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Optimal Control of Large Space Structures
Using Distributed Gyricity

C. J. Damaren* and G. M. T. D'Eleuteriot
University of Toronto, Downsview, Ontario, Canada

An optimal formulation is developed for the shape control of large flexible spacecraft possessing a distribution
of control moment gyros. The structure is modeled as a continuum in mass, stiffness, and gyricity (stored angular
momentum). A small, linear viscous damping term completes the dynamical description. The equation of motion is
formulated in continuum form, and a brief eigenanalysis is presented that permits the modal equations of motion
to be derived. The optimal control problem is treated using distributed-parameter concepts, and a modal expansion
for the resulting Riccati operator reduces the problem to the solution of a matrix Riccati equation. Such an
approach permits pointwise control moment gyros as well as the distributed analog to be handled with the same
theory. By means of an example, the use of distributed gyricity is demonstrated to be very effective for shape
control of large space structures. Moreover, the notion of a continuous distribution of gyricity is shown to be
beneficial in modeling the dynamics and control of flexible spacecraft employing many control moment gyros.

I. Introduction

THE concept of a "gyroelastic" continuum has recently
been advanced1^ as a model for structures that, in addi-

tion to being characterized by a continuous distribution of
mass and stiffness, contain a continuous distribution of gyric-
ity (stored angular momentum). This model is a very conve-
nient, useful representation of elastic structures with a large
number of small spinning rotors. In fact, the principal motiva-
tion here derives from the advent of large, flexible space
structures where momentum wheels or control moment gyros
may be employed for attitude and shape control.

The use of angular-momentum-exchange devices in the
control of flexible spacecraft offers an attractive option. Such
devices can provide a control-torque distribution to comple-
ment control forces supplied by thrusters. But, unlike
thrusters, they are clean actuators and require no refueling
and relatively little maintenance. It is significant that the
NASA Langley Research Center has established a flexible-
grid laboratory facility5 that has involved the use of reaction
wheels for control experiments.6

In this paper, we present an optimal formulation for the
shape control of flexible spacecraft using "gyric" actuators. It
should be clarified that "optimality" in this case may take on
two meanings. One can speak of an optimal gyricity distribu-
tion or an optimal control law for a given gyricity distribu-
tion. It is the latter that we will address by considering a
flexible spacecraft with a distribution of control moment
gyros.

The optimal control problem is formulated in continuum
terms. The continuum approach appears to be experiencing a
renaissance in control theory. It permits us, for example, to
generalize to distributed (continuous) actuators. However,
although the continuum approach may be advantageous for
analytical purposes, discretization is ultimately required for
computer implementation. To this end, a discretization proce-
dure for the continuum Riccati equation is introduced for
systems with rigid modes. In addition, it is shown that, under
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certain conditions (i.e., the diagonal dominance of a certain
matrix), the system matrix Riccati equation reduces to a set of
2 x 2 matrix Riccati equations.

However, we shall first briefly review the dynamics of
gyroelastic systems and then extend the analysis to include
light damping. A numerical example demonstrating some of
the theoretical results will also be presented.

II. Lightly Damped Gyroelastic Vehicles
Consider the gyroelastic vehicle V depicted in Fig. 1. It

consists of a number of flexible appendages, collectively de-
noted by E, attached to a rigid body R. An origin O is affixed
to the rigid body (which, without loss in generality, can be
made arbitrarily small). The vehicle is imbued with a distribu-
tion of gyricity denoted by hs(r). For now, we restrict hs(r) to
be constant with respect to a local reference frame at r.

The total displacement of the vehicle may be expressed as

(1)0, reR

where w>0 is the translation of 0, 0 is the small rotation of R
relative to inertial space, and ue(r,t) is the small deformation
of E relative to R. It has been shown2"4 that the equation of
motion for V is

(2)

where feT represents the external force/volume distribution.

Fig. 1 A gyroelastic vehicle.
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724 C. J. DAMAREN AND G. M. T. D'ELEUTERIO J. GUIDANCE

The stiffness operator JT, usually differential in form, is
self-adjoint

= j wfjfM
}y

(3)

Moreover, since V is unconstrained, Jf is positive-semidefinite
with respect to w:

I (4)

The rigid degrees of freedom, which together may be ex-
pressed as

(5)

in fact span the null space of Jf\ i.e.,

It is important to observe that Jf, although only positive-
semidefinite with respect to M>, is positive-definite with respect
to ue, i.e.,

(6)

The mass operator M is defined simply as a(r)l where a(r) is
the mass density and 1 represents the identity operator.
Clearly, M is self-adjoint and positive-definite (with respect to
H>). Finally, and of central interest here,

• A _lY7x JL x y x— 4v ns v (7)

is the skew-adjoint gyricity operator. (For convenience, hs is
assumed to vanish on dV9 the boundary of V.)

It should be mentioned, and indeed emphasized, that the
assumption that hs(r) is continuous does not limit our analysis
in any way. To model lumped sources of stored angular
momentum, we can employ Dirac's delta function as follows:

(8)

We shall implement this form in part of the numerical exam-
ple.

The equation of motion (2) omits the effect of structural
damping. But, given its importance in dynamics and control,
damping cannot, in practice, be ignored. Thus, let the dissipa-
tive influences be modeled as

f — _ Q)\o (Q\
JD ~ ~"w \y)

where the damping operator is linear and time-invariant.
Also, & is self-adjoint and possesses the same null-space as
Jf, rendering it positive-semidefinite with respect to w>. How-
ever, we shall assume complete damping, hence

I (10)

Furthermore, large space structures are typically lightly
damped, which implies that

j ||0*||d/« f (11)

i.e., the dissipative forces are much smaller than the stiffness
forces. It should be acknowledged that many elaborate mod-
els for damping exist. Equation (9) represents a relatively

simple viscous damping model, yet it is quite useful and very
instructive.

Amending Eq. (2), therefore, to include structural damping
yields

=fe (12)

This, then, is the equation of motion for lightly damped
gyroelastic vehicles.

III. Modal Analysis
It will prove indispensible to express the equation of motion

(12) in first-order form:

(13)
where

At this juncture, let us introduce the following inner product:

<*,*>£ f +T+dV (14)
Jy

The operator $ is self-adjoint, which, in the notation of this
inner product, means

(15)

for /! and /2 satisfying the boundary conditions. In addition,
owing to our choice of the state description %, $ is positive-
definite, i.e.,

,**> >0 (16)

The operator y can be decomposed into skew-adjoint and
self-adjoint parts:

(17)

[ ($ yr~\ VQ) - ~|-* } ""*[ ••]
where

and

The adjoint of 3~ defined such that

(19)
Note that, in view of the light damping assumption, we are
treating damping as a perturbation to the reference (un-
damped) gyroelastic system.

In preparation for an eigenanalysis of Eq. (13), we shall
briefly review the eigenproblem for the undamped case,2'3
which is

(20)

The properties of $ and £f dictate that Aa and #a appear in
complex-conjugate pairs and that Aa are purely imaginary. We
can therefore write

(a = - oo,...,oo) (21)
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SEPT.-OCT. 1989 OPTIMAL CONTROL OF LARGE SPACE STRUCTURES 725

where co_a = — coa,coa > 0 for a > 0, and 0_a = ^ra. (Note
that 0 is excluded from the range of a.) The real eigenfunc-
tions 0a and ^ra have the form

.- L r«
where n_ a = ua and «t, _a = uea.

As the system is unconstrained, there are also zero-fre-
quency eigenfunctions:

1 = 0,

If we partition Xr as

X =

(23)

(24)

the corresponding modes are defined by JTU^ = O,
^U; + JTU,, = O. In the case of a purely elastic body
(^ = O), these modes are simply the rigid (position) modes
(U^ = Ur,Ue = O). In the gyroelastic case, Xr has the form

X = -'"-•. (25)

The first "column" represents the translational modes, which
are unaffected by gyricity, whereas the second consists of the
"pseudorigid modes," which may be described as uniform
rotations about an axis a with the elastic appendages of the
vehicle in a constant deformed state ua(r).4 We shall refer to
Xr as the rigid rate modes.

The orthonormality relationships among the eigenfunctions
can be summarized as follows:

(26a)

(26b)

By virtue of Eq. (23), <£a are also orthogonal to Xr with
respect to y.

The presence of light damping results in perturbations in
both the eigenvalues and the eigenfunctions. A detailed per-
turbation analysis has been performed7; however, only a brief
overview will have to suffice here. The eigenproblem associ-
ated with the damped equation of motion (13) is

(27)

where

Since the operator 3~ is non-self-adjoint, it is also necessary to
consider the corresponding adjoint eigenproblem,

(28)

where

are the (complex) adjoint eigenfunctions with
undamped case).

The damped system eigenvalues are

a = —oo,...,00 (29)
where

=

are the damping factors. Note that the first-order perturbation
is strictly real and, as a result of complete damping, Cao>a > 0.
The zero-frequency eigenvalues are unaffected by damping as
are their corresponding modes.

The perturbations in the eigenfunctions have the form

(30)

Without loss in generality, we may take (5<^_a = di//^ Further-
more, we can expand <5<£a in terms of the unperturbed eigen-
functions, i.e.,

= Z (31)
/?= oo

where

- co

and D^ = D[ia = <«w00e/,>. The coefficients caa and ca,_a are
determined uniquely by considering the orthonormality condi-
tions for the perturbed eigenfunctions.

Denoting the perturbed (real) eigenfunctions and adjoint
eigenfunctions by

(32)

we find that the following biorthogonality relations hold:

r> = 0 (34)

In addition,

The preceding results may be compared to those of
Meirovitch and Ryland8 for discretized systems. It should be
pointed out, however, that unlike the latter-mentioned results,
where quantities corresponding to caa and ca _a are arbitrarily
set to zero, the present results are consistent with the recent
cautionary remarks of Lim et al.9

The general solution for the motion of our system can be
expressed in terms of the rate modes Xr and the damped
(perturbed) eigenfunctions (p^

(35)

Substituting into Eq. (13) and operating with <Xr, • > and
<#a, • >, while observing the orthogonality conditions, we
arrive at the modal equations of motion

2coa

a = l,...,oo (36)

1

where

t^ f usrerdF, /.* f ni/;rdFJ^ J^
and /ia = Ma — <5wa are the perturbed adjoint-mode shapes
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726 C. J. DAMAREN AND G. M. T. D'ELEUTERIO J. GUIDANCE

available from We thus identify the (distributed) control force as

»„ =

The equations for the elastic model coordinates can be con-
veniently written as

(37)

where

0 ri '•*•
Note the bicoupled form of the elastic modal equations.

A few words are perhaps in order regarding the foregoing
perturbation analysis. As is evident, light damping has only a
first-order effect on the eigenvalues and eigenfunctions. How-
ever, the perturbation in the eigenfunctions is qualitatively
insignificant compared with the effect on the eigenvalues. The
modal character of a system is barely influenced by a 1%
change, say, in the mode shapes, but a 1 % damping factor has
major effects, namely, the exponential decay of unforced
responses and finite responses to resonant forces. Therefore, it
can be argued that, for lightly damped systems, it is sufficient
to consider only the first-order perturbations in the eigenval-
ues and assume the eigenfunctions are essentially unchanged.
(See also, for example, the discussion by Hughes.10) The
practical consequences of this argument are important, since
the damping factors are usually estimated directly without
having to identify explicitly the damping operator @ or its
matrix counterpart in the discretized case. This fact will be
exploited in the numerical example.

IV. Optimal Control Formulation
Let us now focus our attention on the use of gyricity in

active control. A spinning rotor can be employed as control-
torque actuator by regulating either the magnitude of the
rotor's angular momentum or the angular rate of the rotor's
spin axis. The former method is used by momentum wheels
and the latter by control moment gyros. We shall consider a
distribution of control moment gyros only and the (time-vary-
ing) gyricity therefrom.

We associate with the (nominal) gyricity distribution hs(r),
a distribution of gimbal angles

which is assumed small, i.e.,

(38)

(39)

The column of angles f(r,t) represents the angufer displace-
ment of the gyricity element hs(r) dFwith respect to the local
reference frame at r. As expressed in this frame, the gyricity
distribution is

(40)

The torque distribution arising from hft is given by

where a= |V x w is the total (rigid plus elastic) rotational
displacement at r. Hence, the equivalent force distribution
acting on the vehicle is1

(41)

(42)

and o as the (distributed) control variable. The ensuing equa-
tion of motion is

Jtw + (9 + ®)v» +

or, in first-order form,

+/, (43)

(44)

where

•»[*}
and/X/">0 represents disturbance forces. For future reference,
we also mention that

•i,
are the adjoints of & and 3tf.

Before the optimal control problem is tackled, a couple of
notational issues should be addressed. First, we shall indicate
by U the space of all possible controls u. For emphasis, then,
inner products involving the control variable will be written as

>tf =

We shall also find it convenient to introduce an outer product,
corresponding to Eq. (14) and denoted by 0><^, which is
defined such that

and

Of course, the arguments are not limited to column functions
but may include matrix functions as well.

Let us define a set of admissible controls as

>fJo
i,!))^ dt < 00} (45)

where T is the terminal time of interest. We seek the optimal
control v*eUad such that

./(»*) </(»),

where

where we recognize the first term from Eq. (12) and

(46)

The operator 01 is self-adjoint and positive definite. The
operator & is also self-adjoint but non-negative definite. Both
0t and <$, however, are restricted to be time-invariant. We
shall assume that the rigid rate modes are not penalized in the
cost functional, i.e., ,£Xr = O, since the translational modes
are uncontrollable via the gyricity distribution. (The pseudo-
rigid modes could be included without difficulty; however, for
explanatory purposes we choose not to penalize them.) As an
example, consider

(47)
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SEPT.-OCT. 1989 OPTIMAL CONTROL OF LARGE SPACE STRUCTURES 727

The term <x,«Sx> thus expresses the total energy (less the
"spin" energy due to gyricity) of all the elastic modes of the
structure.

If the disturbances are neglected (fd = 0), the solution to the
optimal control problem (derived in the Appendix) can be
expressed as

(48)

where the ( • )* notation is dropped for convenience and
the solution of the following adjoint equation:

and

The eigenproblem (28) can be associated with the preceding
equation. In Eq. (48), the adjoint function £ has been ex-
pressed as a function of #, £(r,t) = 0*(i)£%(r9t)9 where & is the
unique positive-semidefinite (self-adjoint) solution of the op-
erator Riceati equation

- £ (49)

with terminal condition 0>(T) = O. This equation is rather
unwieldly in appearance but a constructive solution procedure
is within our grasp. Because ^ is a bounded linear operator
mapping the space of x into the space of the adjoint variable
5 (via <f), it can be expressed using the system eigenfunc-
tions.11 Thus, we propose the following representation;

^=Xr>Mr-'PrrMr-1<Xr+ f cB-^P^MrXX,
'

+ Z a^x^
^ 0 = . _ oo

+ 7 Z o.-̂
^a,/?= — oo

The undetermined coefficients are given by

(50)

by virtue of the orthonormality relations [Eqs. (33) and (34)].
Since P is self-adjoint,

p _ p p _ pr p _ pr
* a/? — " POP *rr ~ " rr? *ar ~ *ra

If we use the above expression for & and the modal expansion
for / [Eq. (35)], the adjoint variable £ = £P$i becomes

Z r . p^r
L

This is a modal expansion for £ in terms of Xr and the adjoint
eigenfunctions #a with the expansion coefficients expressed as
linear combinations of the modal coordinates j/r, r\^ Hence,
Eq. (50) implements the distributed parameter analog of the
usual "sweep method," i.e., a mapping from the state variable
to the adjoint variable.

Substituting Eq. (50) into Eq. (49) and successively per-
forming the operations <Xr,( • )Xr>, <<p a , (-)X r>, and

°n both sides of the equality, we can obtain the
Riceati equations for the coefficients Prr, Par, and Paj8. Since
<Xr,JXr> = O and <Xr,J^a> = 0, these equations reveal that

P r r=O, a = - ., oo (51)

= -oo,...,00 (52)

subject to Pap(T) =0. The discretized Riceati equation (52)
can be expressed in a more palatable form by defining

P £ matrix{Pa/J,

where

W 4 matrixj Q ̂

2a/* = f <I>1

The matrices P, W, and Q are symmetric and non-negative-
definite because of the corresponding operator properties.
With these in hand, the Fourier coefficients Pa/? satisfy a
matrix Riceati equation:

= o (53)
where H was defined in Eq. (37). The form of the preceding
equation is consistent with the modal description of the state
[Eq. (37)].

The optimal control law (48) can be expressed as a function
of the modal coordinates r\e. Substituting the expansions for
9- [Eq. (50)] and / [Eq. (35)] into Eq. (48) results in

(54)

where

ET(r) ^

The continuum form of the closed-loop motion equation is

and the resulting closed-loop modal equations of motion
become

(55)

where

and fr td and fe^ are the rigid and elastic modal disturbance
forces. The optimal value of the performance index as derived
in the Appendix, in continuum form, is

The eigenfunction expansions for
representation

and # provide the matrix

which is analogous to the standard lumped-parameter result.
It is worthwhile to pause for a moment and study the

implications of the foregoing equations for pointwise gyric
actuators. The control force can still be written as in Eq. (43),
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728 C. J. DAMAREN AND G. M. T. D'ELEUTERIO J. GUIDANCE

Table 1 Open- and closed-loop eigenvalues

Closed-loop
Open-loop frequencies, o>a

Elastic

/Tr = o
0
0
0

20.26
33.01
57.10
70.36

104.63
119.35
130.61

Gyroelastic,

h,
0
6.09

21.83
47.45
66.34
80.83
91.90

125.76
127.12
148.98

RT=\

K,
0
6.01

20.87
46.24
60.68
76.15
93.87

120.92
123.28
125.10

Full

Cd«

0
0.425
0.233
0.150
0.163
0.152
0.129
0.127
0.121
0.096

eigenvalues, Xa
Continuous, hs

P

<v
0
6.10

21.83
47.45
66.46
80.90
91.83

125.72
127.17
148.98

Block

Cd«
0

0.429
0.234
0.151
0.166
0.154
0.132
0.128
0.124
0.096

diag. P

<Sd«

0
5.93

21.63
47.36
67.15
81.24
91.02

125.15
126.68
148.83

Pointwise, hs

Full

Cda

0
0.419
0.238
0.148
0.172
0.163
0.138
0.120
0.125
0.128

P

^d«

0
6.01

20.88
46.24
60.73
76.20
93.91

121.10
123.30
124.84

= -Cda^d« ±7(1 - C

where

Fig. 2 Gyroelastic Purdue model for numerical example.

provided we interpret Jtif and v as follows:

wherein we have used the description [Eq. (8)] for hs(r,t), and
ftci» Py» Pzi are the gimbal angles for gyro ht. Note that

U = R3n, <»i,»2>t/

In addition, the weighting operator ^ in this case is simply a
matrix R.

A time-invariant feedback law can be had by considering

^-0 = 0 (56)

which corresponds to the case of an infinite terminal time
(T -> oo) in Eqs. (45) and (46). If the_rank of W is denoted by
/, then W admits the representation BBr, where B has column
dimension /. If (H,B) is controllable and (Q,H) is observable,
then the eigenvalues of — [ft+^Q'^n"1!?] have negative
real parts.12 Strictly speaking, these results hold only for the
case of a finite number of mode pairs arid no damping as the
open-loop system is clearly asymptotically stable in the
damped case. In the case of a finite terminal time, Lions13

presents arguments suggesting that modal expansions for ̂
will converge. Gibson14 has examined the optimal control of
elastic systems with infinite terminal time and pointwise force
actuators (with and without damping).

V. Numerical Example
To illustrate some of our theoretical results, we consider the

Purdue model,15 which is an equivalent continuum representa-
tion of a typical large space structure. The structure consists
of a uniform elastic plate of mass density a (per unit area) and
modulus of rigidity D. Located at the center of the plate is a
rigid body, assumed to be of negligible physical size. Its
inertial properties are summarized by

me = tab, Iex = aab3/l2, Iey = va3b/l2

The aspect ratio and Poisson's ratio are a/b=2.5, and
v =0.30, a and b being the dimensions of the plate. Since we
shall consider only out-of-plane deflections, the displacement
function is a scalar

(x9y) e£

where V4 is the biharmbnic operator.
We endow the model with a distribution of gyricity directed

normal to the plate surface and

w(x,y,t) = WQ + 0^ - 9yx

The stiffness operator is given by

where

HT

4ab

-Ji
(nx\ (

COSI —— COS
\ a ) \

(57)

hs(x,y) dx dy

is the total gyricity (see Fig. 2). Modeling the gyricity distribu-
tion as a continuum is in keeping with the nature of the
Purdue model. However, it will be instructive to compare
results obtained using Eq. (57) with those obtained assuming
a finite number of control moment gyros. Thus, we shall also
consider a gyricity distribution

(58)

equivalent to hs in the following sense: The location of the
wheels 17 and the magnitude of the wheel momenta ht are
determined by dividing the structure into an n x n grid of
identical rectangles denoted by D,. Then we take

hs dx dy, i = 1,...,«2

Irx = = 0.017

and rf as the centerpoint of the rectangle D,-.
A finite-element procedure, employing 16 elements and 100

degrees of freedom, was used in the numerical analysis. POT
details consult Ref. 7. The first 10 frequencies for the elastic
and gyroelastic cases are recorded in Table 1. The geometry of
the gyricity distribution is such that the vehicle does not
exhibit a pseudorigid mode. However, the two rigid-body
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SEPT.-OCT. 1989 OPTIMAL CONTROL OF LARGE SPACE STRUCTURES 729

a/7, y = b/7 2a/7, y = 2b/7 ' = rl and
0.001 -i

-0.001 J

0.001 -|

0.002 -,

- 0.002 J

a) Open-loop response
0.002 -,.. '

-O.OOH

0.001 -,

-OO02 J

b) Closed-loop response
.6.100-T

-0.001J

0.0011

3 0

-0.001 J

- 0.100 J

c) Gimbal angle responses
0.100 -|

t
0.2 0.4 0.6 0.8 1.0

-0.100 J

t

0.2 0.4 0.6 0.8 1.0

time t (t2 = t2I>/ffo4) time t

Fig. 3 Open- and closed-loop responses (continuous gyricity).

modes associated with rotation in the elastic case become a
precessional mode.4 The reader should compare the frequen-
cies obtained with continuous gyricity with those calculated
for an equivalent pointwise distribution (n = 7). Agreement is
very good, supporting the concept of a continuous gyricity
distribution as a model for a "cloud of wheels."

For the simulation results which follow, we assume quies-
cent initial conditions and an impulsive disturbance force
located at the rigid body that could represent a thruster force
such as that used in a stationkeeping maneuver. The magni-
tude of the impulse is such that

niJo- J JA
ftd(r,f) Ax dy dt = 0.01

For damping we assume a constant damping ratio:

a = 1,2,3,...

and neglect, as argued earlier, the eigenfunction perturba-
tions. The elastic deflection (open-loop) of the plate in the
elastic and gyroelastic cases for two points on the structure is
displayed in Fig. 3a. The mere presence of gyricity is beneficial
in "stabilizing" the shape of the structure. Indeed, the effect is
progressively enhanced as the gyricity level is increased. This
can be traced to the fact that gyricity causes a shift in energy
to higher modes.7

Let us now return to the case of active control. For
continuous gyricity, we consider the following performance
index:

— m ~ M aw dx dy | dt

where f$x(x,yj) and f$y(xy,i) are gimbal angles associated with
the gyricity distribution and m = mr + me. We have chosen

V4\DV

according to Eq. (47). In the pointwise case, we make the
change

JI
where

We call attention to the determination of the matrix W. The
finite-element approximation of the mode shape «a can be
written as

na =

where A is a matrix of basis shape functions and qa is the
eigencojumn obtained from the discretized eigenproblem.
Hence, the elements of W can be written as

W^ = qZWqp, W = f f

In the present case, we can furthermore write the W matrix as

i f f 2 xRA r dA d\T ^AlW = r-M h2
s(x,y)\--—+—- — \

J Jy \_dx d* ^y dy J
Jdxdy

When considering pointwise gyros, this matrix can be calcu-
lated using

and given the way in which R and ht are selected, W(n) -> W as
«-^oo. In fact, the continuum description of the gyricity
distribution and associated control problem may be viewed as
the limiting case of successive control problems involving n2

gyros, with n -» oo and the total stored angular momentum hT
remaining constant.

The weighting constant is set at r = 2aa2. The choice of J
yields

For purposes of this example, we have used the first 25 mode
pairs in solving the Riccati equation. The first 10 closed-loop
eigenvalues for both cases (hs and Ks) are listed in Table 1.
Once again the agreement between the two cases is quite
good. Numerical experience indicates that the discrepancy is
reduced as n is increased. It is interesting to note that the
choice of performance index results in closed-loop damping
ratios that tend to fall off with frequency (there are excep-
tions). Simulation results for the closed-loop case (continuous
gyricity) appear in Figs. 3b-3d. The dynamic response is
displayed at two points on the structure as are the gimbal
angle histories. We omit the results for the case of pointwise
gyricity since they are indistinguishable from the continuous
case.

It is worthwhile noting that, if Q is block diagonal (as it is
here), then P is block diagonal if W is. Present numerical
studies indicate that W is diagonally dominant and almost
block diagonal. If we neglect the "off-diagonal" entries, then
the solution of the algebraic Riccati equation [Eq. (56)]
reduces to the solution of N 2x2 Riccati equations, provid-
ing significant computational savings. The closed-loop modal
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system matrix is block diagonal as well. Employing this
simplification yields the closed-loop eigenvalues shown in
Table 1. Scanning these values, we see that there is little
difference from that involving a complete solution of the
Riccati equation. The approximation yields damping factors
that are somewhat higher than those resulting from a full
solution. The simulation results though were graphically iden-
tical. Meirovitch and Baruh16 obtained 2 x 2 Riccati equa-
tions for lightly damped gyroelastic systems using the
independent modal-space control technique. Their approach,
however j employs uncoupled penalization of the modal coor-
dinates arid modal forces from the outset.

VI. Concluding Remarks
As is evident from the numerical example, an active gyricity

distribution can be extremely effective in providing attitude
and shape control for flexible spacecraft. It is also notable
that a "passive" gyricity distribution, i.e., an Open-loop
configuration, can potentially be very beneficial for "shape
stabilization." This use of gyricity represents, in essence, an
extension of the notion of spin (or, to some, gyroscopic)
stabilization for rigid spacecraft.

The continuum approach, used throughout the theoretical
development, offers a very elegant formulation that allows us
the fullest latitude for generalization (in particular, to con-
sider distributed actuators). Moreover, with a mere reinterpre-
tation of symbols, the results can be applied directly to
discretized systems. It has also been numerically demonstrated
that a continuous distribution of gyricity is a suitable and
effective model for a distribution of control moment gyros
over a structure.

The optimal control formulation proved very successful and
straightforward to implement. A modal expansion was intro-
duced for the Riccati operator ^, which takes into account
rigid-body motion. The resulting discretized Riccati equation
was shown to reduce to a set of bicoupled ( 2 x 2 matrix)
Riccati equations. This simplification, however, was rendered
possible by the diagonal dominance of the matrix involved in
the nonlinear term. Although this is an empirical result for the
chosen example, it should be worthwhile to explore its general
application. The computational consequences are significant,
since it greatly reduces the effort required to solve the Riccati
equation and the closed-loop modal equations of motion
furthermore retain their bicoupled form.

In conclusion, active gyric control appears to be an attrac-
tive method of controlling large flexible space structures. One
can also look beyond the optimal control approach used here
to consider decentralized control techniques and momentum
wheels as well as control moment gyros. Finally, we add that
there should exist potential advantages in using gyric control
during slewing maneuvers of flexible spacecraft.

the left side of Eq. (A2) can be manipulated as follows:

= \ I***

2 jo <$(°'

2 Jo ^ 'v

Therefore, the optimality condition can be written as

*9»-v*yu'dt^Q9 VveUad
i r
2 Jo

Since the optimal control is unique (owing to the strict
convexity of /), our choice of admissible controls [Eq. (45)]
yields

(A4)

where

r,r) = 0

(The functional dependence on u* has been dropped.) The
state equation becomes

*?,

and the transformation f(r,f) = &(t)£%(r,t) leads to the opera-
tor Riccati equation [Eq. (49)]. The optimal value of the
performance index can be had by substituting Eqs. (A3) and
(A4) into J:

/(»*)=-

Appendix
Since the performance index [Eq. (46)] is (strictly) convex,

a necessary and sufficient condition for optimality of u* is13

ad (Al)^/(o*;o -o*) = —/[»*-

The above condition becomes

1 f r

2 Jo 2° ' Z °

(A2)

where 7(0*) denotes the optimal trajectory. Introducing the
adjoint equation

t>*)|,-7- = 0 (A3)

where ^0 4
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