V T 'L / - I ir ir. (63)

which mathematically expresses the need for nr independent
measurements in observing the attitude and position.

To uncover the remaining conditions, note that controllabil-
ity conditions for (GLT, C7) are equivalent to those of (E, F),
where E A Q?T and F A [CT GL^7]. Furthermore, control-
lability for this pair implies and is implied by controllability of
(TrET~r, I7*), where T was defined in Eq. (56). This new
pair is

0
0
0

o
o
0

0
o
flj_

t

Vcr
JT

e77r + ce
r -n

oTr
rzr

e(TjZr
r + (Cj)_

If we enforce condition (63), the preceding requirement is
equivalent to

det[Cr
rCr ?Zr) - ̂ Cr] * 0 (64)

From the third partition, we glean that (Ue, TjZj' + C^) must
be controllable. Given the definitions of Te [Eq. (42)], Zr [Eqs.
(61) and (60)], and Ce [Eq. (61)], let us define

A col/ { - Z/rta j (65)

Using the definitions of z/e>a, Zir [Eq. (60)], and um [Eq. (27)],
we have

: ^/a» Z/u adK (66)

and, therefore, the definition of ca becomes colj -co^-a
+ z^). We are now in a position to apply Theorem 1 directly.
The elastic modes are observable if, and only if,

or a = l , . . . , AT (67)

The conditions (63), (64), and (67) constitute the complete
observability conditions.

The following definitions are natural in light of the preced-
ing conditions.

Definition 1. A mode pair a. exhibits a gyroelastic node in
the direction n at r = r/ if

nrua(r/) = nrva(r/) = 0

Definition 2. A mode pair a exhibits a gyroelastic node
with respect to the axis a at r/ if

Consider a single deflection measurement of the form of
Eq. (58). We then have £0f = n7'utt(r1). Given the observabil-
ity conditions in Eq. (67), we can say that one measurement
of this form is sufficient for observability of a mode pair
provided the pair does not exhibit a node at r = r\ in the direc-
tion n. Similar comments apply to an angular rate measure-
ment of the form of Eq. (59).

VI. Numerical Example
We shall now employ a numerical example to illustrate our

findings. Let us consider the bending (in two dimensions) of
the uniform, free-free rod in Fig. 2. Such a model can be
thought of as an equivalent continuum model of many space
structure components of interest.9 The rod's mass density (per
unit length) is p and the stiffness operator for this case is

= [ 0 B2\ dx~4

where BI and B2 are the bending stiffnesses and /32 = B\/
B2 = 1.5. The quantity B A (BiB2)l/2 is the geometric bending
stiffness. This model has been used3'4 previously to illustrate
the properties of gyroelastic structures.

The deflection function is

w(r n _( > '"
H>I, o(0-*02(0 , t) (68)
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892 C. J. DAMAREN AND G. M. T. D'ELEUTERIO J. GUIDANCE

Fig. 2 Gyroelastic rod for numerical example.

where qr = col{ Wi,0» w2,0, #1, #2) are the position and attitude
of the rod. The gyricity distribution hs(x) is directed along the
longitudinal axis of the rod and vanishes at both ends, i.e.,
hs(t/2) = hs( - 1/2) = 0. The input operator and its adjoint,
for double-gimbal CMGs, have the forms

dx

dx

(69)

and

(70)

in accordance with Eqs. (9) and (18). The gimbal angles have
been denoted by 0 = col{0i,/32}. Note the absence of the
factor !/2, which stems from the one-dimensional nature of
the rod.

Let us begin our study of controllability with the rate modes
described by Eq. (29). From Ref. 5, the axes of rotation for
the pseudorigid modes are defined by

[ 0 - h 1 f'/2
» n1' HT=\ h*"T 0 J J _f /2

(71)

where (~) defines the cross product in two dimensions and HT
is the total gyricity. If HT ^ 0, then there are no pseudorigid
modes (the rotation about the 3 axis is not modeled in this
two-dimensional example). In this case, the beam is incapable
of rotating uniformly about the 1 or 2 axis and the rigid
rotations that exist in the absence of gyricity become a preces-
sional mode pair that exhibits a nonzero vibration fre-
quency.4'5 We shall return to this situation in a moment.

Zero Total Gyricity (hT = 0)
If HT = 0, which will occur if the gyricity distribution is

skew symmetric, then there are two pseudorigid modes corre-
sponding to rotations about the 1 and 2 axes:

li 4 [1 Of,

-xa2]

!2A[01]7' (72)

The first two columns of U, represent the two uniform transla-
tions of the rod. From Eqs. (70) and (72),

C'Uj. = [O - h5(*)A], A A [ai a2] = 1 (73)

where the zero partition reveals that the translational rate
modes are not controllable. This is not surprising given that

the gyricity distribution cannot supply a net force. The matrix
Srr defined in Eq. (49) has the form

Srr = J t/2

-V
(74)

which establishes the controllability of the pseudorigid modes
since det S^^O if hs(x)&Q. This is the reduced rotational
form of the condition (54).

The vibration modes can be partitioned as

,« + (75)

with similar notation for va = u _ a. The definition of Sap [Eq.
(49)] and the preceding descriptions for ua and 3C* give

Cn 2 \ii = h?(x)\-
J-t/2 L

(76)dx dx dx dx J

For each mode pair, we shall define the controllability norm:

cu — a= 1,2,3,... (77)

and the controllability condition in Eq. (53) for each mode
pair is equivalent to Ca>0. We include the factor o£ in this
definition because it would have resulted if we had used B,
given by Eq. (44), instead of B [Eq. (47)], in the derivation of
the controllability conditions. For vibration control using
CMGs, the condition in Eq. (53) is equivalent to requiring that
there be at least one gyro located where the modal slope V xua
or Vxva is nonzero. It must also be such that the output
torque h5

x /3 is not perpendicular to both V xua and V xva.
Lastly, let us deal with the attitude variables 0 = [0i 02]r.

The quantity Sm [Eq. (49)] takes the form

S«=L° , Ste = Ar h}(x)
L^0aJ J -1/2

dx
toi*
dx

dx (78)

when HT = 0. The zero partition is, once again, evidence of the
translational modes. Clearly, we cannot have controllability
of the position variables w0 = [WI>G w2>o]r. However, the condi-
tion for attitude controllability can be salvaged from the col-
lapsed form of Eq. (55). Taking only the rotational partitions,
the criterion becomes

[ N N
V^ V*' A /O
LJ LJ 0«(Aa/3 (79)

where we have recalled the forms of Tr [Eq. (30)] and Te [Eqs.
(42) and (27)]. The two matrices that are summed here are
nonnegative definite; that the first is at least positive semidef-
inite follows from the positive-definiteness of S^ and the
semidefiniteness of the matrix S in Eq. (48). Therefore, the
condition is equivalent to asking that the sum be positive
definite. When the total gyricity is zero (hT - 0), we know
from Eqs. (72) and (73) that A = 1. In this case, controllability
of the pseudorigid modes (det See ̂  0) is enough to guarantee
that the attitude will be controllable.

Nonzero Total Gyricity (hr * 0)
The case where hT7*Q will now be treated. As an example,

let us choose the gyricity distribution to be

37TXs(x)= ~>r c o s ~P J f/2

I*.
-1/2

(80)

where hA is the net gyricity. This distribution is symmetric
about the origin, and the total gyricity is Hr = hA/3. The
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SEPT.-OCT. 1991 CONTROLLABILITY AND OBSERVABILITY OF GYROELASTIC VEHICLES 893

determination of the gyroelastic mode shapes can be accom-
plished using a Ritz approximation. Here, we use the finite
element method as described in Ref. 3. The first four mode
pairs are depicted in Fig. 3 for the case where KA = 1.0 (we
nondimensionalize according to HA - pBt2KA, o£ = u^B/pt4).
The mode shapes ua and va are plotted as well as the character-
istic motion2 fu« coswaf - va sma)at } . The influence of gyric-
ity on the modes is clearly in evidence, and the first pair is
identified as the precessional mode. The controllability norms
Ca defined by Eq. (77) are tabulated in Table 1 for the first
eight mode pairs (C^ = C2

ahA/B). Given the way in which Ca
is defined, they fall off with a, although not monotonically.

Since this gyricity distribution does not exhibit pseudorigid
modes, the partitions See and S6a in Eqs. (74) and (78), respec-
tively, do not exist. Therefore, the condition for attitude con-
trollability [Eq. (79)], degenerates to

f N N l
det £ £ eaS^eU^09

L«= -N |8= -N J

This expression would have resulted from Theorem 3 had the
rate modes, which in this case consist of just the translations,
been ignored. Note that Oi>ce and 02,« are the rotational compo-
nents of the unconstrained vibration mode in Eq. (75). From
Fig. 3, the second and fourth modes do not contribute to
controllability of the attitude since 6a = 0 for both of them.

A pointwise distribution of CMGs will now be considered in
accordance with Eq. (6):

n
hs(x) = 2^ htd(x — Xj) (81)

The quantities hi and jc/ are determined from the continuous
distribution in Eq. (80) by partitioning the rod into n equal
segments denoted by V;. The point xf is located at the center of
Vi9 and we define

hs(x) dx

The Cauchy-Schwartz inequality dictates that

i * r/
-£/*?<
in i = 1 J -1/2

= t/n
V:

(82)

and based on the properties of the Riemann integral, we
expect equality as «—>oo. The adjoint of the input operator,
from Eq. (19), is given by

3C*w = coH

which should be compared with Eq. (70).
When HT = 0, the quantity corresponding to

tributed case) is

(83)

(the dis-

and making use of Eqs. (74) and (82), we have the inequality

The factor fn in the right expression relates the dimensions of
the distributed and pointwise cases. The inequality reveals

that, from the point of view of relative controllability, the
pointwise case approaches the distributed case from below.
The reader should note that as /?-*<», £n-*0 and, therefore,
S^— > O. It is inappropriate that the measure of controllabilty
provided by S$ should tend to zero as the number of gyros
increases with hA fixed. Rather, one would prefer a measure
that tended to the distributed result. Hence, we propose that
SjjVf,, would be a better measure of relative controllability
when assessing the influence of the number of gyros. It has the
same dimension as S^ and as n -*oo, S^/4 —S^, which is the
desired result.

The pointwise definition of Saa, from Eqs. (49) and (83), is

and like S($, S^-^O as n — oo, which is misleading as a mea-
sure of controllability. Therefore, we define the pointwise
controllability norms C£° by

rr;(«)i2 A __ rc(«) _i_ c(«) i
IVa J = » 2 L°aa ^ ° - a, - «J

We emphasize that, when calculating this quantity, the mode
shapes and frequencies are functions of n. The factor 1/4,
once again, relates the dimension of the distributed and point-
wise cases. Given the way in which the pointwise gyricity
distribution is determined, the modes tend toward their dis-
tributed counterparts as n ̂ oo. We claim that as n — oo— i.e.,

= 3.038

u>2 = 8.815

= 42.42

u>4 = 45.64

Fig. 3 Gyroelastic mode pairs for symmetric gyricity distribution.

Table 1 Controllability norms for distributed gyricity

Mode pair (a) 1
2.157 0.672 0.271 0.241 0.148 0.205 0.131 0.134
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a = 1 (first mode pair) D
Number of CMC'S (n)

10 100

c ->-g *

0.1

0.01

0.001

0.0001 10 100
Number of CMC'S (n)

a = 2 (second mode pair) O

Fig. 4 Controllability norms for pointwise gyricity.

we take many small gyros—the pointwise controllability norm
C£° tends toward the continuum result.

To see this numerically, let us turn to Fig. 4, where the
quantities (Ca - C£°)/Ca are plotted against n for the first and
second mode pairs. The gyricity distribution is given by Eq.
(80) and the net gyricity is KA = 1.0. From the plot, we acquire
the approximate asymptotic relationship

C(n) K
^=1-^, *a>0, a =1,2Ca nL

This behavior is representative of typical mode pairs and a
general gyricity distribution. Convergence to the distributed
result is from below, which demonstrates that distributed
gyricity represents an ideal limiting case. Furthermore, the
difference between the two diminishes in proportion to the
square of the number of devices.

Now focusing on observability, consider the mode shapes of
Fig. 3. We shall assume a single-point sensor (M = 1), which
senses the beam's velocity at location x = xs in the direction
n = [n\ n2]T. The observation kernels in Eq. (57) are
<y1 = nTd(x - xs), %i = O. The first and third modes are not
observable if xs = 0 since they possess a node in all directions
n. If cy1 = nTd(x - *5)V, <Z\ = 0 (a singular angular rate sen-
sor) and xs = 0, then the second and fourth mode pairs are not
observable since these modes are locally "flat" at the origin.

VII. Conclusions
Complete conditions for controllability and observability of

gyroelastic structures have been expressed in terms of the
system modal parameters. A very general approach yielded
conditions for control that stems from a pointwise distribution
of control moment gyros and for the distributed analog. The
results can be applied to general actuator systems by proper
formation of the input operator and its adjoint. We showed
that controllability for distributed gyricity corresponds to the
limit of a sequence of pointwise controllability problems. The
relationship between the two from the standpoint of relative

controllability was investigated in our numerical example. The
conditions for attitude controllability were investigated in
some detail because they present the greatest analytical chal-
lenge. In the beam example, the form of the conditions de-
pends on whether or not a net momentum bias exists. The
concept of a gyroelastic node was defined and, in the example,
its importance for observability was illustrated graphically.

Appendix
The solution of Eq. (43) can be written as

• ] d f ,

where "W is a mapping from 'Had into the state space 9C. Its
adjoint is defined by

Vx€9C,

and, therefore, 'W(t) = B* exp[ar(f - T)], where B* is de-
fined so that

The complement of the reachable subspace in Eq. (45) is
defined as

and controllability as defined by W = 9C is equivalent to re-
quiring that 91 -1 = { 0 } . Given the definition of Sft, $ -1 can be
characterized further by

vr(0<r«x),

v= I C
Jo

But

and ^ft1 if, and only if, £€91(^*00), where 91 { - } de-
notes the null space. A simple proof shows that 91 { *W*(T) ] =
91 { eW(r)eWI(r) } , and, therefore, controllability is equivalent
to 9l{eW(77W*(r)) = (0) (0<T<oo), or, alternatively, the
matrix \(T) defined in Eq. (46) is positive definite for all
finite, positive T.

References
!Aubrun, J. N., and Margulies, G., "Gyrodampers for Large Space

Structures," NASA CR-159 171, Feb. 1979.
2D'Eleuterio, G. M. T., and Hughes, P. C., "Dynamics of Gyroe-

lastic Continua," Journal of Applied Mechanics, Vol. 51, June 1984,
pp. 412-422.

3D'Eleuterio, G. M. T., "Dynamics of Gyroelastic Vehicles,"
Ph.D. Dissertation, Univ. of Toronto, Institute for Aerospace Stud-
ies, Toronto, Canada, 1984; also, UTIAS Kept. 300, 1986.

4D'Eleuterio, G. M. T., "Dynamics of Gyroelastic Vehicles," Pro-
ceedings of the 5th VPI&SU/AIAA Symposium on Dynamics and
Control of Large Structures, Blacksburg, VA, June 1985.

5D'Eleuterio, G. M. T., and Hughes, P. C., "Dynamics of Gyroe-
lastic Spacecraft," Journal of Guidance, Control, and Dynamics,
Vol. 10, No. 4, 1987, pp. 401-405.

6Damaren, C. J., and D'Eleuterio, G. M. T., "Optimal Control of
Large Space Structures Using Distributed Gyricity," Journal of Guid-
ance, Control, and Dynamics, Vol. 12, No. 5, 1989, pp. 723-731.

7Juang, J.-N., and Balas, M. J., "Dynamics and Control of Large
Spinning Spacecraft," Journal of the Astronautical Sciences, Vol. 28,
No. 1, pp. 31-48.

8Hughes, P. C., and Skelton, R. E., "Controllability and Observ-
ability of Linear Matrix-Second-Order Systems," Journal of Applied
Mechanics, Vol. 47, June 1980, pp. 415-420.

9Noor, A. K., and Mikulas, M. M., Jr., "Continuum Modeling of
Large Lattice Structures: Status and Projections," NASA TP-2767,
Feb. 1988.

D
ow

nl
oa

de
d 

by
 R

Y
E

R
SO

N
 U

N
IV

E
R

SI
T

Y
 o

n 
Ju

ne
 2

4,
 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/3

.2
07

28
 


